CRISPR: Their Role in Reversal of Drug Resistance and Future Prospect and Scenario

  • Sadhana Sagar
  • Shilpa Kaistha
  • Amar Jyoti Das
  • Rajesh Kumar


Microbes live on the Earth with supreme harmony with other organisms. They are essential for the life on earth; however they are also cause of severe ailment in animals and humans. Multiple drug-resistant bacteria are one of them. There are some pathogenic bacteria, such as Escherichia coli, Klebsiella, and Pseudomonas aeruginosa, that have evolved resistance against the last resort of drugs such as carbapenems and colistin, and now they have disseminated across Asia, Europe, and other continents. Indeed, there is no new drug currently available to challenge them. CRISPR (clustered regulatory interspaced short palindromic repeat) is a new emerging gene-editing molecular tool, which has been adopted by many biologists for editing of genome of prokaryote and eukaryotes. Now, it has been utilized to edit the antibiotic resistance gene from the bacteria. It is a precise gene-editing tool that can excise a specific gene from the DNA. CRISPR mechanism is one of the natural resistant mechanisms which is highly advanced, adaptive and provides immunity to bacteria against foreign genetic elements such as plasmids, bacteriophages, and transposons. Therefore, this abortive mechanism is engineered to utilized against the drug-resistant carrier genes.


  1. Abedon ST (2012) Bacterial ‘immunity’ against bacteriophages. Bacteriophage 2(1):50–54CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abudayyeh O et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altenbuchner J (2016) Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. In: Applied and environmental microbiology. p AEM-01453Google Scholar
  4. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, Smith AVB (2015) Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Res 43(7):3407–3419CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beloglazova N, Petit P, Flick R, Brown G, Savchenko A, Yakunin AF (2011) Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO J 30(22):4616–4627CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15):7429–7437CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bohannan BJ, Lenski RE (2000) The relative importance of competition and predation varies with productivity in a model community. Am Nat 156(4):329–340CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, Van Der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960–964CrossRefPubMedPubMedCentralGoogle Scholar
  10. Buckling A, Rainey PB (2002) The role of parasites in sympatric and allopatric host diversification. Nature 420(6915):496CrossRefGoogle Scholar
  11. Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6(4):417–424CrossRefGoogle Scholar
  12. Carte J, Wang R, Li H, Terns RM, Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22(24):3489–3496CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carte J, Pfister NT, Compton MM, Terns RM, Terns MP (2010) Binding and cleavage of CRISPR RNA by Cas6. RNA 16(11):2181–2188CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cass SD, Haas KA, Stoll B, Alkhnbashi OS, Sharma K, Urlaub H, Backofen R, Marchfelder A, Bolt EL (2015) The role of Cas8 in type I CRISPR interference. Biosci Rep 35(3):e00197CrossRefPubMedPubMedCentralGoogle Scholar
  15. Charpentier E, Richter H, van der Oost J, White MF (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 39(3):428–441CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chylinski K, Le Rhun A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10(5):726–737CrossRefPubMedPubMedCentralGoogle Scholar
  17. Clokie MR, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1(1):31–45CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823CrossRefPubMedPubMedCentralGoogle Scholar
  19. Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun (3):945Google Scholar
  20. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602CrossRefPubMedPubMedCentralGoogle Scholar
  21. Diez-Villasenor C, Guzmán NM, Almendros C, García-Martínez J, Mojica FJ (2013) CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas IE variants of Escherichia coli. RNA Biol 10(5):792–802CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fineran PC, Gerritzen MJ, Suárez-Diez M, Künne T, Boekhorst J, van Hijum SA, Staals RH, Brouns SJ (2014) Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci 111(16):E1629–E1638CrossRefGoogle Scholar
  23. Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67CrossRefGoogle Scholar
  24. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109(39):E2579–E2586CrossRefGoogle Scholar
