Advertisement

Development of Triticum Taxonomy

  • Chi Yen
  • Junliang Yang
  • Zhongwei Yuan
  • Shunzong Ning
  • Dengcai Liu
Chapter
  • 18 Downloads

Abstract

Over the past 20 years, the development of cytology, genetics, and crossbreeding has accumulated abundant objective data and documents for wheat, one of the most important crops in the world. New knowledge is helpful for understanding phylogeny of wheat. Correspondingly, some questions challenged the old concept of wheat taxonomy. For instance, the generally accepted six species including commercial cultivars in dinkel reihe can easily hybridize each other and their hybrids usually had normal chromosome pairing and high fertility. The morphological difference used as a key trait of species classification can be caused by a single gene. Such as for the spike shape of T. aestivum and T. spelta, there is only the gene difference between Q and q. The difference between T. compactum and other species is only caused by the gene c, while the difference between T. sphaerococcum and T. aestivum is due to the gene S (Ellerton 1939; McGee 1958). Therefore, many scholars disagreed the treatment of six “species.” They thought that T. aestivum, T. spelta, T. compactum, T. macha, T. vavilovii, and T. sphaerococcum belong to a same species. Thellung (1918), McGee (1954), and Sears (1956a, b) regard them as subspecies of T. aestivum, as following:

References

  1. Bowden, W. N. (1959). The taxonomy and nomoenclature of the wheats, barleys and ryes and their wild relatives. Canadian Journal of Botany, 37, 637–684.Google Scholar
  2. Chen, K., Gray, J. C., & Wildman, S. G. (1975). Fraction I protein and the origin of polyploid wheats. Science, 190, 1304–1306.CrossRefGoogle Scholar
  3. Croston, R. P., & Williams, J. T. (1981). A world survey of wheat geneticre sources. Rome: IBPGR Secretariat.Google Scholar
  4. Dhaliwal, H. S. (1977). Origin of Triticum monococcum L. Wheat Information Service, 44, 14–17.Google Scholar
  5. Dubcovsky, J., & Dvorak, J. (1995). Genome identification of the Triticum crassum complex (Poaceae) with the restriction patterns of repeated nucleotide sequences. American Journal of Botany, 82, 131–140.CrossRefGoogle Scholar
  6. Dvorak, J., Mcguire, P. E., Cassidy, B., et al. (1988). Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome, 30, 680–689.CrossRefGoogle Scholar
  7. Dvorak, J., & Zhang, H. B. (1990). Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proceedings of the National Academy of Sciences of the United States of America, 87, 9640–9644.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Dvorak, J., Terlizzi, P. D., Zhang, H., et al. (1993). The evolution of polyploid wheats: identification of the A genome donor species. Genome, 36, 21–31.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Dvorak, J., Luo, M. C., Yang, Z. L., et al. (1998). The structure of Aegilops tauschii genepool and evolution of hexaploid wheat. Theoretical and Applied Genetics, 97, 657–670.CrossRefGoogle Scholar
  10. Eig, A. (1929). Monographisch-Kritische Uebersicht der Gattung Aegilops. Repert. Sp. Nov. Fedde Beih., 55, 1–228.Google Scholar
  11. Ellerton, S. (1939). The origin and geographical distribution of Triticum sphaerococcum Perc. and its cytogenetical behaviour in crosses with T. vulgare Vill. Journal of Genetics, 38, 307–324.CrossRefGoogle Scholar
  12. Feldman, M. (1976). Wheats. In N. W. Simmonds (Ed.), Evolution of crop plants. London: Longman.Google Scholar
  13. Hammer, K. (1980). Zur Taxonomie und Nomenklatur der Gattung Aegilops L. Feddes Repertorium, 91, 225–258.CrossRefGoogle Scholar
  14. Johnson, B. L., & Dhaliwal, H. S. (1976). Reproductive isolation of Triticum boeoticum and Triticum urartu and the origin of the tetraploid wheat. American Journal of Botany, 63, 1088–1094.CrossRefGoogle Scholar
  15. Johnson, B. L., & Dhaliwal, H. S. (1978). Triticum urartu and genome evolution in the tetraploid wheat. American Journal of Botany, 55, 907–918.CrossRefGoogle Scholar
  16. Kihara, H. (1959). Fertility and morphological variation in the substitution and restoration backcrosses of the hybrid, Triticum vulgare × Aegilops caudata. In Proceedings of 10th International Congress of Genetics, 1, pp. 142–171.Google Scholar
  17. Kihara, H. (1963). Nucleus and chromosome substition in wheat and Aegilops. I. Nucleus substitution. In Proceedings of 2nd International wheat genetics Symposium, University of Lund, Sweden, Hereditas Supll., 2, pp. 313–327.Google Scholar
  18. Kihara, H. (1966). Factors affecting the evolution of common wheat. Indian Journal of Genetics, 26A, 14–28.Google Scholar
  19. Kihara, H. 1968. Cytoplasmic relationships in Triticinae. In Proceedings of 3rd International Wheat Genetics Symposium, Canberra, Butterworth, Australia, pp. 125–134.Google Scholar
  20. Kihara, H. (1970). Addendum to the classification of the genus Aegilops by means of genome-analysis. Wheat Inform Serv, 30, 1–2.Google Scholar
  21. Kihara, H., Hosono, S., Nishiyama, I., et al. (1954). A study of wheat. Tokyo: Yokendo.Google Scholar
  22. Kimber, G., & Feldman, M. (1987). Wild wheat, an introduction (Special Report 353). Columbia: College of Agriculture, University of Missouri.Google Scholar
  23. Konzak, C. F. L. (1977). Genetic control of the content, amino acid composition, and processing properties of proteins in wheat. Advances in Genetics, 19, 407–582.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Lilienfeld, F. A., & Kihara, H. (1934). Genomannalyse bei Triticum timopheevi Zhuk. Cytologia, 6, 87–122.Google Scholar
  25. Löve, A. (1982). Generic evolution of the wheatgrasses. Biologisches Zentralblatt, 101, 199–212.Google Scholar
  26. Löve, A. (1984). Conspectus of the Triticeae. Feddes Repert, 95, 425–521.Google Scholar
  27. Maan, S. S., & Lucken, K. A. (1968). Cytoplasmic male sterility and fertility restoration in Triticum L. I. effects of aneuploidy. II. Male-sterility-fertility restoration systems. In Proceedings of 3rd International Wheat Genetics Symposium, Canbera, Butterworth, Australia, pp. 135–140.Google Scholar
  28. MacKey, J. (1954). The taxonomy of hexaploid wheat. Svensk Botanisk Tidskrift, 48, 579–590.Google Scholar
  29. MacKey, J. (1966). Species relationship in Triticum. In Proceedings of 2nd International Wheat Genetics Symposium, Hereditas Suppl., 2, pp. 237–276.Google Scholar
  30. MacKey, J. (1968). Relationships in the Triticinae. In Proceedings of 3rd International Wheat Genetics Symposium, Canberra, pp. 39–50.Google Scholar
