Advertisement

An Efficient Dynamic Background Subtraction Algorithm for Vehicle Detection Tracking System

  • Rashmita Khilar
  • Sarat Kumar SahooEmail author
  • C. Rani
  • Prabhakar Karthikeyan Shanmugam
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1048)

Abstract

Background subtraction is an important role in video surveillance system in ITS, yet in complex scenes, it is still a challenging problem; hence, it is required to model the background before subtraction. Various illumination changes and dynamic backgrounds form the major key aspects for background modeling. In this paper, an algorithm (TCO-DBS) is proposed to develop an efficient background subtraction framework to solve the above problems. Here, texture and color features are considered for background modeling, thereby separating the foreground and background video frames. The texture features mainly depend on scale values used, i.e., number of neighboring pixels used for describing local texture description. Among this, local binary pattern (LBP) is mostly used in computer vision applications. LBP texture features along with color feature give a promising result when compared to other methods.

Keywords

Background modeling Texture Color LBP TCO-DBS 

References

  1. 1.
    Niknejad, H.T., Kawano, T., Shimizu, M., Mita, S.: Vehicle detection using discriminatively trained part templates with variable size. In: Intelligent Vehicles Symposium (IV). IEEE, pp. 766–771 (2012)Google Scholar
  2. 2.
    Heikkila, M., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. pattern Anal. Mach. Intell. 28(4), 657–662 (2006)CrossRefGoogle Scholar
  3. 3.
    Zhang, Y., Zhao, C., He, J., Chen, A.: Vehicles detection in complex urban traffic scenes using Gaussian mixture model with confidence measurement. IET Intel. Transp. Syst. 10(6), 445–452 (2016)CrossRefGoogle Scholar
  4. 4.
    Iwasaki, Y., Itoyama, H.: Real-time vehicle detection using information of shadows underneath vehicles. In: Advances in Computer, Information, and Systems Sciences, and Engineering, pp. 94–98 (2006)Google Scholar
  5. 5.
    Guo, Z., Zhang, L., Zhang, D., Zhang, S.: Rotation invariant texture classification using adaptive LBP with directional statistical features. IEEE Int. Conf. Image Process. 7(3), 285–288 (2010)Google Scholar
  6. 6.
    Zhou, W., Liu, Y., Zhang, W., Zhuang, L., Yu, N.: Dynamic background subtraction using spatial-color binary patterns. In: Sixth International Conference on Image and Graphics (ICIG), pp. 314–319 (2011)Google Scholar
  7. 7.
    Zhu, M., Martinez, A.M.: Subclass discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1274–1286 (2006)CrossRefGoogle Scholar
  8. 8.
    Zhou, X.S., Huang, T.S.: Small sample learning during multimedia retrieval using biasmap. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, vol. 1, pp. I–I (2001)Google Scholar
  9. 9.
    Wu, Y., Zeng, D., Li, H.: Layered video objects detection based on LBP and codebook. In: First International Workshop on Education Technology and Computer Science, ETCS’09, vol. 1, pp. 207–213 (2009)Google Scholar
  10. 10.
    Wei, Z., Qiu, X., Sun, Z., Tan, T.: Counterfeit iris detection based on texture analysis. In: 19th International Conference on Pattern Recognition, ICPR, pp. 1–4 (2008)Google Scholar
  11. 11.
    Niknejad, H.T., Takeuchi, A., Mita, S.: On-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimation. IEEE Trans. Intell. Transp. Syst. 13(2), 748–758 (2012)CrossRefGoogle Scholar
  12. 12.
    Wang, W., Chen, D., Gao, W., Yang, J.: Modeling background and segmenting moving objects from compressed video. IEEE Trans. Circ. Syst. Video Technol. 18(5), 670–681 (2008)CrossRefGoogle Scholar
  13. 13.
    Liao, S., Zhao, G., Kellokumpu, V., Pietikäinen, M., Li, S.Z.: Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1301–1306 (2010)Google Scholar
  14. 14.
    Zhang, S., Yao, H., Liu, S.: Dynamic background modeling and subtraction using spatio-temporal local binary patterns. In: 15th IEEE International Conference on Image Processing, ICIP, pp. 1556–1559 (2008)Google Scholar
  15. 15.
    McHugh, J.M., Konrad, J., Saligrama, V., Jodoin, P.M.: Foreground-adaptive background subtraction. IEEE Signal Process. Lett. 16(5), 390–393 (2009)CrossRefGoogle Scholar
  16. 16.
    Li, L., Huang, W., Gu, I.Y., Tian, Q.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans. Image Process. 13, 1459–1472 (2004)CrossRefGoogle Scholar
  17. 17.
    Mandal, M., Nanda, P.K.: Embedded local feature based background modeling for video object detection. In: IEEE Conference on Power, Communication and Information Technology Conference (PCITC) (2015)Google Scholar
  18. 18.
    Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground–background segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005)CrossRefGoogle Scholar
  19. 19.
    Zhong, J., Sclaroff, S.: Segmenting foreground objects from a dynamic textured background via a robust kalman filter. In: Proceedings Ninth IEEE International Conference on Computer Vision, pp. 44–50 (2003)Google Scholar
  20. 20.
    Jacques, J.C.S., Jung, C.R., Musse, S.R.: Background subtraction and shadow detection in grayscale video sequences. In: 18th Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI, pp. 189–196 (2005)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Rashmita Khilar
    • 1
  • Sarat Kumar Sahoo
    • 2
    Email author
  • C. Rani
    • 3
  • Prabhakar Karthikeyan Shanmugam
    • 3
  1. 1.Panimalar Engineering CollegeChennaiIndia
  2. 2.Parala Maharaja Engineering CollegeLuhajharaIndia
  3. 3.School of Electrical EngineeringVIT UniversityVelloreIndia

Personalised recommendations