Advertisement

Gene Pyramiding: An Emerging Control Strategy Against Insect Pests of Agronomic Crops

  • Muhammad Salim
  • Ayhan Gökçe
  • Muhammad Nadir Naqqash
  • Allah Bakhsh
Chapter

Abstract

The present chapter is focused on the evolution of the insect’s resistance against Bt crops and describes the most appropriate approach in order to cope with this serious issue. Different techniques have been used in the past to manage insect evolution against Bt crops. Among them, gene pyramiding, or stacked combinations of different genes in a single crop with their ability to target the same insect pest species, is proven to be a very powerful and effective tool in managing insect resistance problem. The principle goal of gene pyramiding approach is to develop transgenic plants with extra resistance against pests and to enhance crop yield. To obtain transgenic crops with durable and broad-spectrum resistance against insect pests and diseases, the pyramiding of predominant genes (multigene strategy) implying a unique mode of action is a powerful strategy. Gene pyramiding is a useful technique in controlling different insect species as compared to transgenic variety comprising of single toxin trait. Many studies have shown that gene pyramiding is advantageous in controlling different insect species in a single Bt crop, but due to continuous pressure on insect pests, there are chances that the herbivore may evolve resistance. Therefore, reliance only on gene pyramiding strategies is not a complete solution to Bt resistance. It is, therefore, necessary that different combinations of strategies like RNAi with gene pyramiding techniques will be required in the near future that will not only shield our crop against insect pest damages but also reduce reliance on heavy insecticide usage in crops.

Keywords

Gene pyramiding Yield losses Insect resistance Agronomic crops 

Notes

Acknowledgments

The authors thank Tübitak 2215 for providing fully funded PhD scholarship to Mr. Muhammad Nadir Naqqash and Muhammad Salim.