  25. Gesner EM, Schellenberg MJ, Garside EL, George MM, MacMillan AM (2011) Recognition and maturation of effector RNAs in a CRISPR interference pathway. Nat Struct Mol Biol 18(6):688CrossRefGoogle Scholar
  26. Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinforma 8(1):172CrossRefGoogle Scholar
  27. Hale C, Kleppe K, Terns RM, Terns MP (2008) Prokaryotic silencing (psi) RNAs in Pyrococcus furiosus. RNA 14(12):2572–2579CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hatoum-Aslan A, Maniv I, Marraffini LA (2011) Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc Natl Acad Sci 108(52):21218–21222CrossRefGoogle Scholar
  29. Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA (2010) Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science 329(5997):1355–1358CrossRefPubMedPubMedCentralGoogle Scholar
  30. Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA (2015) Cas9 specifies functional viral targets during CRISPR–Cas adaptation. Nature 519(7542):199CrossRefPubMedPubMedCentralGoogle Scholar
  31. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170CrossRefGoogle Scholar
  32. Howard JA, Delmas S, Ivančić-Baće I, Bolt EL (2011) Helicase dissociation and annealing of RNA-DNA hybrids by Escherichia coli Cas3 protein. Biochem J 439(1):85–95CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jackson RN, Golden SM, van Erp PB, Carter J, Westra ER, Brouns SJ, van der Oost J, Terwilliger TC, Read RJ, Wiedenheft B (2014) Crystal structure of the CRISPR RNA–guided surveillance complex from Escherichia coli. Science 345(6203):1473–1479CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jansen R, Embden JDV, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997CrossRefPubMedPubMedCentralGoogle Scholar
  39. Joo J, Gunny M, Cases M, Hudson P, Albert R, Harvill E (2006) Bacteriophage-mediated competition in Bordetella bacteria. Proc R Soc B Biol Sci 273(1595):1843–1848CrossRefGoogle Scholar
  40. Jore MM, Lundgren M, Van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul Ü, Wurm R, Wagner R, Beijer MR (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18(5):529CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jore MM, Brouns SJ, van der Oost J (2012) RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements. Cold Spring Harb Perspect Biol 4(6):a003657CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kidambi SP, Ripp S, Miller RV (1994) Evidence for phage-mediated gene transfer among Pseudomonas aeruginosa strains on the phylloplane. Appl Environ Microbiol 60(2):496–500PubMedPubMedCentralGoogle Scholar
  43. Kim JS, Cho DH, Park M, Chung WJ, Shin D, Ko KS, Kweon DH (2016) CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum beta-lactamases. J Microbiol Biotechnol 26(2):394–401CrossRefPubMedPubMedCentralGoogle Scholar
  44. Koonin EV, Makarova KS (2013) CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 10(5):679–686CrossRefPubMedPubMedCentralGoogle Scholar
  45. Koonin EV, Wolf YI (2009) Is evolution Darwinian or/and Lamarckian? Biol Direct 4(1):42CrossRefPubMedPubMedCentralGoogle Scholar
  46. Koskella B, Brockhurst MA (2014) Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 38(5):916–931CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li M, Wang R, Zhao D, Xiang H (2013) Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res 42(4):2483–2492CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lillestøl RK, Shah SA, Brügger K, Redder P, Phan H, Christiansen J, Garrett RA (2009) CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol Microbiol 72(1):259–272CrossRefGoogle Scholar
  49. Lintner NG, Kerou M, Brumfield SK, Graham S, Liu H, Naismith JH, Sdano M, Peng N, She Q, Copié V, Young MJ (2011) Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE). J Biol Chem 286(24):21643–21656CrossRefPubMedPubMedCentralGoogle Scholar
  50. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, Van Der Oost J (2011) Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol 9(6):467CrossRefPubMedPubMedCentralGoogle Scholar
  51. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13(11):722CrossRefPubMedPubMedCentralGoogle Scholar
  52. Marraffini LA, Sontheimer EJ (2010) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463(7280):568CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, Van der Oost J (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353(6299):aad5147CrossRefGoogle Scholar
  54. Mulepati S, Héroux A, Bailey S (2014) Crystal structure of a CRISPR RNA–guided surveillance complex bound to a ssDNA target. Science 345(6203):1479z1484CrossRefGoogle Scholar
