Antibiotic Resistance: Role and Pattern in Different Class of Bacteria

  • Sadhana Sagar
  • Shilpa Kaistha
  • Amar Jyoti Das
  • Rajesh Kumar


Microorganism can be able to sustain in any harsh conditions including abiotic and biotic (host’s body) environment. In this regard, bacteria were blessed with such dynamic and multifunctional cell wall structure. The cell wall of bacteria is essential for maintaining the integrity and also providing protection from the tough environmental conditions. Bacteria are differentiated into gram positive and gram negative on the basis of difference in their cell wall structure. Gram-positive bacteria have peptidoglycan, while gram-negative bacteria possess lipopolysaccharide in their cell wall. Most of detrimental chemicals are also not allowed to enter into the cell through such a protective layer of bacteria. Hence, such blissful structure of bacteria is ultimately responsible for their death, since it is the target of most of antibiotics. β-lactam class of antibiotics targets the peptidoglycan in the cell wall of bacteria to inhibit their growth, even though there are a range of antibiotics available to target the different parts of the cell of bacteria. In this chapter we have illustrated the various components of bacterial cell wall and their targeting antibiotics.


  1. Alves D, Olívia Pereira M (2014) Mini-review: antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces. Biofouling 30(4):483–499PubMedCrossRefGoogle Scholar
  2. Araki Y, Ito E (1989) Linkage units in cell walls of gram-positive bacteria. Crit Rev Microbiol 17(2):121–135PubMedCrossRefGoogle Scholar
  3. Atilano ML, Pereira PM, Yates J, Reed P, Veiga H, Pinho MG, Filipe SR (2010) Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus. Proc Natl Acad Sci 107(44):18991–18996PubMedCrossRefGoogle Scholar
  4. Boucher HW, Corey GR (2008) Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis 46(Suppl 5):S344–S349PubMedCrossRefGoogle Scholar
  5. Brown S, Xia G, Luhachack LG, Campbell J, Meredith TC, Chen C, Winstel V, Gekeler C, Irazoqui JE, Peschel A, Walker S (2012) Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc Natl Acad Sci 109(46):18909–18914PubMedCrossRefGoogle Scholar
  6. Brown S, Santa Maria JP Jr, Walker S (2013) Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol 67:313–336PubMedCrossRefGoogle Scholar
  7. Campbell J, Singh AK, Santa Maria JP Jr, Kim Y, Brown S, Swoboda JG, Mylonakis E, Wilkinson BJ, Walker S (2010) Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol 6(1):106–116PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chawla-Sarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ, Borden EC (2004) Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 11(8):915PubMedCrossRefGoogle Scholar
  9. Coley J, Tarelli E, Archibald AR, Baddiley J (1978) The linkage between teichoic acid and peptidoglycan in bacterial cell walls. FEBS Lett 88(1):1–9PubMedCrossRefGoogle Scholar
  10. D’Elia MA, Millar KE, Beveridge TJ, Brown ED (2006) Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J Bacteriol 188(23):8313–8316PubMedPubMedCentralCrossRefGoogle Scholar
  11. D’Elia MA, Henderson JA, Beveridge TJ, Heinrichs DE, Brown ED (2009) The N-acetylmannosamine transferase catalyzes the first committed step of teichoic acid assembly in Bacillus subtilis and Staphylococcus aureus. J Bacteriol 191(12):4030–4034PubMedPubMedCentralCrossRefGoogle Scholar
  12. Endl J, Seidl HP, Fiedler F, Schleider KH (1983) Chemical composition and structure of cell wall teichoic acids of staphylococci. Arch Microbiol 135(3):215–223PubMedCrossRefGoogle Scholar
  13. Endl J, Seidl PH, Fiedler F, Schleifer KH (1984) Determination of cell wall teichoic acid structure of staphylococci by rapid chemical and serological screening methods. Arch Microbiol 137(3):272–280PubMedCrossRefGoogle Scholar
  14. Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta (BBA) Biomembr 1462(1–2):11–28CrossRefGoogle Scholar
  15. Epand RM, Walker C, Epand RF, Magarvey NA (2016) Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta (BBA) Biomembr 1858(5):980–987CrossRefGoogle Scholar
  16. Farha MA, Leung A, Sewell EW, D’Elia MA, Allison SE, Ejim L, Pereira PM, Pinho MG, Wright GD, Brown ED (2012) Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. ACS Chem Biol 8(1):226–233PubMedPubMedCentralCrossRefGoogle Scholar
  17. Farizano JV, de las Mercedes Pescaretti M, López FE, Hsu FF, Delgado MA (2012) The PmrAB system-inducing conditions control both lipid A remodeling and O-antigen length distribution, influencing the Salmonella typhimurium-host interactions. J Biol Chem 287(46):38778–38789PubMedPubMedCentralCrossRefGoogle Scholar
  18. Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11(1):37CrossRefGoogle Scholar
  19. Fu C, Keller L, Bauer A, Brönstrup M, Froidbise A, Hammann P, Herrmann J, Mondesert G, Kurz M, Schiell M, Schummer D (2015) Biosynthetic studies of telomycin reveal new lipopeptides with enhanced activity. J Am Chem Soc 137(24):7692–7705PubMedCrossRefGoogle Scholar
  20. Gutu AD, Sgambati N, Strasbourger P, Brannon MK, Jacobs MA, Haugen E, Kaul RK, Johansen HK, Høiby N, Moskowitz SM (2013) Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother 57(5):2204–2215PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ (2013) The enzymes of beta-lactam biosynthesis. Nat Prod Rep 30:21–107PubMedCrossRefGoogle Scholar
  22. Harris TL, Worthington RJ, Hittle LE, Zurawski DV, Ernst RK, Melander C (2013) Small molecule downregulation of PmrAB reverses lipid A modification and breaks colistin resistance. ACS Chem Biol 9(1):122–127PubMedCrossRefGoogle Scholar
  23. Kojima N, Araki Y, Ito E (1983) Structure of linkage region between ribitol teichoic acid and peptidoglycan in cell walls of Staphylococcus aureus H. J Biol Chem 258(15):9043–9045PubMedGoogle Scholar
  24. Liu Y, Breukink E (2016) The membrane steps of bacterial cell wall synthesis as antibiotic targets. Antibiotics 5(3):28PubMedCentralCrossRefPubMedGoogle Scholar
  25. Matsuura M (2013) Structural modifications of bacterial lipopolysaccharide that facilitate gram-negative bacteria evasion of host innate immunity. Front Immunol 4:109PubMedPubMedCentralCrossRefGoogle Scholar
  26. Mengin-Lecreulx D, Lemaitre B (2005) Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate immune system. J Endotoxin Res 11(2):105–111PubMedCrossRefGoogle Scholar
  27. Miller AK, Brannon MK, Stevens L, Johansen HK, Selgrade SE, Miller SI, Høiby N, Moskowitz SM (2011) PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother 55(12):5761–5769PubMedPubMedCentralCrossRefGoogle Scholar
  28. Misiek M, Fardig OB, Gourevitch A, Johnson DL, Hooper IR, Lein J (2001) Telomycin, a new antibiotic. Antibiot Annu 5:852–855Google Scholar
  29. Nanninga N (1998) Morphogenesis of Escherichia coli. Microbiol Mol Biol Rev 62(1):110–129PubMedPubMedCentralGoogle Scholar
  30. Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 67(4):686–723PubMedPubMedCentralCrossRefGoogle Scholar
  31. Oliva B, Maiese WM, Greenstein M, Borders DB, Chopra I (1993) Mode of action of the cyclic depsipeptide antibiotic LL-AO34β1 and partial characterization of a Staphylococcus aureus mutant resistant to the antibiotic. J Antimicrob Chemother 32(6):817–830PubMedCrossRefGoogle Scholar
  32. Perkins HR (1969) The configuration of 2, 6-diamino-3-hydroxypimelic acid in microbial cell walls. Biochem J 115(4):797–805PubMedPubMedCentralGoogle Scholar
  33. Pogliano J, Pogliano N, Silverman JA (2012) Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 194(17):4494–4504PubMedPubMedCentralCrossRefGoogle Scholar
  34. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71(1):635–700PubMedCrossRefGoogle Scholar
  35. Ratledge C, Wilkinson SG (1988) Microbial lipids. Academic, San DiegoGoogle Scholar
  36. Rogers HJ, Perkins HR, Ward JB (1980) Microbial cell walls and membranes, vol 541. Chapman and Hall, LondonCrossRefGoogle Scholar
  37. Romaniuk JA, Cegelski L (2015) Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philos Trans R Soc B Biol Sci 370(1679):20150024CrossRefGoogle Scholar
  38. Sewell EW, Brown ED (2014) Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics. J Antibiot 67(1):43PubMedCrossRefGoogle Scholar
  39. Sheehan JC, Mania D, Nakamura S, Stock JA, Maeda K (1968) The structure of telomycin. J Am Chem Soc 90(2):462–470PubMedCrossRefGoogle Scholar
  40. Ślusarz R, Szulc M, Madaj J (2014) Molecular modeling of Gram-positive bacteria peptidoglycan layer, selected glycopeptide antibiotics and vancomycin derivatives modified with sugar moieties. Carbohydr Res 389:154–164PubMedCrossRefGoogle Scholar
  41. Swoboda JG, Meredith TC, Campbell J, Brown S, Suzuki T, Bollenbach T, Malhowski AJ, Kishony R, Gilmore MS, Walker S (2009) Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem Biol 4(10):875–883PubMedPubMedCentralCrossRefGoogle Scholar
  42. Swoboda JG, Campbell J, Meredith TC, Walker S (2010) Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 11(1):35–45PubMedPubMedCentralCrossRefGoogle Scholar
  43. Tankeshwar (2013) Teichoic acid/lipoteichoic acid: characteristics and medical importance.
  44. Tran TT, Panesso D, Mishra NN, Mileykovskaya E, Guan Z, Munita JM, Reyes J, Diaz L, Weinstock GM, Murray BE, Shamoo Y (2013) Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. MBio 4(4):e00281–e00213PubMedPubMedCentralCrossRefGoogle Scholar
  45. Vinogradov E, Sadovskaya I, Li J, Jabbouri S (2006) Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus aureus MN8m, a biofilm forming strain. Carbohydr Res 341(6):738–743PubMedCrossRefGoogle Scholar
  46. Vollmer W, Blanot D, De Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32(2):149–167PubMedCrossRefGoogle Scholar
  47. Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond JJ, Peschel A (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10(3):243PubMedCrossRefGoogle Scholar
  48. Worthington RJ, Melander C (2013) Overcoming resistance to β-lactam antibiotics. J Org Chem 78(9):4207–4213PubMedPubMedCentralCrossRefGoogle Scholar
  49. Yarlagadda V, Akkapeddi P, Manjunath GB, Haldar J (2014) Membrane active vancomycin analogues: a strategy to combat bacterial resistance. J Med Chem 57(11):4558–4568CrossRefGoogle Scholar
  50. Yokoyama K, Miyashita T, Araki Y, Ito E (1986) Structure and functions of linkage unit intermediates in the biosynthesis of ribitol teichoic acids in Staphylococcus aureus H and Bacillus subtilis W23. Eur J Biochem 161(2):479–489PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sadhana Sagar
    • 1
  • Shilpa Kaistha
    • 2
  • Amar Jyoti Das
    • 3
  • Rajesh Kumar
    • 3
  1. 1.Department of MicrobiologyRani Lakshmi Bai Central Agricultural UniversityJhansiIndia
  2. 2.Department of MicrobiologyChhatrapati Sahu Ji Maharaj UniversityKanpurIndia
  3. 3.Department of Environmental MicrobiologyBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations