Advertisement

Use of QTL in Developing Stress Tolerance in Agronomic Crops

  • Ali Fuat Gökçe
  • Usman Khalid Chaudhry
Chapter
  • 55 Downloads

Abstract

Stress is any external factor that interferes with the normal functioning and growth of crops. Abiotic stress has been extensively studied for causing devastating loss to agronomic crop yield across the globe. These problems were worse than they are today. Currently, we have contemporary genomic tools to find the root cause of problems and we have to broaden our horizon in understanding stress tolerance. Current advancement in genomics has paved our path for a more precise and comprehensive description of quantitative trait loci (QTLs) that regulate a specific trait. QTLs enable researchers to study genes that are responsible for even a single phenotypic trait. In other words, they help to study which sets of genes are responsible for making crops tolerant to stress. Numerous studies have been conducted to describe QTL mapping a significant tool for finding traits against stress tolerance. QTL mapping enables to evaluate the numbers, locations, and gene action pattern. Polygenes affect controlling a trait. Moreover, QTL has provided ease to dissect complex traits. Phenotypic analysis of QTL is done by observing numerous plants from the same segregating population for finding loci for a trait. The QTL tolerance trait so far has been accomplished in major agronomic crops, which include wheat, rice, maize, cotton, etc. In conclusion, we can say that QTL mapping is a crucial technique to elucidate specific components that allow direct assessment of stress tolerance. Therefore, in this chapter, we tried to explicate different QTL studies exploited for trait improvement of various agronomic crops for stress tolerance.

Keywords

Agronomic crops Abiotic stress Biotic stress QTLs Stress tolerance 

References

  1. Abdelraheem A, Hughs SE, Jones DC, Zhang J (2015) Genetic analysis and quantitative trait locus mapping of PEG – induced osmotic stress tolerance in cotton. Plant Breed 134:111–120CrossRefGoogle Scholar
  2. Agrios G (2005) Plant pathology. Elsevier Academic Press, Burlington, p 1009Google Scholar
  3. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050. ESA working paper no. 12–03Google Scholar
  4. Ali ML, Pathan MS, Zhang J, Bai G, Sarkarung S, Nguyen HT (2000) Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theor Appl Genet 101:756–766CrossRefGoogle Scholar
  5. Ali ML, Luetchens J, Nascimento J, Shaver TM, Kruger GR, Lorenz AJ (2015) Genetic variation in seminal and nodal root angle and their association with grain yield of maize under water-stressed field conditions. Plant Soil 397:213–225CrossRefGoogle Scholar
  6. Amjid MW, Malik TA, Shakeel A, Wahid A (2015) QTL mapping for relative leaf water contents, cell membrane stability and excised leaf water loss under drought by using EST–SSR markers in Gossypium hirsutum. Int J Agric Biol 17(4).  https://doi.org/10.17957/IJAB/14.0011 CrossRefGoogle Scholar
  7. Araus JL, Sanchez C, Edmeades GO (2011) Phenotyping maize for adaptation to drought. In: Monneveux P, Ribaut JM (eds) Drought phenotyping in crops: from theory to practice CGIAR generation challenge program. CIMMYT, Mexico, pp 263–283Google Scholar
  8. Arshad M, Ali R, Idrees M, Afzal M (2005) Indigenous evaluation of long staple high yield upland cotton variety CIM 707. Pak Cottons 49:35–44Google Scholar
  9. Ashfaq S, Ahmad HM, Awan SI, Muhammad SAK (2014) Estimation of genetic variability, heritibility and correlation for some morphological traits in spring wheat. Seeds 10:9428Google Scholar
  10. Ashraf MFMR, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  11. Ashraf M, Iram A (2005) Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 6:535–546CrossRefGoogle Scholar
  12. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543CrossRefGoogle Scholar
  13. Babu RC, Nguyen BD, Chamarerk V, Shanmugasundaram P, Chezhian P, Jeyaprakash P, Ganesh SK, Palchamy A, Sadasivam S, Sarkarung S, Wade LJ (2003) Genetic analysis of drought resistance in rice by molecular markers. Crop Sci 43:1457–1469CrossRefGoogle Scholar
  14. Bagge M, Xia XC, Lübberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10:211–216PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bancal P, Triboi E (1993) Temperature effects on fructan oligomer contents and fructan related enzyme activities in stems of wheat (Triticum aestivum L.) during grain filling. New Phytol 123:247–253CrossRefGoogle Scholar
  16. Banziger M, Edmeades GO, Beck DL, Bellon MR (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. Cimmyt, Mexico, p 68Google Scholar
  17. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58CrossRefGoogle Scholar
  18. Bate BC, Kundzewicz ZW, Wu S, Palutik JP (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change IPCC Secretariat, Geneva, p 210Google Scholar
  19. Baytar AA, Peynircioğlu C, Sezener V, Basal H, Frary A, Frary A, Doğanlar S (2018) Genome-wide association mapping of yield components and drought tolerance-related traits in cotton. Mol Breed 38:74.  https://doi.org/10.1007/s11032-018-0831-0 CrossRefGoogle Scholar
  20. Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet 125:255–271PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  22. Bernier J, Atlin GN, Serraj R, Kumar A, Spaner D (2008) Review:breeding upland rice for drought resistance. J Sci Food Agric 88:927–939CrossRefGoogle Scholar
  23. Bernier J, Serraj R, Kumar A, Venuprasad R, Impa S, Gowda V, Oane R, Spaner D, Atlin G (2009) The large-effect drought-resistance QTL qtl12.1 increases water uptake in upland rice. Field Crop Res 110:139–146CrossRefGoogle Scholar
  24. Bharti SH, Balyan S, Gupta P (2014) Quantitative trait loci analysis for some root traits in bread wheat (Triticum aestivum l.). Int J Agric Sci 4:214–221Google Scholar
  25. Blum A (2011) Plant breeding for water-limited environments. Springer, New YorkCrossRefGoogle Scholar
  26. Bo K, Ma Z, Chen J, Weng Y (2015) Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis qi et Yuan). Theor Appl Genet 128:25–39PubMedCrossRefPubMedCentralGoogle Scholar
  27. Borras L, Westgate ME, Otegui ME (2003) Control of kernel weight and kernel water relations by post-flowering source sink ratio in maize. Ann Bot 91:857–867PubMedPubMedCentralCrossRefGoogle Scholar
  28. Borrell AK, Hammer GL (2000) Nitrogen dynamics and physiological basis of stay-green in sorghum. Crop Sci 40:1295–1307CrossRefGoogle Scholar
  29. Borrell AK, Hammer GL, Douglas ACL (2000) Does maintaining green leaf area in sorghum improve yield under drought? I. leaf growth and senescence. Crop Sci 40:1026–1037CrossRefGoogle Scholar
  30. Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581PubMedCrossRefPubMedCentralGoogle Scholar
  31. Camus-Kulandaivelu LJ, Veyrieras JB, Madur D, Combes V, Fourmann M (2006) Maize adaptation to temperate climate: relationship between population 7 structure and polymorphism in the dwarf 8 gene. Genetics 172:2449–2463PubMedPubMedCentralCrossRefGoogle Scholar
  32. Castonguay Y, Markhart AH (1992) Leaf gas exchange in water stressed common bean and tepary bean. Crop Sci 32:980–986CrossRefGoogle Scholar
  33. Chardon F, Virlon B, Moreau I, Falque M, Joets J (2004) Genetic architecture 16 of flowering time in maize as inferred from quantitative trait loci meta-analysis and 17 synteny conservation with the rice genome. Genetics 168:2169–2185PubMedPubMedCentralCrossRefGoogle Scholar
  34. Christopher J, Christopher M, Jennings R, Jones S, Fletcher S, Borrell A, Manschadi AM, Jordan D, Mace E, Hammer G (2013) QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theor Appl Genet 126:1563–1574PubMedCrossRefPubMedCentralGoogle Scholar
  35. Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486PubMedPubMedCentralCrossRefGoogle Scholar
  36. Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078PubMedCrossRefPubMedCentralGoogle Scholar
  37. Cooper M, Van Eeuwijk FA, Hammer GL, Podlich DW, Messina C (2009) Modeling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol 12:231–240PubMedCrossRefPubMedCentralGoogle Scholar
  38. Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K (2001) Molecular mapping of the Oregon Wolfe barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424CrossRefGoogle Scholar
  39. Crossa J, Perez P, Hickey J, Burgueño J, Ornella L, Cerón-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48PubMedCrossRefPubMedCentralGoogle Scholar
  40. Cruz RT, Jordan WR, Drew MC (1992) Structural changes and associated reduction of hydraulic conductance in root of Sorghum bicolor L. following exposure to water deficit. Plant Physiol 99:203–212PubMedPubMedCentralCrossRefGoogle Scholar
  41. Curtis T, Halford NG (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164:354–372PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dixit S, Huang BE, Cruz MTS, Maturan PT, Ontoy JCE, Kumar A (2014) QTLs for tolerance of drought and breeding for tolerance of abiotic and biotic stress: an integrated approach. PLoS One 9:109574CrossRefGoogle Scholar
  43. Duan B, Yang Y, Lu Y, Korpelainen H, Berninger F, Li C (2007) Interactions between drought stress, ABA and genotypes in Picea asperata. J Exp Bot 58:3025–3036CrossRefGoogle Scholar
  44. Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145CrossRefGoogle Scholar
  45. Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807PubMedCrossRefPubMedCentralGoogle Scholar
  46. Ehdaie B, Alloush GA, Madore MA, Waines JG (2006) Genotypic variation for stem reserves and mobilization in wheat: I postanthesis changes in internode dry matter. Crop Sci 46:735–746CrossRefGoogle Scholar
  47. El-Soda M, Kruijer W, Malosetti M, Koornneef M, Aarts MG (2015) Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of a rabidopsis thaliana to drought. Plant Cell Environ 38:585–599PubMedCrossRefPubMedCentralGoogle Scholar
  48. Evenson RE, Gollin G (2003) Assessing the impact of the green revolution, 1960–2000. Science 300:758–762PubMedCrossRefPubMedCentralGoogle Scholar
  49. Fakrudin B, Kavil SP, Girma Y, Arun SS, Dadakhalandar D, Gurusiddesh BH, Patil AM, Thudi M, Bhairappanavar SB, Narayana YD, Krishnaraj PU (2013) Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum (Sorghum bicolor L. Moench). Physiol Mol Biol Plants 19:409–419PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fan Y, Shabala S, Ma Y, Xu R, Zhou M (2015) Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genomics 16:43PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fang DD, Yu JZ (2012) Addition of 455 microsatellite marker loci to the high-density Gossypium hirsutum TM–1 × G. barbadense3–79 genetic map. J Cotton Sci 16:229–248Google Scholar
  52. FAO (2009) 2050 – increased investment in agricultural research essential, How to feed the world 2050 [www document].www. fao.org/news/story/en/item/35686/icode/Google Scholar
  53. Fukai S, Cooper M (1995) Development of drought resistant cultivars using physio-morphological traits in rice. Field Crop Res 40:67–86CrossRefGoogle Scholar
  54. Galiba G, Kerepesi I, Snape JW, Sutka J (1997) Location of a gene regulating cold-induced carbohydrate production on chromosome 5A of wheat. Theor Appl Genet 95:265–270CrossRefGoogle Scholar
  55. Gao F, Wen W, Liu J, Rasheed A, Yin G, Xia X, Wu X, He Z (2015) Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese spring. Front Plant Sci 6:1099PubMedPubMedCentralGoogle Scholar
  56. Gouesnard B, Rebourg C, Welcker C, Charcosset A (2002) Analysis of 12 photoperiod sensitivity within a collection of tropical maize populations. Genet Resour Crop Evol 49:471–481CrossRefGoogle Scholar
  57. Green AJ, Berger G, Griffey CA, Pitman R, Thomason W, Balota M (2012) Genetic yield improvement in soft red winter wheat in the eastern United States from 1919 to 2009. Crop Sci 52:2097–2108CrossRefGoogle Scholar
  58. Guo P, Baum M, Varshney RK, Graner A, Grando S, Ceccarelli S (2008) QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 163:203–214CrossRefGoogle Scholar
  59. Gupta P, Balyan H, Edwards K, Isaac P, Korzun V, Röder M, Gautier MF, Joudrier P, Schlatter A, Dubcovsky J, De la Pena R, Khairallah M, Penner G, Hayden M, Sharp P, Keller B, Wang R, Hardouin J, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hamada A, Nitta M, Nasuda S, Kato K, Fujita M, Matsunaka H, Okumoto Y (2012) Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.). Plant Soil 354:395–405CrossRefGoogle Scholar
  61. Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, Van Euwijk F, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11:587–593PubMedCrossRefPubMedCentralGoogle Scholar
  62. Han ZG, Guo WZ, Song XL, Zhang TZ (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboretum in allotetraploid cotton. Mol Gen Genomics 272:308–327CrossRefGoogle Scholar
  63. Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338PubMedCrossRefPubMedCentralGoogle Scholar
  64. Harrison MT, Tardieu F, Dong Z, Messina CD, Hammer GL (2014) Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob Chang Biol 20:867–878PubMedCrossRefPubMedCentralGoogle Scholar
  65. Haussmann B, Mahalakshmi V, Reddy B, Seetharama N, Hash C, Geiger H (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142PubMedCrossRefPubMedCentralGoogle Scholar
  66. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466PubMedPubMedCentralCrossRefGoogle Scholar
  67. He P, Osaki M, Takebe M, Shinano T, Wasaki J (2005) Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot 56:1117–1128PubMedCrossRefPubMedCentralGoogle Scholar
  68. Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161PubMedCrossRefPubMedCentralGoogle Scholar
  69. Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One 9:97047CrossRefGoogle Scholar
  70. Hu SP, Hua YANG, Zou GH, Liu HY, Liu GL, Mei HW, Run CAI, Li MS, Luo LJ (2007) Relationship between coleoptile length and drought resistance and their QTL mapping in rice. Rice Sci 14:13–20CrossRefGoogle Scholar
  71. Huke RE, Huke EH (1997) Rice area by type of culture: South, Southeast, and East Asia. IRRI, Los BanosGoogle Scholar
  72. Iqbal M, Khan MA, Naeem M, Aziz U, Afzal J, Latif M (2013) Inducing drought tolerance in upland cotton (Gossypium hirsutum L.), accomplishments and future prospects. World Appl Sci J 21:1062–1069Google Scholar
  73. IRRI (International Rice Research Institute) (2002) Rice almanac. IRRI–WARDA–CIAT–FAO, Los BanosGoogle Scholar
  74. Kalladan R, Worch S, Rolletschek H, Harshavardhan VT, Kuntze L, Seiler C, Sreenivasulu N, Roder MS (2013) Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Mol Breed 32:71–90CrossRefGoogle Scholar
  75. Kamoshita A, Wade LJ, Ali ML, Pathan MS, Zhang J, Sarkarung S, Nguyen HT (2002) Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet 104:880–893PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kamoshita A, Babu RC, Manikanda Boopathi N, Fukai S (2008) Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crop Res 109:1–23CrossRefGoogle Scholar
  77. Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench.). Theor Appl Genet 103:266–276CrossRefGoogle Scholar
  78. Keerio AA, Shen C, Nie Y, Ahmed MM, Zhang X, Lin Z (2018) QTL mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum× G. tomentosum. Int J Mol Sci 19:243PubMedCentralCrossRefGoogle Scholar
  79. Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487CrossRefGoogle Scholar
  80. Khayatnezhad M, Gholamin R, Jamaatie-Somarin SH, Zabihi-Mahmoodabad R (2010) Effects of PEG stress on corn cultivars (Zea mays L.) at germination stage. World Appl Sci J 11:504–506Google Scholar
  81. Kumar S, Sehgal SK, Kumar U, Prasad PVV, Joshi AK, Gill BS (2012) Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica 186:265–276CrossRefGoogle Scholar
  82. Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399PubMedPubMedCentralCrossRefGoogle Scholar
  83. Landi P, Giuliani S, Salvi S, Ferri M, Tuberosa R, Sanguineti MC (2010) Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. J Exp Bot 61:3553–3562PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lebreton C, Lazić-Jančić V, Steed A, Pekić S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865CrossRefGoogle Scholar
  85. Li ZK, Xu JL (2007) Breeding for drought and salt tolerant rice (Oryza sativa L.): progress and perspectives. In: Jenks MA et al (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, New York, pp 531–564CrossRefGoogle Scholar
  86. Li XH, Liu XD, Li MS, Zhang SH (2003) Identification of quantitative trait loci for anthesis–silking interval and yield components under drought stress in maize. Acta Bot Sin 45:852–857Google Scholar
  87. Li Z, Mu P, Li C, Zhang H, Li Z, Gao Y, Wang X (2005) QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theor Appl Genet 110:1244–1252PubMedCrossRefPubMedCentralGoogle Scholar
  88. Li H, Li L, Wegenast T, Longin CF, Xu X, Melchinger AE, Chen S (2010) Effect of N supply on stalk quality in maize hybrids. Field Crop Res 118:208–214CrossRefGoogle Scholar
  89. Li Y, Yang M, Dong Y, Wang Q, Zhou Y, Zhou Q, Shen B, Zhang F, Liang X (2012) Three main genetic regions for grain development revealed through QTL detection and meta-analysis in maize. Mol Breed 30:195–211CrossRefGoogle Scholar
  90. Li-Feng L, Hong-Liang Z, Ping M, Yan-Ying Q, Zi-Chao L (2007) Construction and evaluation of near-isogenic lines for major QTLs of basal root thickness and 1000–grain-weight in lowland and upland rice. Chin J Agric Biotechnol 4:199–205CrossRefGoogle Scholar
  91. Lima MDLA, de Souza CL, Bento DAV, de Souza AP, Carlini-Garcia LA (2006) Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed 17:227–239CrossRefGoogle Scholar
  92. Ling ZM, Li ZC, Yu R, Mu P (2002) Agronomic root characters of upland rice and paddy rice (Oryza sativa L.). J Chin Agric Univ 7:7–11Google Scholar
  93. Liu L, Sun G, Ren X, Li C, Sun D (2015) Identification of QTL underlying physiological and morphological traits of flag leaf in barley. BMC Genet 16:29PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lu GH, Tang JH, Yan JB, Ma XQ, Li JS, Chen SJ, Ma JC, Liu ZX, Zhang YR, Dai JR (2006) Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J Integr Plant Biol 48:1233–1243CrossRefGoogle Scholar
  95. Lu Y, Hao Z, Xie C, Crossa J, Araus JL, Gao S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Taba S, Pan G, Li X, Rong T, Zhang S, Xu Y (2011) Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Res 124:37–45CrossRefGoogle Scholar
  96. Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357PubMedPubMedCentralCrossRefGoogle Scholar
  97. Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Salem MB, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A, Maalouf F (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mace ES, Singh V, Van Oosterom EJ, Hammer GL, Hunt CH, Jordan DR (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124:97–109PubMedCrossRefPubMedCentralGoogle Scholar
  99. Malik S, Malik TA, Engineering G (2015) Genetic mapping of potential Qtls associated with drought tolerance in wheat. J Anim Plant Sci 25:1032–1040Google Scholar
  100. Mano Y, Muraki M, Fujimori M, Takamizo T (2005) Varietal difference and genetic analysis of adventitious root formation at the soil surface during flooding in maize and teosinte seedlings. Int J Crop Sci 74:41–46Google Scholar
  101. Manschadi AM, Christopher JT, deVoil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837CrossRefGoogle Scholar
  102. Manschadi AM, Hammer GL, Christopher JT, de Well P (2008) Genotypic variation in seedling root architecture traits and implications for drought adaptation in wheat (T. aestivum L.). Plant Soil 303:115–129CrossRefGoogle Scholar
  103. Mardani Z, Rabiei B, Sabouri H, Sabouri A (2013) Mapping of QTLs for germination characteristics under non-stress and drought stress in rice. Rice Sci 20:391–399CrossRefGoogle Scholar
  104. Marino R, Ponnaiah M, Krajewski P (2009) Addressing drought tolerance in maize by transcriptional profiling and mapping. Mol Gen Genomics 281:163–179CrossRefGoogle Scholar
  105. McWilliam J, Baker F (1989) The dimensions of drought, drought resistance in cereals, 1989 Wallingford, UK CAB international, pp 1–11Google Scholar
  106. Meredith W (2005) Registration of MD 52ne high fiber quality cotton germplasm and recurrent parent MD 90ne. Crop Sci 45:807–808CrossRefGoogle Scholar
  107. Meredith WR, Bridge RR (1971) Breakup of linkage blocks in cotton, Gossypium hirsutum L. Crop Sci 11:695–698CrossRefGoogle Scholar
  108. Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930PubMedCrossRefPubMedCentralGoogle Scholar
  109. Messmer R, Fracheboud Y, Bänziger M, Stamp P, Ribaut JM (2011) Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. Field Crop Res 124:93–103CrossRefGoogle Scholar
  110. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462PubMedCrossRefPubMedCentralGoogle Scholar
  111. Mu P, Li Z, Li C, Zhang H, Wu C, Li C, Wang X (2003) QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross. Chin Sci Bull 48:2718–2724CrossRefGoogle Scholar
  112. Murty MVR, Piara S, Wani SP, Khairwal IS, Srinivas K (2007) Yield gap analysis of sorghum and pearl millet in India using simulation modeling. Global Theme on Agroecosystems Report no. 37. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Andhra Pradesh, India, p 82Google Scholar
  113. Myers D, Stolton S (1999) Organic cotton: from field to final product. Intermediate Technology Publications, LondonCrossRefGoogle Scholar
  114. Naika M, Shameer K, Mathew OK, Gowda R, Sowdhamini R (2013) STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol 54:8.  https://doi.org/10.1093/pcp/pcs185 CrossRefGoogle Scholar
  115. Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685PubMedCrossRefPubMedCentralGoogle Scholar
  116. Nguyen HT, Babu RC, Blum A (1997) Breeding for drought resistance in rice: physiology and molecular genetics consideration. Crop Sci 37:1426–1434CrossRefGoogle Scholar
  117. Nguyen TTT, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena ACM, Pathan MS, Nguyen HT (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Gen Genomics 272:35–46CrossRefGoogle Scholar
  118. Ning ZY, Chen H, Mei HX, Zhang TZ (2014) Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Euphytica 195:143–156CrossRefGoogle Scholar
  119. Pandey RK, Maranville JW, Chetima MM (2000) Deficit irrigation and nitrogen effects on maize in a Sahelian environment II Shoot growth, nitrogen uptake and water extraction. Agric Water Manag 46:15–27CrossRefGoogle Scholar
  120. Pasha MFK, Ahmad HM, Qasim M, Javed I (2015) Performance evaluation of zinnia cultivars for morphological traits under the agro-climatic conditions of Faisalabad. Europ J Biotech and Biosci 3:35–38Google Scholar
  121. Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117PubMedCrossRefPubMedCentralGoogle Scholar
  122. Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851CrossRefGoogle Scholar
  123. Paudyal KR, Ransom JK, Rajbhandari NP, Adhakari K, Gerpacio RV, Pingali PL (2001) Maize in Nepal; production systems, constraints and priorities for research. NARC and CIMMYT, Kathmandu, pp 1–56Google Scholar
  124. Peltzer D, Dreyer E, Polle A (2002) Temperature dependencies of antioxidative enzymes in two contrasting species. Plant Physiol Biochem 40:141–150CrossRefGoogle Scholar
  125. Pennisi E (2008) The blue revolution, drop by drop, gene by gene. Science 320:171–173PubMedCrossRefPubMedCentralGoogle Scholar
  126. Pettigrew WT (2004) Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agron J 96:377–383CrossRefGoogle Scholar
  127. Praba ML, Cairns JE, Babu RC, Lafitte HR (2009) Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci 195:30–46CrossRefGoogle Scholar
  128. Price AH, Steele KA, Moore BJ, Barraclough PB, Clark J (2000) A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability. Theor Appl Genet 100:49–56CrossRefGoogle Scholar
  129. Quarrie SA, PekicQuarrie S, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637PubMedCrossRefPubMedCentralGoogle Scholar
  130. Rajendran RA, Muthiah AR, Manickam A, Shanmugasundaram P, John Joel A (2011) Indices of drought tolerance in sorghum (Sorghum bicolor L. Moench) genotypes at early stages of plant growth. Res J Agric Biol Sci 7:42–46Google Scholar
  131. Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132PubMedCrossRefPubMedCentralGoogle Scholar
  132. Raza MA, Ahmad HM, Akram Z, Ali Q (2015) Performance evaluation of wheat (Triticum aestivum L.) genotypes for physiological and qualitative traits. Life Sci J 12:4Google Scholar
  133. Rebetzke GJ, Van Herwaarden AF, Jenkins C, Weiss M, Lewis D, Ruuska S, Tabe L, Fettell NA, Richards RA (2008) Quantitative trait loci for water-soluble carbohydrates and associations with agronomic traits in wheat. Aus J Agric Res 59:891–905CrossRefGoogle Scholar
  134. Reddy SR (2006) Agronomy of field crops, 2nd edn. Kalyani Publishers, New Delhi, p 209Google Scholar
  135. Reymond MM, Leonardi B, Charcosset A, Tardieu A (2003) Combining quantitative trait loci analysis and an ecophysiological model to analysis the genetic variability of the response of leaf growth to temperature and water deficit. Plant Physiol 131:664–675PubMedPubMedCentralCrossRefGoogle Scholar
  136. Reynolds MP, Dreccer F, Trethowan R (2007) Drought adaptive traits derived from wheat wild relatives and landraces. J Exp Biol 58:177–186Google Scholar
  137. Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manes Y, Mather DE (2011) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452PubMedCrossRefPubMedCentralGoogle Scholar
  138. Ribaut JM, Hoisington DA, Deutsch JA (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914PubMedCrossRefPubMedCentralGoogle Scholar
  139. Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896CrossRefGoogle Scholar
  140. Rosenow DT, Clark LE (1981) Drough tolerance in sorghum. In: Loden HD, Wilkinson D (eds) Proc. 36th Annu. Corn and Sorghum Industry Res. Conf., Chicago, IL. 9-11 Dec. ASTA, Washington, DC, pp 18–31Google Scholar
  141. Ruan CJ, da Silva JAT, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29:329–359CrossRefGoogle Scholar
  142. Sabadin PK, Malosetti M, Boer MP, Tardin FD, Santos FG, Guimaraes CT, Gomide RL, Andrade CLT, Albuquerque PEP, Caniato FF, Mollinari M (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor Appl Genet 124:1389–1402PubMedCrossRefGoogle Scholar
  143. Saeed M, Guo WZ, Ullah I, Tabbasam N, Zafar Y, Mehboob R, Zhang TZ (2011) QTL mapping for physiology, yield and plant architecture traits in cotton (Gossypium hirsutum L.) grown under well-watered versus water-stress conditions. Electron J Biotechnol 14:1–13Google Scholar
  144. Said JI, Lin ZX, Zhang XL, Song MZ, Zhang JF (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics 14:776PubMedPubMedCentralCrossRefGoogle Scholar
  145. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought and salt-responsiveness in rice. Field Crop Res 76:199–219CrossRefGoogle Scholar
  146. Salem KFM, Roder MS, Borner A (2007) Identification and mapping quantitative trait loci for stem reserve mobilisation in wheat (Triticum aestivum L.). Cereal Res Commun 35:1367–1374CrossRefGoogle Scholar
  147. Sandhu N, Singh A, Dixit S, Cruz MTS, Maturan PC, Jain RK Kumar A (2014) Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genet 15:63PubMedPubMedCentralCrossRefGoogle Scholar
  148. Sankeshwar M, Jadhav MP, Adiger S, Patil RS, Katageri IS (2018) Mapping of QTLs for traits related to leaf pubescence, jassid resistance and yield in cotton (Gossypium spp). Int J Genet Plant Breed 78:252–260Google Scholar
  149. Sayed MA, Schumann H, Pillen K, Naz AA, Léon J (2012) AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L.). BMC Genet 13:61PubMedPubMedCentralCrossRefGoogle Scholar
  150. Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R (2009) Wise RP (2009) the international barley sequencing consortium – at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147PubMedPubMedCentralCrossRefGoogle Scholar
  151. Schussler JR, Westgate ME (1995) Assimilate flux determines kernel set at low water potential in maize. Crop Sci 35:1074–1080CrossRefGoogle Scholar
  152. Selote DS, Chopra RK (2004) Drought induced spikelet sterility is associated with an inefficient antioxidant defense in rice panicles. Physiol Plant 121:462–471CrossRefGoogle Scholar
  153. Setter TL, Flannigan BA (2001) Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J Exp Bot 52:1401–1408PubMedCrossRefGoogle Scholar
  154. Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221PubMedPubMedCentralCrossRefGoogle Scholar
  155. Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genomics 14:11–22PubMedCrossRefPubMedCentralGoogle Scholar
  156. Shahzad S, Chaudhry UK, Anwar B, Saboor A, Yousaf MF, Saeed F, Yaqoob S (2016) Drought stress effect on morphological and physiological characteristics of different varieties of annual verbena (Verbena hybrid). J Biodivers Environ Sci 9:32–46Google Scholar
  157. Shen X, Guo W, Zhu X, Yuan Y, Yu JZ, Kohel RJ, Zhang T (2005) Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers. Mol Breed 15:169–181CrossRefGoogle Scholar
  158. Shen X, Guo W, Lu Q, Zhu X, Yuan Y, Zhang T (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica 155:371–380CrossRefGoogle Scholar
