Advertisement

Agronomic Crop Responses and Tolerance to Polycyclic Aromatic Hydrocarbon Toxicity

  • Mahdieh Houshani
  • Seyed Yahya Salehi-LisarEmail author
Chapter
  • 47 Downloads

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are made up of only carbon and hydrogen and composed of two or more fused benzene cycles. It includes a large and heterogeneous group of organic contaminants that are mainly formed and emitted because of the incomplete combustion of organic materials. Polycyclic aromatic hydrocarbons are toxic for all living organisms, and their mutagenic and carcinogenic effects are well known. Hence, their fate and transport in the environment are of worldwide attention. Over 90% of PAHs in the environment reside in surface soils; therefore, plants grown in PAH-contaminated soils can uptake them, and that can make problems in terms of agronomic crop yield and contamination of food chains. Polycyclic aromatic hydrocarbons can enter the plant via stomata as well as the root system and can lead to a range of disorders in plants. Decrease in photosynthesis and respiration, changes in enzyme activities and photosynthetic pigment content, and injury to membranes by lipid oxidation are some known effects of PAHs in plants. The increasing load of PAHs to the environment can be a crucial factor for the future diversity of plant species in the habitat, and it may determine the level of possible economic yields. Thus, it is important to exactly understand how PAHs influence the overall plant growth and development. This chapter revises some concepts about PAH importance in the environment, those effects on plants, and plant responses to PAHs.

Keywords

Agronomic crop PAHs Physiological effects Organic contaminants Toxic effects 

Abbreviations

ABC transporter

ATP-dependent transporters

CAT

catalase

GPX

glutathione peroxidase

HMW

high molecular weights

IARC

International Agency for Research on Cancer

LMW

low molecular weights

LPO

lipid peroxidation

MDA

molondialdehyde

PAHs

polycyclic aromatic hydrocarbons

PSII

photosystem II

QA

quinone A

QB

quinone B

ROS

reactive oxygen species

SOD

superoxide dismutase

US-EPA

United States Environmental Protection Agency

References

  1. Adam G, Duncan H (1999) Effect of diesel fuel on growth of selected plant species. Environ Geochem Health 21:353–357CrossRefGoogle Scholar
  2. Aina R, Palin L, Citterio S (2006) Molecular evidence for benzo[a]pyrene and naphthalene genotoxicity in Trifolium repens L. Chemosphere 65:666–673PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alaei A, Vakili F, Mehrdad-Sharif AA (2010) Phytoremediation of soils contaminated by phenanthrene through Sorghum vulgar. J Environ Stud 53:79–88. [In Persian]Google Scholar
  4. Alkio M, Tabuchi TM, Wang X (2005) Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis includes growth inhibition and hypersensitive response-like symptoms. J Exp Bot 56:2983–2994PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidant: relationships in green cells. Plant Physiol 100:224–233CrossRefGoogle Scholar
  6. Bakker MI, Vorenhout M, Sum D, Kollôffel CD (1999) Dry deposition of atmospheric polycyclic aromatic hydrocarbons in three plantago species. Environ Toxicol Chem 18:2289–2294PubMedPubMedCentralGoogle Scholar
  7. Baud-Grasset F, Baud-Grasset S, Safferman SI (1993) Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests. Chemosphere 26:1365–1374CrossRefGoogle Scholar
  8. Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145PubMedCrossRefPubMedCentralGoogle Scholar
  9. Brazier-Hicks M, Evans KM, Cunningham OD (2008) Catabolism of glutathione conjugates in Arabidopsis thaliana role in metabolic reactivation of the herbicide safener fenclorim. J Biol Chem 283:21102–21112PubMedPubMedCentralCrossRefGoogle Scholar
  10. Briggs GG, Bromilow RH, Evans AA, Willams M (1983) Relationship between lipophilicity and the distribution of non-ionized chemicals in barley shoot following uptake by the root. Pestic Sci 14:492–500CrossRefGoogle Scholar
  11. Canadian Soil Quality Guidelines for Carcinogenic and other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects) (2008) CCME (Canadian of Ministers of the Environment). Scientific Supporting Document PP: 218Google Scholar
  12. Cerniglia CE, Heitkamp MA (1989) Microbial degradation of polycyclic aromatic hydrocarbon (PAH) in the aquatic environment, 2nd edn. CRC Press, Boca Raton, pp 41–68Google Scholar
  13. Chang CF, Chang CY, Chen KH, Tsai WT, Shie JL, Chen YH (2004) Adsorption of naphthalene on zeolite from aqueous solution. J Colloid Interface Sci 277:29–34PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chauhan A, Fazlurrahman-Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbon: strategies for bioremediation. Indian J Microbiol 48:95–113PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cheema SA, Khan MT, Tang X, Zhang C, Shen C, Malik Z, Chen Y (2008) Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J Hazard Mater 9:191–195Google Scholar
  16. Cheema SA, Khan MI, Shen C, Tang X, Farooq M, Chen L, Chen Y (2009) Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater 16:207–211Google Scholar
  17. Chen YC, Banks MK, Schwab AP (2003) Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switchgrass (Panicum virgatum). Environ Sci Technol 37:5778–5782PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chouychai W, Thongkukiatkul A, Upatham S, Lee H, Pokethitiyook P, Kruatrachue M (2009) Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil. J Environ Biol 30:139–144PubMedPubMedCentralGoogle Scholar
  19. Chroma L, Mackova M, Kucerova P, Wiesche C, Burkhard J, Macek T (2002) Enzymes in plant metabolism of PCBs and PAHs. Acta Biotechnol 22:35–41CrossRefGoogle Scholar
  20. Collins CD (2011) Organic xenobiotics and plants. Springer Netherlands, Dordrecht, p 307Google Scholar
  21. Collins C, Fryer M, Grosso A (2006) Plant uptake of nonionic organic chemicals. Environ Sci Technol 40:45–52PubMedCrossRefPubMedCentralGoogle Scholar
  22. Du W, Sun Y, Cao L, Huang J, Ji R, Wang X, Wu J, Zhu J, Guo H (2011) Environmental fate of phenanthrene in lysimeter planted with wheat and rice in rotation. J Hazard Mater 188:408–413PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dupuy J, Ouvard S, Legliz P, Sterckeman T (2015) Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by Phenanthrene. Chemosphere 124:110–115PubMedCrossRefPubMedCentralGoogle Scholar
  24. Duxbury CL, Dixon DG, Greenberg BM (1997) Effects of simulated solar radiation on the bioaccumulation OD polycyclic aromatic hydrocarbons by the duckweed Lemna gibba. Environ Toxicol Chem 16:1739–1748CrossRefGoogle Scholar
  25. Dzantor E, Chekol T, Vough L (2000) Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. J Environ Sci Health 9:1645–1661CrossRefGoogle Scholar
  26. Ebel M, Evangelou MWH, Schaeffer A (2007) Cyanide phytoremediation by water hyacinth (Eichhornia crassipes). Chemosphere 66:816–823PubMedCrossRefPubMedCentralGoogle Scholar
  27. Eewards NT (1983) Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment – a review. J Environ Qual 12:427–441CrossRefGoogle Scholar
  28. Epuri V, Sorensen D (1997) Benzo (a) pyrene and hexachlorobiphenyl contaminated soil: phytoremediation potential, 6th edn. American Chemical Society Press, Washington, DC, p 15Google Scholar
  29. Fetzer JC (2000) The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbon, 2nd edn. Wiley, New York, pp 27–29Google Scholar
  30. Fismes J, Perrin-Ganier C, Empereur-Bissonnet P, Morel JL (2002) Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J Environ Qual 31:1649–1656PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gao Y, Zhu L (2004) Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55:1169–1178PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gao Y, Yu XZ, Wu SC, Cheung KC, Tam NFY, Qian PY, Wong MH (2006) Interaction of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) on enhanced dissipation of spiked phenanthrene and pyrene in waterlogged soil. Sci Total Environ 372(1):1–11PubMedCrossRefPubMedCentralGoogle Scholar
  33. Ghabbour EA, Davies G, Lam YY, Vozzella ME (2004) Metal binding by humic acids isolated from water hyacinth plants (Eichhornia crassipes; solm-laubach: Pontedericeae) in the Nile Delta, Egypt. Environ Pollut 131:445–451PubMedCrossRefPubMedCentralGoogle Scholar
  34. Gong Z, Alef A, Wilke B, Li P (2007) Activated carbon adsorption of PAHs from vegetable oil used in soil remediation. J Hazard Mater 143:372–378PubMedCrossRefPubMedCentralGoogle Scholar
  35. Govindjee G (1995) Sixty-three years since Kautsky: chlorophyll fluorescence. Aust J Plant Physiol 22:131–160Google Scholar
  36. Gregoris E, Argiriadis E, Vecchiato M, Zambon S, De Pieri S, Donateo A, Contini D, Piazza R, Barbante C, Gambaro A (2014) Gas-particle distributions, sources and health effects of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in Venice aerosols. Sci Total Environ 476:393–405PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gutierrez-Alcala G, Gotor C, Meyer AJ, Fricker M, Vega JM, Romero LC (2000) Glutathione biosynthesis in Arabidopsis trichome cells. Proc Natl Acad Sci USA 97:11108–11113PubMedCrossRefPubMedCentralGoogle Scholar
  38. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15CrossRefGoogle Scholar
  39. Harms HH (1996) Bioaccumulation and metabolic fate of sewage derived organic xenobiotics in plants. Sci Total Environ 185:83–92CrossRefGoogle Scholar
  40. Holoubek I, Korinek P, Seda Z, Schneiderova E, Holoubkova I, Pacl A, Triska J, Cudlín P, Caslavsky J (2000) The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ Pollut 109:283–292PubMedCrossRefPubMedCentralGoogle Scholar
  41. Huang XD, Zeiler LF, Dixon DG, Greenberg BM (1996) Photoinduced toxicity of PAHs to the foliar 193 regions of Brassica napus (canola) and Cucumis sativus (cucumber) in simulated solar radiation. Ecotoxicol Environ Saf 35:190–197PubMedCrossRefPubMedCentralGoogle Scholar
  42. Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hulster A, Miller JR, Marschner H (1994) Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environ Sci Technol 28:1110–1115CrossRefGoogle Scholar
  44. Hung H, Mackay D (1997) A novel and simple model of the uptake of organic chemicals by vegetation from air and soil. Chemosphere 35:959–977PubMedCrossRefPubMedCentralGoogle Scholar
  45. Jajoo A, Mekala NR, Tomar RS, Grieco MG, Tikkanen M, Aro E (2014) Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance is not related to their aromaticity. J Photochem Photobiol B 137:151–155PubMedCrossRefPubMedCentralGoogle Scholar
  46. Jan F, Khan S, Ishaq M, Naeem M, Ahmad I, Hussain S (2014) Brick kiln exhaust as a source of polycyclic aromatic hydrocarbons (PAHs) in the surrounding soil and plants: a case study from the city of Peshawar, Pakistan. Arab J Geosci 7:13–19CrossRefGoogle Scholar
  47. Jian Y, Wang L, Peter PF, Yu HT (2004) Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutat Res 557:99–108CrossRefGoogle Scholar
  48. Johnson AR, Wick LY, Harms H (2005) Principles of microbial PAH degradation in soil. Environ Pollut 133:71–84CrossRefGoogle Scholar
  49. Kacalkova L, Tlustos P (2011) The uptake of persistent organic pollutants by plants. Cent Eur J Biol 6:223–235Google Scholar
  50. Kang F, Chen D, Gao Y, Zhang Y (2010) Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum L.). BMC Plant Biol 10:210–215PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kapustka LA (2004) Establishing Eco-SSLs for PAHs: lessons revealed from a review of literature on exposure and effects to terrestrial receptors. Hum Ecol Risk Assess 10(2):185–205CrossRefGoogle Scholar
  52. Khan S, Aijun L, Zhang S, Hu Q, Zhu Y (2008) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. J Hazard Mater 152:506–515PubMedCrossRefPubMedCentralGoogle Scholar
  53. Khatisashvili G, Gordeziani M, Kvesitadze G, Korte F (1997) Plant monooxygenases: participation in xenobiotic oxidation. Ecotoxicol Environ Saf 36:118–122PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kmentova E (2003) In: Masaryk University (ed) Response of plant to fluoranthene in environment., Ph. D. thesis. Czech Republic, Brno, p 145Google Scholar
  55. Knejzlik Z, Kas J, Ruml T (2000) Mechanismus vstupu xenobiotik do organismu a jejich detoxikace. Chem List 94:913–918Google Scholar
  56. Korte F, Kvesitadze G, Ugrekhelidze D, Gordeaiani M, Khatisashvili G, Buadze O, Zaalishvili G, Coulston F (2000) Organic toxicants and plants. Ecotoxicol Environ Saf 47:1–26PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kraus JJ, Munir IZ, McEldoon JP, Clark DS, Dordick JS (1999) Oxidation of polycyclic aromatic hydrocarbons catalyzed by soybean peroxidase. Biotechnol Appl Biochem 80(3):221–230CrossRefGoogle Scholar
  58. Kummerova M, Slovak L, Holoubek I (1997) Growth response of spring barley to short- or long-period exposures to fluoranthene. Rost Vyroba 43:209–215Google Scholar
  59. Kummerova M, Bartak M, Triska J, Zubrova E, Zezulka S (2006) Inhibitory effect of fluoranthene on photosynthetic processes in lichens detected by chlorophyll fluorescence. Ecotoxicology 15:121–131PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kummerova M, Zezulka S, Vanova L, Fiserova H (2012) Effect of organic pollutant treatment on the growth of pea and maize seedlings. Cent Eur J Biol 7(1):159–166Google Scholar
  61. Kvesitadze G, Khatisashvili G, Sadunishvili T, Ramsden JJ (2006) Biochemical mechanisms of detoxification in higher plants. Springer, BerlinGoogle Scholar
  62. Larsson BK, Sahlberg GP, Eriksson AT, Busk LA (1983) Polycyclic aromatic hydrocarbons in grilled food. J Agric Food Chem 31:867–873PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lee SH, Lee WS, Lee CH, Kim JG (2008) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153:892–898PubMedCrossRefPubMedCentralGoogle Scholar
  64. Li F, Zeng X, Yang J, Khou K, Zan Q, Lei A, Tam NF (2014) Contamination of polycyclic aromatic hydrocarbons (PAHs) in surface sediments and plants mangrove swamps in Shenzhen, China. Mar Pollut Bull 85:590–596PubMedCrossRefPubMedCentralGoogle Scholar
  65. Lima AL, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic aromatic hydrocarbons in the environment. Environ Forensic 6:109–131CrossRefGoogle Scholar
  66. Lin CH, Huang X, Kolbanovskii A, Hingerty BE, Amin S, Broyde S (2001) Molecular topology of polycyclic aromatic carcinogens determines DNA adducts conformation: a link to tumorigenic activity. J Mol Biol 306:1059–1080PubMedCrossRefPubMedCentralGoogle Scholar
  67. Liu H, Weisman D, Yuan-bei Y, Cui B, Huang Y, Colon-Carmona A, Wang Z (2008) An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci 176:375–382CrossRefGoogle Scholar
  68. Mackay D, Shin WY, Ma KC (1992) Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. Lewis Publisher, Michigan, p 597Google Scholar
  69. Maila MP, Cloete TE (2002) Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil. Int Biodeterior Biodegradation 50:107–113CrossRefGoogle Scholar
  70. Mandalakis M, Tsapakis M, Tsoga A, Stephanou EG (2002) Gas-particle concentrations and distribution of aliphatic hydrocarbons, PAHs, PCBs and PCDD/Fs in the atmosphere of Athens (Greece). Atmos Environ 36:4023–4035CrossRefGoogle Scholar
  71. Marchal G, Smith KEC, Mayer P, De Jonge LW, Karlson UG (2014) Impact of soil amendments and the plant rhizosphere on PAH behavior in soil. Environ Pollut 188:124–131PubMedCrossRefPubMedCentralGoogle Scholar
  72. Mattina MI, White J, Eitzer B, Iannucci-Berger W (2002) Cycling of weathered chlordane residues in the environment: compositional and chiral profiles in contiguous soil, vegetation, and air compartments. Environ Toxicol Chem 21:281–288PubMedCrossRefPubMedCentralGoogle Scholar
  73. Mcglynn SE, Livingston RJ (1997) The distribution of polynuclear aromatic hydrocarbons between aquatic plants and sediments. Int J Quantum Chem 64:271–283CrossRefGoogle Scholar
  74. Meudec A, Dussauze J, Deslandes E, Poupart N (2006) Evidence for bioaccumulation of PAHs within internal shoot tissues by a halophytic plant artificially exposed to petroleum sediments. Chemosphere 65(3):474–481PubMedCrossRefPubMedCentralGoogle Scholar
  75. Moustafa YM, Shara SI (2009) Studies of seasonal variations on polynuclear aromatic hydrocarbons along the Nile River, Egypt. J Appl Sci Res 5:2349–2356Google Scholar
  76. Muratova A, Kapitonova VV, Chernyshova M, Turkovskaya P, Turkovskaya OV (2009) Enzymatic activity of alfalfa in a phenanthrene-contaminated environment. World Acad Sci Eng Technol 3:10–24Google Scholar
  77. Nesterenko MA, Kirzhner F, Zimmels Y, Armon R (2012) Eichhornia crassipes capability to remove naphthalene from waste water in the absence of bacteria. Chemosphere 87:1186–1191CrossRefGoogle Scholar
  78. Newman L, Reynolds C (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230PubMedCrossRefPubMedCentralGoogle Scholar
  79. Nor YM (1994) Phenol removal by Eichhornia crassipes in the presence of trace metals. Water Res 28:1161–1166CrossRefGoogle Scholar
  80. Paiga P, Mendes L, Albergaria JT, Delerue-Matos CM (2012) Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography. Chem Pap 66:711–721CrossRefGoogle Scholar
  81. Parrish ZD, Banks MK, Schwab AP (2004) Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int J Phytoremediation 6:119–137PubMedCrossRefPubMedCentralGoogle Scholar
  82. Parrish ZD, Banks MK, Schwab AP (2005) Assessment of contaminant labiality during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ Pollut 137:187–197PubMedCrossRefPubMedCentralGoogle Scholar
  83. Parrish JW, White JC, Isleyen M, Gent MPN, Iannucci-Berger W, Eitzer BD, Kelsey JW, Mattina MI (2006) Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere 64:609–618PubMedCrossRefPubMedCentralGoogle Scholar
  84. Paskova V, Hilscherova K, Feldmannova M, Blaha L (2006) Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their n-heterocyclic derivatives. Environ Toxicol Chem 25:3238–3245CrossRefGoogle Scholar
  85. Piccardo MT, Pala M, Bonaccurso B, Stella A, Redaelli A, Paola G, Valerio F (2005) Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons. Environ Pollut 133:293–301PubMedCrossRefPubMedCentralGoogle Scholar
  86. Platt MM, Mackie PR (1980) Distribution and fate of aliphatic and aromatic hydrocarbons in Antarctic fauna and environment. Nature 280:576–578CrossRefGoogle Scholar
  87. Pradham SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. J Soil Contam 7:467–480CrossRefGoogle Scholar
  88. Reddy KR, Agami M, Tucker JC (1989) Influence of nitrogen supply rates on growth and nutrient storage by water hyacinth (Eichhornia crassipes) plants. Aquat Bot 36:33–43CrossRefGoogle Scholar
  89. Reynoso-Cuevas L, Gallegos-Martinez ME, Cruz-Sosa F, Gutierrez-Rojas M (2008) In vitro evaluation of germination and growth of five plant species on medium supplemented with hydrocarbons associated with contaminated soils. Bioresour Technol 99:6379–6385PubMedCrossRefPubMedCentralGoogle Scholar
  90. Rosas I, Carbajal ME, Gómez AS, Belmont R, Villalobos PR (1984) Cytogenetic effects of cadmium accumulation on water hyacinth (Eichhornia crassipes). Environ Res 33:386–395PubMedCrossRefPubMedCentralGoogle Scholar
  91. Salehi-Lisar SY, Deljoo S (2015) Physiological effect of phenanthrene on Triticum aestivum L., Helianthus annuus and Medicago sativa. Eur J Biosci 9:29–37CrossRefGoogle Scholar
  92. Salehi-Lisar SY, Deljoo S, Harzandi AM (2015) Fluorene and phenanthrene uptake and accumulation by wheat, alfalfa and sunflower from the contaminated soil. Int J Phytoremediation 17:1145–1152PubMedCrossRefPubMedCentralGoogle Scholar
  93. Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433PubMedPubMedCentralCrossRefGoogle Scholar
  94. Simonich SL, Hites RA (1994) Vegetation atmosphere partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 28:939–943PubMedCrossRefPubMedCentralGoogle Scholar
  95. Simonich SL, Hites RA (1995) Organic pollutant accumulation in vegetation. Environ Sci Technol 12:2905–2914CrossRefGoogle Scholar
  96. Smith MJ, Flowers TH, Duncan HJ, Alder J (2006) Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ Pollut 141(3):519–525PubMedCrossRefPubMedCentralGoogle Scholar
  97. Sun K, Liu J, Jin L, Gao Y (2014) Utilizing pyrene-degrading endophytic bacteria to reduce the risk of plant pyrene contamination. Plant Soil 374(1–2):251–262CrossRefGoogle Scholar
  98. Sverdrup LE, Krogh PH, Nielsen T, Kjær C, Stenersen J (2003) Toxicity of eight polycyclic aromatic hydrocarbons to red clover (Trifolium pretense), ryegrass (Lolium perenne) and mustard (Sinapsis alba). Chemosphere 53:993–1003PubMedCrossRefPubMedCentralGoogle Scholar
  99. Tang SY, Lu XW (1993) The use of Eichhornia crassipes to cleanse oil refinery waste water in China. Ecol Eng 2:243–251CrossRefGoogle Scholar
  100. Tao S, Jiao XC, Chen SH, Liu WX, Coveney RM, Zhu LZ, Luo YM (2006) Accumulation and distribution of polycyclic aromatic hydrocarbons in rice (Oryza sativa). Environ Pollut 140:406–415PubMedCrossRefPubMedCentralGoogle Scholar
  101. Tomar RS, Jajoo A (2013) A quick investigation of the detrimental effects of environmental pollutant polycyclic aromatic hydrocarbon fluoranthene on the photosynthetic efficiency of wheat (Triticum aestivum). Ecotoxicology 22:1313–1318PubMedCrossRefPubMedCentralGoogle Scholar
  102. Tomar RP, Jajoo A (2014) Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum). Ecotoxicol Environ Saf 109:110–115PubMedCrossRefPubMedCentralGoogle Scholar
  103. Trapp S, MCFarlane JC (1995) Plant contamination, modeling and simulation of organic processes. Lewis, Tokyo, p 254Google Scholar
  104. Vanova L (2009) The use of in vitro cultures for effect assessment of persistent organic pollutants on plants. PhD thesis, Faculty of Science, Masaryk University, Czech RepublicGoogle Scholar
  105. Wang YC, Qiao M, Liu YX, Arp HPH, Zhu YG (2011) Comparison of polycyclic aromatic hydrocarbon uptake pathways and risk assessment of vegetables from waste-water irrigated areas in northern China. J Environ Monit 13:433–439PubMedCrossRefPubMedCentralGoogle Scholar
  106. Ward OP, Singh A, Van Hamme J (2003) Accelerated biodegradation of petroleum hydrocarbon waste. J Ind Microbiol Biotechnol 30:260–270PubMedCrossRefPubMedCentralGoogle Scholar
  107. Watts AW, Ballestero TP, Gardner KH (2006) Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments. Chemosphere 62(8):1253–1260PubMedCrossRefPubMedCentralGoogle Scholar
  108. Wei H, Song S, Tian H, Liu T (2014) Effects of phenanthrene on seed germination and some physiological activities of wheat seedling. C R Biol 337:95–100PubMedCrossRefPubMedCentralGoogle Scholar
  109. Werck-Reichhart D, Hehn A, Didierjean L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5:116–123PubMedCrossRefPubMedCentralGoogle Scholar
  110. White JC (2002) Differential bioavailability of field-weathered p, p′-DDE to plants of the Cucurbita and Cucumis genera. Chemosphere 49:143–152PubMedCrossRefPubMedCentralGoogle Scholar
  111. White PM, Wolf DC, Thoma GJ, Reynolds CM (2006) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:207–220CrossRefGoogle Scholar
  112. Wilcke W (2000) Polycyclic aromatic hydrocarbons (PAHs) in soil. J Plant Nutr Soil Sci 163:229–248CrossRefGoogle Scholar
  113. Wild E, Dent J, Thomas GO, Jones KC (2005) Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environ Sci Technol 39:3695–3702PubMedCrossRefPubMedCentralGoogle Scholar
  114. Wild E, Dent J, Thomas GO, Jones KC (2006) Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene: further studies utilizing two-photon excitation microscopy. Environ Sci Technol 40:907–916PubMedCrossRefPubMedCentralGoogle Scholar
  115. Wolverton BC, McDonald RC (1976) Don’t waste waterweeds. New Sci 71:318–320Google Scholar
  116. Xia H (2008) Enhanced disappearance of dicofol by water hyacinth in water. Environ Technol 29:297–302PubMedCrossRefPubMedCentralGoogle Scholar
  117. Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Bioresour Technol 97:1050–1054PubMedCrossRefPubMedCentralGoogle Scholar
  118. Yang Z, Zhu L (2007) Performance of the partition-limited model on predicting ryegrass uptake of polycyclic aromatic hydrocarbons. Chemosphere 67:402–409PubMedCrossRefPubMedCentralGoogle Scholar
  119. Zhan XH, Liang X, Xu GH, Zhou LX (2013) Influence of plant root morphology and tissue composition on phenanthrene uptake: stepwise multiple linear regression analysis. Environ Pollut 179:294–300PubMedCrossRefPubMedCentralGoogle Scholar
  120. Zhang J, Shukai F, Du X, Yang Y, Wang W, Hou H (2015) Accumulation, allocation, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil-Brassica chinensis system. PLoS One 10:1–16Google Scholar
  121. Zuo Q, Lin H, Zhang X, Li Q, Liu S, Tao S (2006) A two-compartment exposure device for foliar uptake study. Environ Pollut 143:126–128PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Plant Sciences, Faculty of Natural SciencesUniversity of TabrizTabrizIran

Personalised recommendations