Comparison of Performance of Four-Element Microstrip Array Antenna Using Electromagnetic Bandgap Structures

  • K. Prahlada RaoEmail author
  • R. M. Vani
  • P. V. Hunagund
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1048)


This paper discusses the comparison of performance of conventional microstrip array antenna using two different types of two-dimensional electromagnetic bandgap structures. The electromagnetic bandgap structures employed are fork type and plus shape. Design of miniaturized and low-cost four-element microstrip array antenna with reduced mutual coupling is the main objective of this paper. The former and latter electromagnetic bandgGap structures produced miniaturization of 28.20 and 22.42%, respectively. Both the electromagnetic bandgap structures have accounted for considerable decrease in mutual coupling of conventional microstrip array antenna. The radiation characteristics of the modified array antenna depict a decrease in back lobe power. The array antennas are designed using Mentor Graphics IE3D simulation software. The experimental results are taken using vector network analyzer.


  1. 1.
    Balanis, C.A.: Antenna Theory, Analysis and Design, 2nd edn. Wiley (1997)Google Scholar
  2. 2.
    Bahl, I.J., Bhartia, P.: Microstrip Antennas. Artech House (1980)Google Scholar
  3. 3.
    Scott, J.: Lecture notes of EEET1071/1127 Microwave and Wireless Passive Circuit DesignGoogle Scholar
  4. 4.
    Yang, F., Rahmat-Samii, Y.: Electromagnetic Band Gap Structures in Antenna Engineering. Cambridge University Press (2009)Google Scholar
  5. 5.
    Elsheakh, D.N., Abdallah, E.A., Iskander, M.F., Elsadek, H.A.: Microstrip antenna array with new 2D-electromagnetic band gap structure shapes to reduce harmonics and mutual coupling. Prog. Electromagn. Res. C 12, 203–213 (2010)CrossRefGoogle Scholar
  6. 6.
    Benikhelf, F., Boukli-Hacene, N.: Mutual coupling reduction in microstrip antenna arrays using EBG structures. Int. J. Comput. Sci. Issues, 9(4, 3), 265–269 (2012)Google Scholar
  7. 7.
    Alsulami, R., Song, H.: Double-sided microstrip circular antenna array for WLAN/WiMAX applications. J. Electromagn. Anal. Appl. 5, 182–188 (2013)Google Scholar
  8. 8.
    Saxena, D., Agarwal, S., Srivastava, S.: Low cost E-shaped microstrip patch antenna array for WLAN. Int. J. Adv. Res. Electr., Electron. Instrum. Eng. 3(4), 8831–8838 (2014)Google Scholar
  9. 9.
    Bait-Suwailam, M.M., Siddiqui, O.F., Ramahi, O.M.: Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators. IEEE Antennas Wirel. Propag. Lett. 9, 876–878 (2010)CrossRefGoogle Scholar
  10. 10.
    Chauhan, S., Singhal, P.K.: Enhancement of bandwidth of rectangular patch antenna using multiple slots in the ground plane. Int. J. Res. Electron. Commun. Technol. 1(2), 30–33 (2014)Google Scholar
  11. 11.
    Zainud-Deen, S.H., Badr, M.E., El-Deen, E., Awadalla, K.H., Sharshar, H.A.: Microstrip antenna with defected ground plane structure as a sensor for landmines detection. Prog. Electromagn. Res. B 4, 27–39 (2008)CrossRefGoogle Scholar
  12. 12.
    Verma, A.: EBG structures and its recent advances in microwave antenna. Int. J. Sci. Res. Eng. Technol. 1(5), 84–90 (2012)Google Scholar
  13. 13.
    Rana, R., Vyas, N., Verma, R., Kaushik, V., Arya, A.K.: Dual stacked wideband microstrip antenna array for Ku-band applications. 4(6),132–135 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of PG Studies and Research in Applied ElectronicsGulbarga UniversityGulbargaIndia
  2. 2.University Science Instrumentation Center, Gulbarga UniversityGulbargaIndia

Personalised recommendations