References

  1. Ali MI, Luttrell RG (2007) Susceptibility of bollworm and tobacco budworm (Lepidoptera: Noctuidae) to Cry2Ab2 insecticidal protein. J Econ Entomol 100:921–931PubMedCrossRefPubMedCentralGoogle Scholar
  2. Andow DA, Pueppke SG, Schaafsma AW, Gassmann AJ, Sappington TW, Meinke LJ, Mitchell PD, Hurley TM, Hellmich RL, Pat Porter R (2016) Early detection and mitigation of resistance to maize by Western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 109(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  3. Asokan R, Chandra GS, Manamohan M, Kumar NK, Sita T (2014) Response of various target genes to diet-delivered dsRNA mediated RNA interference in the cotton bollworm, Helicoverpa armigera. J Pest Sci 87:163–172CrossRefGoogle Scholar
  4. Atsumi S, Miyamato K, Yamamoto K, Narukawa J, Kawai S et al (2012) Single amino acid mutation in an ATP-binding cassette transporter causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proc Natl Acad Sci USA 109:1591–1598CrossRefGoogle Scholar
  5. Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23:57–62PubMedCrossRefPubMedCentralGoogle Scholar
  6. Belles X, Martin D, Piulachs MD (2005) The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu Rev Entomol 50:181–199PubMedCrossRefPubMedCentralGoogle Scholar
  7. Berger D (2000) Strategies for transgene pyramiding. In: Lizarraga C, Hollister A (eds) Proceedings of the international workshop on transgenic potatoes for the benefit of resource-poor farmers in developing countries. International Potato Center (CIP) Press, Lima, pp 67–74Google Scholar
  8. Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bravo A, Soberón M (2008) How to cope with insect resistance to Bt toxins? Trends Biotechnol 26:573–579PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cao J, Zhao JZ, Tang J, Shelton A, Earle E (2002) Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins. Theor Appl Genet 105:258–264PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chen L, Marmey P, Taylor NJ, Brizard JP, Espinoza C, D’Cruz P, Huet H, Zhang S, de Kochko A, Beachy RN, Fauquet CM (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 16:1060–1064PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cingel A, Savić J, Ćosić T, Zdravković-Korać S, Momčilović I, Smigocki A, Ninković S (2014) Pyramiding rice cystatin OCI and OCII genes in transgenic potato (Solanum tuberosum L.) for resistance to Colorado potato beetle (Leptinotarsa decemlineata Say). Euphytica 198:425–438CrossRefGoogle Scholar
  15. Cohen JI (2005) Poorer nations turn to publicly developed GM crops. Nat Biotechnol 23:27–33PubMedCrossRefPubMedCentralGoogle Scholar
  16. Dennehy TJ, Head GP, Moar W, Greenplate J, Mohan KS et al (2010) Status of PBW resistance to Bollgard cotton in India. In: 58th ESA meeting, pp 12–15Google Scholar
  17. Dhurua S, Gujar GT (2011) Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag Sci 67:898–903PubMedCrossRefPubMedCentralGoogle Scholar
  18. Dively GP, Venugopal PD, Finkenbinder C (2016) Field-evolved resistance in corn earworm to Cry proteins expressed by transgenic sweet corn. PLoS One 11:e0169115PubMedPubMedCentralCrossRefGoogle Scholar
  19. Fabrick JA, Mathew LG, Tabashnik BE, Li X (2011) Insertion of an intact CR1 retrotransposon in a cadherin gene linked with Bt resistance in the pink bollworm, Pectinophora gossypiella. Insect Mol Biol 20:651–665PubMedCrossRefPubMedCentralGoogle Scholar
  20. Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P et al (2014) Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot 64:150–158CrossRefGoogle Scholar
  21. Ferre´ J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533PubMedCrossRefGoogle Scholar
  22. Ferry N, Edwards MG, Mulligan EA, Emami K, Petrova AS, Frantescu M, Davison GM, Gatehouse AMR (2004) Engineering resistance to insect pests. In: Christou P, Klee H (eds) Handbook of plant biotechnology, vol 1. Wiley, Chichester, pp 373–394Google Scholar
  23. François IE, De Bolle MF, Dwyer G, Goderis IJ, Woutors PF, Verhaert PD, Proost P, Schaaper WM, Cammue BP, Broekaert WF (2002) Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol 128:1346–1358PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fu KY, Li Q, Zhou LT, Meng QW, Lü FG, Guo WC, Li GQ (2016) Knockdown of juvenile hormone acid methyl transferase severely affects the performance of Leptinotarsa decemlineata (Say) larvae and adults. Pest Manag Sci 72:1231–1241PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gahan LJ, Ma Y-T, Coble MLMG, Gould F, Moar WJ, Heckel DG (2005) Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). J Econ Entomol 98(4):1357–1368PubMedCrossRefPubMedCentralGoogle Scholar
  26. Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6:e22629PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gassmann AJ, Petzold-Maxwell JL, Clifton EH, Dunbar MW, Hoffmann AM, Ingber DA, Keweshan RS (2014) Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proc Natl Acad Sci USA 111:5141–5146PubMedCrossRefPubMedCentralGoogle Scholar
  28. Gassmann AJ, Shrestha RB, Jakka SR, Dunbar MW, Clifton EH, Paolino AR, Ingber DA, French BW, Masloski KE, Dounda JW, St. Clair CR (2016) Evidence of resistance to Cry34/35Ab1 corn by western corn rootworm (Coleoptera: Chrysomelidae): root injury in the field and larval survival in plant-based bioassays. J Econ Entomol 109:1872–1880PubMedCrossRefPubMedCentralGoogle Scholar
  29. Goderis IJ, De Bolle MF, François IE, Wouters PF, Broekaert WF, Cammue BP (2002) A set of modular plant transformation vectors allowing flexible insertion of up to six expression units. Plant Mol Biol 50:17–27PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726PubMedCrossRefPubMedCentralGoogle Scholar
  31. Halpin C (2005) Gene stacking in transgenic plants the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155PubMedCrossRefPubMedCentralGoogle Scholar
  32. Halpin C, Ryan M (2004) Redirecting metabolism by co-ordinate manipulation of multiple genes. In: Kholodenko BN, Westerhoff HV (eds) Metabolic engineering in the post-genomic era. Cromwell Press, England, pp 377–408Google Scholar
  33. Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW, Fleischer SJ, Abrahamson M, Hamilton KL, Steffey KL, Gray ME, Hellmich RL (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–225PubMedCrossRefPubMedCentralGoogle Scholar
  34. ISAAA (2017) Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA Brief No. 53. ISAAA, IthacaGoogle Scholar
  35. Jackson RE, Bradley JR, Van Duyn JW (2003) Field performance of transgenic cottons expressing one or two Bacillus thuringiensis endotoxins against bollworm, Helicoverpa zea (Boddie). J Cotton Sci 7:57–64Google Scholar
  36. Khajuria C, Buschman LL, Chen MS, Siegfried BD, Zhu KY (2011) Identification of a novel aminopeptidase P-like gene (OnAPP) possibly involved in Bt toxicity and resistance in a major corn pest (Ostrinia nubilalis). PLoS One 6:e23983PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kruger M, Van Rensburg JBJ, Van den Berg J (2011) Resistance to Bt maize in Busseola fusca (Lepidoptera: Noctuidae) from Vaalharts, South Africa. Environ Entomol 40:477–483CrossRefGoogle Scholar
  38. Lim ZX, Robinson KE, Jain RG, Chandra GS, Asokan R, Asgari S, Mitter N (2016) Diet-delivered RNAi in Helicoverpa armigera–progresses and challenges. J Insect Physiol 85:86–93PubMedCrossRefPubMedCentralGoogle Scholar
  39. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313PubMedCrossRefGoogle Scholar
  40. Maqbool SB, Riazuddin S, Loc NT, Gatehouse AM, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7:85–93CrossRefGoogle Scholar
  41. Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182(1):87–102CrossRefGoogle Scholar
  42. McCormac AC, Fowler MR, Chen DF, Elliott MC (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res 10:143–155PubMedCrossRefPubMedCentralGoogle Scholar
  43. Monnerat R, Martins E, Macedo C, Queiroz P, Praça L, Soares CM, Moreira H, Grisi I, Silva J, Soberon M, Bravo A (2015) Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins. PLoS One 10:e0119544PubMedPubMedCentralCrossRefGoogle Scholar
  44. Morin S, Biggs RW, Sisterson MS, Shriver L, Ellers-Kirk C, Higginson D, Holley D, Gahan LJ, Heckel DG, Carriere Y, Dennehy TJ (2003) Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci USA 100:5004–5009PubMedCrossRefPubMedCentralGoogle Scholar
  45. Ni M, Ma W, Wang X, Gao M, Dai Y, Wei X, Zhang L, Peng Y, Chen S, Ding L, Tian Y (2017) Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol J 15:1204–1213PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ocelotl J, Sánchez J, Arroyo R, García-Gómez BI, Gómez I, Unnithan GC, Tabashnik BE, Bravo A, Soberón M (2015) Binding and oligomerization of modified and native Bt toxins in resistant and susceptible Pink Bollworm. PLoS One 10:e0144086PubMedPubMedCentralCrossRefGoogle Scholar
  47. Roush R (1998) Two d-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Philos Trans R Soc Lond Ser B Biol Sci 353:1777–1786CrossRefGoogle Scholar
  48. Salim M, Gökçe A, Naqqash MN, Bakhsh A (2016) An overview of biological control of economically important lepidopteron pests with parasitoids. J Entomol Zool 4:354–362Google Scholar
  49. Saljoqi AUR, Salim M, Khalil SK, Khurshid I (2015) Field application of Trichogramma chilonis (Ishii) for the management of sugarcane borers. Pak J Zool 47:783–791Google Scholar
  50. Sampson K, Zaitseva J, Stauffer M, Berg BV, Guo R, Tomso D, McNulty B, Desai N, Balasubramanian D (2017) Discovery of a novel insecticidal protein from Chromobacterium piscinae, with activity against Western Corn Rootworm, Diabrotica virgifera virgifera. J Invertebr Pathol 142:34–43PubMedCrossRefPubMedCentralGoogle Scholar
  51. Shelton AM, Tang JD, Roush RT, Metz TD, Earle ED (2000) Field tests on managing resistance to Bt-engineered plants. Nat Biotechnol 18:339–342PubMedCrossRefPubMedCentralGoogle Scholar
  52. Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881PubMedCrossRefPubMedCentralGoogle Scholar
  53. Siegel JP (2000) Bacteria. In: Lacey LL, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Kluwer Scientific Publishers, Dordrecht, pp 209–230CrossRefGoogle Scholar
  54. Smith JL, Lepping MD, Rule DM, Farhan Y, Schaafsma AW (2017) Evidence for field-evolved resistance of Striacosta albicosta (Lepidoptera: Noctuidae) to Cry1F Bacillus thuringiensis protein and transgenic corn hybrids in Ontario, Canada. J Econ Entomol 110:2217–2228PubMedCrossRefPubMedCentralGoogle Scholar
  55. Soberón M, Pardo-López L, López I, Gómez I, Tabashnik B et al (2007) Engineering modified Bt toxins to counter insect resistance. Science 318:1640–1642PubMedCrossRefPubMedCentralGoogle Scholar
  56. Soberon M, Gill SS, Bravo A (2009) Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol life Sci 66:1337–1349PubMedCrossRefPubMedCentralGoogle Scholar
  57. Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW, Huckaba RM (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103:1031–1038PubMedCrossRefGoogle Scholar
  58. Tabashnik BE (2015) ABCs of insect resistance to Bt. PLoS Genet 11:e1005646PubMedPubMedCentralCrossRefGoogle Scholar
  59. Tabashnik BE, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926–935PubMedCrossRefGoogle Scholar
  60. Tabashnik BE, Gassmann AJ, Crowder DW, Carriére Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26(2):199–202PubMedCrossRefPubMedCentralGoogle Scholar
  61. Tabashnik BE, Sisterson MS, Ellsworth PC, Dennehy TJ, Antilla L et al (2010) Sup pressing resistance to Bt cotton with sterile insect releases. Nat Biotechnol 28:1304–1307PubMedCrossRefGoogle Scholar
  62. Tabashnik BE, Brevault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521PubMedCrossRefGoogle Scholar
  63. Tabashnik BE, Mota-Sanchez D, Whalon ME, Hollingworth RM, Carrière Y (2014) Defining terms for proactive management of resistance to Bt crops and pesticides. J Econ Entomol 107:496–507PubMedCrossRefGoogle Scholar
  64. Thomson JM, Lafayette PR, Schmidt MA, Parrott WA (2002) Artificial gene-clusters engineered into plants using a vector system based on intron-and intein-encoded endonucleases. In Vitro Cell Dev Biol Plant 38:537–542CrossRefGoogle Scholar
  65. Tian G, Cheng L, Qi X, Ge Z, Niu C, Zhang X, Jin S (2015) Transgenic cotton plants expressing double-stranded RNAs target HMG-CoA reductase (HMGR) gene inhibits the growth, development and survival of cotton bollworms. Int J Biol Sci 11:1296–1305PubMedPubMedCentralCrossRefGoogle Scholar
  66. Vachon V, Laprade R, Schwartz JL (2012) Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 111:1–12PubMedCrossRefGoogle Scholar
  67. Wang L, Ma Y, Wan P, Liu K, Xiao Y, Wang J, Cong S, Xu D, Wu K, Fabrick JA, Li X (2018) Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China. Insect Biochem Mol Biol 94:28–35PubMedCrossRefPubMedCentralGoogle Scholar
  68. Wei JZ, O’Rear J, Schellenberger U, Rosen BA, Park YJ, McDonald MJ, Zhu G, Xie W, Kassa A, Procyk L, Perez Ortega C (2018) A selective insecticidal protein from Pseudomonas mosselii for corn rootworm control. Plant Biotechnol J 16:649–659PubMedCrossRefPubMedCentralGoogle Scholar
  69. Wynant N, Santos D, Verdonck R, Spit J, Van Wielendaele P, Broeck JV (2014) Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 46:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  70. Xu X, Yu L, Wu Y (2005) Disruption of a cadherin gene associated with resistance to Cry1Ac -endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol 71(2):948–954PubMedPubMedCentralCrossRefGoogle Scholar
  71. Yalpani N, Altier D, Barry J, Kassa A, Nowatzki TM, Sethi A, Zhao JZ, Diehn S, Crane V, Sandahl G, Guan R (2017) An Alcaligenes strain emulates Bacillus thuringiensis producing a binary protein that kills corn rootworm through a mechanism similar to Cry34Ab1/Cry35Ab1. Sci Rep 7:3063.  https://doi.org/10.1038/s41598-017-03544-9CrossRefPubMedPubMedCentralGoogle Scholar
  72. Yang Z, Chen H, Tang W, Hua H, Lin Y (2011) Development and characterization of transgenic rice expressing two Bacillus thuringiensis genes. Pest Manag Sci 67:414–422PubMedCrossRefPubMedCentralGoogle Scholar
  73. Yu XD, Liu ZC, Huang SL, Chen ZQ, Sun YW, Duan PF, Ma YZ et al (2016) RNAi-mediated plant protection against aphids. Pest Manag Sci 72:1090–1098PubMedCrossRefPubMedCentralGoogle Scholar
  74. Zhang X, Candas M, Griko NB, Rose-Young L, Bulla LA Jr (2005) Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R 1 expressed in insect cells. Cell Death Differ 12:1407–1416PubMedCrossRefPubMedCentralGoogle Scholar
  75. Zhang X, Candas M, Griko NB, Taussig R, Bulla LA (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci USA 103:9897–9902PubMedCrossRefPubMedCentralGoogle Scholar
  76. Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497PubMedCrossRefPubMedCentralGoogle Scholar
  77. Zhao JZ, Cao J, Collins HL, Bates SL, Roush RT, Earle ED, Shelton AM (2005) Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Natl Acad Sci USA 102:8426–8430PubMedCrossRefPubMedCentralGoogle Scholar
  78. Zukoff SN, Ostlie KR, Potter B, Meihls LN, Zukoff AL, French L, Ellersieck MR, Wade French B, Hibbard BE (2016) Multiple assays indicate varying levels of cross resistance in Cry3Bb1-selected field populations of the western corn rootworm to mCry3A, eCry3. 1Ab, and Cry34/35Ab1. J Econ Entomol 109:1387–1398PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Muhammad Salim
    • 1
  • Ayhan Gökçe
    • 1
  • Muhammad Nadir Naqqash
    • 1
  • Allah Bakhsh
    • 2
  1. 1.Department of Plant Production and Technologies, Faculty of Agricultural Sciences and TechnologiesNiğde Ömer Halisdemir UniversityNiğdeTurkey
  2. 2.Department of Agricultural Genetic Engineering, Ayhan Sahenk Faculty of Agricultural Sciences and TechnologiesNiğde Ömer Halisdemir UniversityNiğdeTurkey

Personalised recommendations