  159. Siahsar BA, Narouei M (2010) Mapping QTLs of physiological traits associated with salt tolerance in “Steptoe”דMorex” doubled haploid lines of barley at seedling stage. J Food Agric Environ 7:751–759Google Scholar
  160. Singh V, van Oosterom EJ, Jordan DR, Messina CD, Cooper M, Hammer GL (2010) Morphological and architectural development of root systems in sorghum and maize. Plant Soil 333:287–299CrossRefGoogle Scholar
  161. Singh V, van Oosterom EJ, Jordan DR, Hunt CH, Hammer GL (2011) Genetic variability and control of nodal root angle in sorghum. Crop Sci 51:5CrossRefGoogle Scholar
  162. Singh A, Carandang J, Gonzaga ZJC, Collard BC, Ismail AM, Septiningsih EM (2017) Identification of QTLs for yield and agronomic traits in rice under stagnant flooding conditions. Rice 10:15PubMedPubMedCentralCrossRefGoogle Scholar
  163. Slafer GA, Araus JL, Royo C, Del Moral LFG (2005) Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann Appl Biol 146:61–70CrossRefGoogle Scholar
  164. Smith P, Gregory PJ, Van Vuuren D, Obersteiner M, Havlík P, Rounsevell M, Woods J, Stehfest E, Bellarby J (2010) Competition for land. Philos Trans R Soc B: Biol Sci 365:2941–2957CrossRefGoogle Scholar
  165. Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M, Graner A (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:1738–1758PubMedPubMedCentralCrossRefGoogle Scholar
  166. Srinivas G, Satish K, Madhusudhana R, Reddy RN, Mohan SM, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454PubMedCrossRefGoogle Scholar
  167. Srividhya ALR, Vemireddy PV, Ramanarao S, Sridhar M, Jayaprada G, Anuradha B, Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43CrossRefGoogle Scholar
  168. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43PubMedCrossRefGoogle Scholar
  169. Tang SY, Teng ZH, Zhai TF, Fang XF, Liu F, Liu DJ (2015) Construction of genetic map and QTL analysis of fiber quality traits for upland cotton (Gossypium hirsutum L.). Euphytica 201:195–213CrossRefGoogle Scholar
  170. Tatsiopoulos IP, Tolis AJ (2003) Economic aspects of the cotton-stalk biomass logistics and comparison of supply chain methods. Biomass Bioenergy 24:199–214CrossRefGoogle Scholar
  171. Tefft J (2010) White gold: cotton in francophone West Africa. In: Successes in African agriculture: lesson for the future. Johns Hopkins University Press, BaltimoreGoogle Scholar
  172. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822PubMedCrossRefGoogle Scholar
  173. Teulat B, Borries C, This D (2001) New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet 103:161–170CrossRefGoogle Scholar
  174. Teulat B, Merah O, Sirault X, Borries C, Waugh R (2002) QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet 106:118–126PubMedCrossRefGoogle Scholar
  175. Teulat B, Zoumarou-Wallia N, Rotter B, Ben Salem M, Bahri H, This D (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108:181–188PubMedCrossRefGoogle Scholar
  176. Thomas H, Howarth CJ (2000) Five ways to stay-green. J Exp Bot 51:329–337PubMedCrossRefGoogle Scholar
  177. Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454PubMedCrossRefGoogle Scholar
  178. Toorchi M, Shashidhar HE, Gireesha TM, Hittalmani S (2003) Performance of backcrosses involving transgressant doubled haploid lines in rice under contrasting moisture regimes: yield components and marker heterozygosity. Crop Sci 43:1448–1456CrossRefGoogle Scholar
  179. Tuberosa R, Salvi S (2009) QTL for agronomic traits in maize production. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology, 1st edn. Springer, New York, pp 501–541CrossRefGoogle Scholar
  180. Turner NC (2004) Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. J Exp Bot 55:2413–2425PubMedCrossRefGoogle Scholar
  181. Tyagi A, Chandra A (2006) Isolation of stress responsive PsbAgene from rice using differential display. Indian J Biochem Biophys 43:244–246PubMedGoogle Scholar
  182. Uga Y, Okuno K, Yano M (2010) Fine mapping of Sta1, a quantitative trait locus determining stele transversal area, on rice chromosome 9. Mol Breed 26:533–538CrossRefGoogle Scholar
  183. Uga Y, Kitomi Y, Ishikawa S, Yano M (2015) Genetic improvement for root growth angle to enhance crop production. Breed Sci 65:111–119PubMedPubMedCentralCrossRefGoogle Scholar
  184. Ulloa M, Cantrell RG, Percy RG, Zeiger E, Lu Z (2000) QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton. J Cotton Sci 4:10–18Google Scholar
  185. Upadyayula N, Da Silva H, Bohn M, Rocheford T (2006) Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet 112:592–606PubMedCrossRefGoogle Scholar
  186. Van Herwaarden A, Richards R, Angus J (2006) Water-soluble carbohydrates and yield in wheat. The Australian Society of Agronomy. Available via DIALOG. http://www.regional.org.au/au/asa/2003/c/6/vanherwaarden.htm. Cited 15 Jun 2006