  55. Nam KH, Haitjema C, Liu X, Ding F, Wang H, DeLisa MP, Ke A (2012) Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype IC/Dvulg CRISPR-Cas system. Structure 20(9):1574–1584CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nuñez JK, Lee AS, Engelman A, Doudna JA (2015) Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity. Nature 519(7542):193CrossRefPubMedPubMedCentralGoogle Scholar
  58. Peng W, Feng M, Feng X, Liang YX, She Q (2014) An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. Nucleic Acids Res 43(1):406–417CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pul Ü, Wurm R, Arslan Z, Geißen R, Hofmann N, Wagner R (2010) Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol 75(6):1495–1512CrossRefGoogle Scholar
  60. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rath D, Amlinger L, Rath A, Lundgren M (2015) The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128CrossRefGoogle Scholar
  62. Richter C, Chang JT, Fineran PC (2012) Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses 4(10):2291–2311CrossRefPubMedPubMedCentralGoogle Scholar
  63. Riordan SM, Heruth DP, Zhang LQ, Ye SQ (2015) Application of CRISPR/Cas9 for biomedical discoveries. Cell Biosci 5(1):33CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V, Cannone G, Graham S, Robinson CV, Spagnolo L, White MF (2013) Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell 52:124–134CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sashital DG, Wiedenheft B, Doudna JA (2012) Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell 46(5):606–615CrossRefPubMedPubMedCentralGoogle Scholar
  66. Semenova E, Nagornykh M, Pyatnitskiy M, Artamonova II, Severinov K (2009) Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol Lett 296(1):110–116CrossRefGoogle Scholar
  67. Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30(7):1335–1342CrossRefPubMedPubMedCentralGoogle Scholar
  68. Staals RH, Agari Y, Maki-Yonekura S, Zhu Y, Taylor DW, van Duijn E, Barendregt A, Vlot M, Koehorst JJ, Sakamoto K et al (2013) Structure and activity of the RNA-targeting type III-B CRISPR-Cas complex of Thermus thermophilus. Mol Cell 52:135–145CrossRefPubMedPubMedCentralGoogle Scholar
  69. Staals RH, Zhu Y, Taylor DW, Kornfeld JE, Sharma K, Barendregt A, Koehorst JJ, Vlot M, Neupane N, Varossieau K, Sakamoto K (2014) RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell 56(4):518–530CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sternberg SH, Haurwitz RE, Doudna JA (2012) Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. RNA 18(4):661–672CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62CrossRefPubMedPubMedCentralGoogle Scholar
  72. Swarts DC, Mosterd C, Van Passel MW, Brouns SJ (2012) CRISPR interference directs strand specific spacer acquisition. PLoS One 7(4):e35888CrossRefPubMedPubMedCentralGoogle Scholar
  73. Van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34(8):401–407CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wang K, Nicholaou M (2017) Suppression of antimicrobial resistance in MRSA using CRISPR-dCas9. Clin Lab Sci 30(4):207–213CrossRefGoogle Scholar
  75. Westra ER, van Erp PB, Künne T, Wong SP, Staals RH, Seegers CL, Bollen S, Jore MM, Semenova E, Severinov K, de Vos WM (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46(5):595–605CrossRefPubMedPubMedCentralGoogle Scholar
  76. White MF (2015) Structure, function and evolution of the XPD family of iron-sulfur-containing 5ʹ→3ʹ DNA helicases. Biochem Soc Trans 37:547–551CrossRefGoogle Scholar
  77. Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K, Barendregt A, Westphal W, Heck AJ, Boekema EJ, Dickman MJ, Doudna JA (2011) RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci 108(25):10092–10097CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331CrossRefGoogle Scholar
  79. Wei Y, Chesne MT, Terns RM, Terns MP (2015) Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res.
  80. Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, Ishitani R (2016) Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165(4):949–962CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yosef I, Goren MG, Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40(12):5569–5576CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A, Koonin EV (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhao P, Zhang Z, Ke H, Yue Y, Xue D (2014) Oligonucleotide-based targeted gene editing in C. elegans via the CRISPR/Cas9 system. Cell Res 24(2):247CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sadhana Sagar
    • 1
  • Shilpa Kaistha
    • 2
  • Amar Jyoti Das
    • 3
  • Rajesh Kumar
    • 3
  1. 1.Department of MicrobiologyRani Lakshmi Bai Central Agricultural UniversityJhansiIndia
  2. 2.Department of MicrobiologyChhatrapati Sahu Ji Maharaj UniversityKanpurIndia
  3. 3.Department of Environmental MicrobiologyBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations