Advertisement

Thermal Degradation of Unsaturated Polyester and Composite Fiberglass Embedded with Aluminium Phosphate

  • Asmalina Mohamed SaatEmail author
  • Asmawi Abd Malik
  • Md. Salim Kamil
  • Mazlan Muslim
  • Fatin Zawani Binti Zainal Azaim
  • Adila Azmi
  • Mohamad Fadzil Abd Latif
  • Nur Ermadiana Ramlee
  • Muhammad Amiruddin Ahmad
  • Mohd Rafie Johan
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The thermal degradation of unsaturated polyester resin and composite fiberglass containing aluminum phosphate as additive flame retardant were investigated. A new phosphate type fire retardant is developed using aluminum phosphate embedded in unsaturated polyester resin with varies weight ratio (0–50%). The modified unsaturated polyester then combined with seven layer of fiberglass reinforcement to produce composite fiberglass boat panels. The effects of aluminum phosphate on structural and thermal properties were evaluated on both unsaturated polyester resin and composite fiberglass using Fourier Transform Infrared (FTIR) and thermogravimetric analysis (TGA). Addition of aluminum phosphate in modified unsaturated polyester observed increases in weight residue due to formation char layer. Thermal properties and structural bonding observed in both modified unsaturated polyester and composite fiberglass show that oxygen has a great influenced in the interaction between phosphate group, aluminum and silica in both systems.

Keywords

Composite fibreglass Phosphate Thermal degradation 

Notes

Acknowledgements

This work was financially supported by UniKL Short Term Grant (UniKL/Cori/STRG/16035 & UniKL/Cori/STRG/15126). Author also appreciates of the collaboration with Nanotechnology and Catalyst Research, Universiti Malaya, Kuala Lumpur, Malaysia. The author gratefully acknowledge on both of support.

References

  1. 1.
    Beyler CL Hirschler MM (2005) Thermal decomposition of polymers. In: SFPE handbook of fire protection engineering, 3rd edn, pp 110–131Google Scholar
  2. 2.
    Leopoldshafen E, Dresden P, Str H (2012) Phosphorus polyesters as halogen-free polymeric flame retardants in poly(butylene terephthalate)—influence of the chemical structureGoogle Scholar
  3. 3.
    Ricciardi MR, Antonucci V, Giordano M, Zarrelli M (2012) Thermal decomposition and fire behavior of glass fiber-reinforced polyester resin composites containing phosphate-based fire-retardant additives. J Fire Sci 30(4):318–330CrossRefGoogle Scholar
  4. 4.
    Hapuarachchi TD, Peijs T (2009) Aluminium trihydroxide in combination with ammonium polyphosphate as flame retardants for unsaturated polyester resin. Express Polym. Lett. 3(11):743–751CrossRefGoogle Scholar
  5. 5.
    Saat AM, Malik AA, Azmi A, Latif MFA, Ramlee NE, Johan MR (2017) Effect of aluminum phosphate on structural and flame retardant properties of composites fibreglass. ARPN J Eng Appl Sci 12(4):1315–1318Google Scholar
  6. 6.
    Saat AM, Johan MR (2017) Enhanced thermal and structural properties of partially phosphorylated polyvinyl alcohol—aluminum phosphate (PPVA-AlPO4) nanocomposites with aluminium nitrate source. AIP Conf Proc 1901(130011):1–8Google Scholar
  7. 7.
    Bastiurea M, Rodeanu MS, Dima D, Murarescu M, Andrei G (2015) Thermal and mechanical properties of polyester composites with graphene oxide and graphite. Dig J Nanomater Biostructures 10(2):521–533Google Scholar
  8. 8.
    Pan LL, Li GY, Su YC, Lian JS (2012) Fire retardant mechanism analysis between ammonium polyphosphate and triphenyl phosphate in unsaturated polyester resin. Polym Degrad Stab 97(9):1801–1806CrossRefGoogle Scholar
  9. 9.
    Al Bayaty SA, Farhan AJ (2015) Polyester and unsaturated polyester reinforcement by Toner Carbon Nano Powder (TCNP) composites. Int J Appl Innov Eng Mange 4(3):139–146Google Scholar
  10. 10.
    Siddharthan KS, Mohan S, Elayaperumal A (2014) Mechanical and thermal properties of glass/polyester composite with glycerol as additive. Int J Eng Trends Technol 7(2):61–64CrossRefGoogle Scholar
  11. 11.
    Saat AM, Johan MR (2016) Effect of aluminum source on the structural and thermal properties of partially phosphorylated polyvinyl alcohol composite (PPVA)—aluminum phosphate (PPVA-AlPO4) nanocomposite. Key Eng Mater 701(3):291–294CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Asmalina Mohamed Saat
    • 1
    Email author
  • Asmawi Abd Malik
    • 1
  • Md. Salim Kamil
    • 1
  • Mazlan Muslim
    • 1
  • Fatin Zawani Binti Zainal Azaim
    • 1
  • Adila Azmi
    • 1
  • Mohamad Fadzil Abd Latif
    • 1
  • Nur Ermadiana Ramlee
    • 1
  • Muhammad Amiruddin Ahmad
    • 1
  • Mohd Rafie Johan
    • 2
  1. 1.Malaysian Institute of Marine Engineering TechnologyUniversiti Kuala LumpurLumutMalaysia
  2. 2.Nanotechnology and Catalyst ResearchUniversiti MalayaKuala LumpurMalaysia

Personalised recommendations