  187. Vargas M, van Eeuwijk FA, Crossa J, Ribaut JM (2006) Mapping QTLs and QTL× environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112:1009–1023PubMedCrossRefGoogle Scholar
  188. Venuprasad R, Bool ME, Dalid CO, Bernier J, Kumar A, Atlin GN (2009) Genetic loci responding to two cycles of divergent selection for grain yield under drought stress in a rice breeding population. Euphytica 167:261–269CrossRefGoogle Scholar
  189. Vikram P, Swamy BM, Dixit S, Ahmed HU, Cruz MTS, Singh AK, Kumar A (2011) qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12:89PubMedPubMedCentralCrossRefGoogle Scholar
  190. Wang K, Song XL, Han ZG, Guo WZ, Yu JZ, Sun J, Pan JJ, Kohel RJ, Zhang TZ (2006) Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet 113:73–80PubMedCrossRefGoogle Scholar
  191. Wang J, Yang J, Jia Q, Zhu J, Shang Y, Hua W, Zhou M (2014) A new QTL for plant height in barley (Hordeum vulgare L.) showing no negative effects on grain yield. PLoS One 9:e90144PubMedPubMedCentralCrossRefGoogle Scholar
  192. Wang H, Huang C, Guo H, Li X, Zhao W, Dai B, Yan Z, Lin Z (2015) QTL mapping for fiber and yield traits in upland cotton under multiple environments. PLoS One 0:6Google Scholar
  193. Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redoña E, Singh RK, Heuer S (2009) Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:91–133CrossRefGoogle Scholar
  194. Wasson AP, Richards RA, Chatrath R, Misra SC, Sai Prasad SV, Rebetzke GJ, Kirkegaard JA, Christopher J, Watt M (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crop. J Exp Bot 63:3485–3498PubMedCrossRefPubMedCentralGoogle Scholar
  195. Wendel JF, Cronn RC (2002) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186CrossRefGoogle Scholar
  196. Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123PubMedPubMedCentralCrossRefGoogle Scholar
  197. Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139PubMedCrossRefPubMedCentralGoogle Scholar
  198. Xiong L, Wang R, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074PubMedPubMedCentralCrossRefGoogle Scholar
  199. Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000a) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469PubMedCrossRefPubMedCentralGoogle Scholar
  200. Xu W, Rosenow DT, Nguyen HT (2000b) Stay-green trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration. Plant Breed 119:365–367CrossRefGoogle Scholar
  201. Yang DL, Jing RL, Chang XP, Li W (2007a) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–584PubMedPubMedCentralCrossRefGoogle Scholar
  202. Yang DL, Jing RL, Chang XP, Li W (2007b) Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). J Integr Plant Biol 49:646–654CrossRefGoogle Scholar
  203. Yang ZB, Bai ZY, Li XL, Wang P, Wu QX, Yang L (2012) SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight. Theor Appl Genet 125:1057–1068PubMedCrossRefPubMedCentralGoogle Scholar
  204. Yin X, Stam P, Dourleijn CJ, Kropff MJ (1999) AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. Theor Appl Genet 99:244–253CrossRefGoogle Scholar
  205. Yu Y, Yuan DJ, Liang SG, Li XM, Wang XQ, Lin ZX, Zhang XL (2011) Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics 12:15PubMedPubMedCentralCrossRefGoogle Scholar
  206. Yu J, Yu S, Gore M, Wu M, Zhai H, Li X, Fan S, Song M, Zhang J (2013) Identification of quantitative trait loci across interspecific F–2, F–2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica 191:375–389CrossRefGoogle Scholar
  207. Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen TT, Tripathy JN, Sarial AK, Robin S, Babu RC, Nguyen BD, Sarkarung S, Blum A, Nguyen HT (2001) Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 103:19–29CrossRefGoogle Scholar
  208. Zhang T, Yuan Y, Yu J, Guo W, Kohel RJ (2003) Molecular tagging of a major QTL for fiber strength in upland cotton and its marker-assisted selection. Theor Appl Genet 106:262–268PubMedCrossRefPubMedCentralGoogle Scholar
  209. Zhang B, Li W, Chang X, Li R, Jing R (2014) Effects of favorable alleles for water-soluble carbohydrates at grain filling on grain weight under drought and heat stresses in wheat. PLoS One 9:102917CrossRefGoogle Scholar
  210. Zhao XQ, Xu JL, Zhao M, Lafitte R, Zhu LH, Fu BY, Gao YM, Li ZK (2008) QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Sci 174:618–625CrossRefGoogle Scholar
  211. Zheng HG, Babu RC, Pathan MS, Ali ML, Huang N, Courtois B, Nguyen TH (1999) Quantitative trait loci for root penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome 43:53–61CrossRefGoogle Scholar
  212. Zheng HJ, Wu AZ, Zheng CC, Wang YF, Cai R, Shen XF, Xu RR, Liu P, Kong LJ, Dong ST (2009) QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. Plant Breed 128:54–62CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ali Fuat Gökçe
    • 1
  • Usman Khalid Chaudhry
    • 1
  1. 1.Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and TechnologiesNiğde Ömer Halisdemir UniversityNiğdeTurkey

Personalised recommendations