  31. MacKey J. (1975). The boundaries and subdivision of the genus Triticum. In Proceedings of 12th International Bot. Congr., St. Petersburg, 2, p. 509 (abstract).Google Scholar
  32. Mello-Sampaye, T. (1968). Homoeologous chromosome pairingin pentaploid hybrids of wheat. In Proceedings of 3rd International Wheat Genetics Symposium, Canbera, Butterworth, Australia, pp. 179–184.Google Scholar
  33. Morris, R., & Sears, E. R. (1967). The cytogenetics of wheat and its relatives. In L. P. Reitz (Ed.), Quisenberry KS (pp. 19–87). Madison, WI: Wheat and wheat improvement. Am Soc Agron.Google Scholar
  34. Morrison, J. W. (1953). Chromosome behaviour in wheat monosomies. Heredity, 7, 203–217.CrossRefGoogle Scholar
  35. Ogihara, Y., & Tsunewaki, K. (1988). Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theoretical and Applied Genetics, 76, 321–332.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Ohtsuka, I. (1983). Classification of tetraploid wheat based on responses to Aegilops squarrosa cytoplasm cytocytoplasm and origin of dinkel wheat. In Proceedings of 6th International Wheat Genetics Symposium, Kyoto, Japan, pp. 993–1001.Google Scholar
  37. Okamoto, M. (1957). Asynaptic effect of chromosome V. Wheat Information Service, 5, 6.Google Scholar
  38. Riley, R. (1966). Genetics and the regulation of meiotic chromosome behaviour. Science Progress, 54, 193–207.PubMedPubMedCentralGoogle Scholar
  39. Riley, R. (1968). The basic and applied genetics of chromosome pairing. In Proceedings of 3rd International Wheat Genetics Symposium, Canbera, Butterworth, Australia, pp. 185–195.Google Scholar
  40. Riley, R., & Law, C. N. (1965). Genetic variation in chromosome pairing. Advances in Genetics, 13, 57–144. Academic Press, New York.CrossRefGoogle Scholar
  41. Riley, R., Unrau, J., & Chapman, V. (1958). Evidence on the origin of the Bgenome of wheat. The Journal of Heredity, 49, 91–98.CrossRefGoogle Scholar
  42. Sears, E. R. (1956a). The B genome in wheat. Wheat Information Service, 4, 8–10.Google Scholar
  43. Sears, E. R. (1956b). Weizen. I. The systematics, cytology and genetics of wheat. Handbuch der Pflanzenzüchtung, 11, 164–187.Google Scholar
  44. Sears, E. R., & Okamoto, M. (1958). Inter genomic chromosme relationship in hexaploid wheat. In Proceedings of 10th International Congress Genetics, Montreal, Canada, 2, pp. 258–259.Google Scholar
  45. Scholz, H., & Slageren, M. W. V. (1994). (1089) Proposal to Conserve Aegilops caudata (Gramineae) with a Conserved Type. Taxon, 43, 293–296.CrossRefGoogle Scholar
  46. Suemoto, H. (1968). The origin of the cytoplasm of tetraploid wheats. In Proceedings of 3rd International Wheat Genetics Symposium, Butterworth, Canbera, Australia, pp. 141–152.Google Scholar
  47. Suemoto, H. (1973. The origin of the cytoplasm of tetraploid wheat. In Proceedings 4th International Wheat Genetics Symposium, Missouri, Columbia, MO, USA, pp. 109–113.Google Scholar
  48. Thellung, A. (1918). Neuere Wege und Ziele der botanichen Systematik, erläutert am Beispiele unserer Getreidearten. Naurew. Wochenschr, 17(449–458), 466–474.Google Scholar
  49. Upadhya, M. D. (1966). Altered potency of chromosome 5B in wheat-caudata hybrids. Wheat Information Service, 22, 7–9.Google Scholar
  50. van Slageren, M. W. (1994). Wild wheats: A monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). ICARDA and Wageningen Agricultural University, Netherland.Google Scholar
  51. Wilson, J. A., & Ross, W. M. (1962). Male sterility interaction of the Triticum aestivum nucleusand Triticum timopheevi cytoplasm. Wheat Information Service, 14, 29–31.Google Scholar
  52. Yen, Y., & Kimber, G. (1990). Genomic relationships of Tricicum searsii to other S-genome diploid Triticum species. Genome, 33, 369–373.CrossRefGoogle Scholar
  53. Zhang, H., & Dvorak, J. (1992). The genome origin and evolution of hexaploid Triticum crassum and Triticum syriacum determined from variation in repeated nucleotide sequences. Genome, 35, 806–814.CrossRefGoogle Scholar
  54. Zhang, H. B., Dvorak, J., & Waines, J. G. (1992). Diploid ancestry and evolution of Triticum kotschyi, and T. peregrinum, examined using variation in repeated nucleotide sequences. Genome, 35, 182–191.CrossRefGoogle Scholar
  55. Zohary, D., & Feldman, M. (1962). Hybridization between amphidploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution, 16, 44–61.CrossRefGoogle Scholar
  56. Zohary, D., & Imber, D. (1963). Genetic dimorphism in fruit types in Aegilops speltoides. Heredity, 18, 223–231.CrossRefGoogle Scholar
  57. Дорофеев, В. Х., & ц Мцгущова, З. Х. (1979). Система рода Triticum L. Вестник с-х Науки, (2), 18–26.Google Scholar

Copyright information

© China Agriculture Press & Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Chi Yen
    • 1
  • Junliang Yang
    • 2
  • Zhongwei Yuan
    • 3
  • Shunzong Ning
    • 1
  • Dengcai Liu
    • 3
  1. 1.Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
  2. 2.Triticeae Research InstituteSichuan Agricultural UniversityYa’anChina
  3. 3.Triticeae Research InstituteSichuan Agricultural UniversityChengduChina

Personalised recommendations