Advertisement

Bacteriophage: A New Hope for the Control of Antibiotic-Resistant Bacteria

  • Sadhana Sagar
  • Shilpa Kaistha
  • Amar Jyoti Das
  • Rajesh Kumar
Chapter

Abstract

Discovery of penicillin has replaced all the traditional chemotherapeutics and increased dependency on it for limiting infections. Dependency of medical world on the antibiotics has been traded off by drug-resistant bacteria. Emergence of drug-resistant bacteria is a consequence of abused medical practices, which led us toward the edge of pre-antibiotic era. Modern medicine is severely threatened by the multiple drug-resistant (MDR) bacteria, due to limitations of potent new antibiotics. Although modern medicine has adopted many new alternatives, but they have not earned success like lifesaving antibiotics due to poor pharmacokinetics. Bacteriophage therapy has drawn the attention of researchers, due to their host specificity and self-replicating, effeciently economical, and eco-friendly properties. Infact, phage therapy was in use since the twentieth century, the discovery of antibiotic and lack of information about phage therapy pharmacokinetics caused a decline in the use of phage therapy. Herein, we have focused a torch of light on phage therapy.

References

  1. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1(2):66–85CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bernstein LJ, Ochs HD, Wedgwood RJ, Rubinstein A (1985) Defective humoral immunity in pediatric acquired immune deficiency syndrome. J Pediatr 107(3):352–357CrossRefPubMedPubMedCentralGoogle Scholar
  3. Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, Carlton R, Merril CR (2002) Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 70(1):204–210CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bordet J (1925) Le problème de l’autolyse microbienne transmissible ou du bacteriophage. Ann Inst Pasteur 39:711–763Google Scholar
  5. Borysowski J, Międzybrodzki R, Wierzbicki P, Kłosowska D, Korczak-Kowalska G, Weber-Dąbrowska B, Górski A (2017) A3R phage and Staphylococcus aureus lysate do not induce neutrophil degranulation. Viruses 9(2):36CrossRefGoogle Scholar
  6. Bruttin A, Brüssow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49(7):2874–2878CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cairns BJ, Timms AR, Jansen VA, Connerton IF, Payne RJ (2009) Quantitative models of in vitro bacteriophage–host dynamics and their application to phage therapy. PLoS Pathog 5(1):e1000253CrossRefPubMedPubMedCentralGoogle Scholar
  8. Centers for Disease Control (2017) Antibiotic resistance: the global threat. 2015; Accessed Mar 29, 2017. Available from: https://www.cdc.gov/drugresistance/pdf/antibiotic_resistant_fs.pdf
  9. Centers for Disease Control and Prevention (2013) Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep 62:165–170Google Scholar
  10. d’Herelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. CR Acad Sci Paris 165:373–375Google Scholar
  11. d’Herelle F (1931) Bacteriophage as a treatment in acute medical and surgical infections. Bull N Y Acad Med 7(5):329–348PubMedPubMedCentralGoogle Scholar
  12. Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, Yao JDC, Wengenack NL, Rosenblatt JE, Cockerill F3, Smith TF (2006) Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 19(1):165–256CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fong SA, Drilling A, Morales S, Cornet ME, Woodworth BA, Fokkens WJ, Psaltis AJ, Vreugde S, Wormald PJ (2017) Activity of bacteriophages in removing biofilms of Pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front Cell Infect Microbiol 7:418CrossRefPubMedPubMedCentralGoogle Scholar
  14. Frieden T (2013) Antibiotics resistance threats in the United States. CDC Publishing Web. http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf. Accessed 23 April 2013
  15. Hankin EH (1896) L’action bactericide des eaux de la Jumna et du Gange sur le vibrion du cholera. Ann Inst Pasteur 10(5):llGoogle Scholar
  16. Harper DR, Enright MC (2011) Bacteriophages for the treatment of Pseudomonas aeruginosa infections. J Appl Microbiol 111(1):1–7CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hawkins C, Harper D, Burch D, Änggård E, Soothill J (2010) Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial. Vet Microbiol 146(3–4):309–313CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hughes JM (2011) Preserving the lifesaving power of antimicrobial agents. JAMA 305(10):1027–1028CrossRefPubMedPubMedCentralGoogle Scholar
  19. Husler T (2006) Viruses vs. superbugs: a solution to the antibiotics crisis? Palgrave Macmillan, LondonCrossRefGoogle Scholar
  20. Jennes S, Merabishvili M, Soentjens P, Pang KW, Rose T, Keersebilck E, Soete O, François PM, Teodorescu S, Verween G, Verbeken G (2017) Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury—a case report. Crit Care 21(1):129CrossRefPubMedPubMedCentralGoogle Scholar
  21. Keen EC (2012) Phage therapy: concept to cure. Front Microbiol 3:238CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kropinski AM (2006) Phage therapy – everything old is new again. Can J Infect Dis Med Microbiol 17(5):297–306CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kurzępa A, Dąbrowska K, Skaradziński G, Górski A (2009) Bacteriophage interactions with phagocytes and their potential significance in experimental therapy. Clin Exp Med 9(2):93CrossRefGoogle Scholar
  24. Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28(12):591–595CrossRefGoogle Scholar
  25. Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11(1):69–86CrossRefGoogle Scholar
  26. Kutter E, Bryan D, Ray G, Brewster E, Blasdel B, Guttman B (2018) From host to phage metabolism: hot tales of phage T4’s takeover of E. coli. Viruses 10(7):387CrossRefPubMedPubMedCentralGoogle Scholar
  27. Larckum N (1932) Bacteriophage in clinical medicine. J Lab Clin Med 17:675Google Scholar
  28. Leitner L, Sybesma W, Chanishvili N, Goderdzishvili M, Chkhotua A, Ujmajuridze A, Schneider MP, Sartori A, Mehnert U, Bachmann LM, Kessler TM (2017) Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol 17(1):90CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lin DM, Koskella B, Lin HC (2017) Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 8(3):162CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lu TK, Koeris MS (2011) The next generation of bacteriophage therapy. Curr Opin Microbiol 14(5):524–531CrossRefPubMedPubMedCentralGoogle Scholar
  31. Łusiak-Szelachowska M, Żaczek M, Weber-Dąbrowska B, Międzybrodzki R, Letkiewicz S, Fortuna W, Rogóż P, Szufnarowski K, Jończyk-Matysiak E, Olchawa E, Walaszek KM (2017) Antiphage activity of sera during phage therapy in relation to its outcome. Future Microbiol 12(2):109–117CrossRefPubMedPubMedCentralGoogle Scholar
  32. Markoishvili K, Tsitlanadze G, Katsarava R, Glenn J, Morris MD Jr, Sulakvelidze A (2002) A novel sustained-release matrix based on biodegradable poly (ester amide) s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol 41(7):453–458CrossRefPubMedPubMedCentralGoogle Scholar
  33. Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11(5):211–219CrossRefPubMedPubMedCentralGoogle Scholar
  34. Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2(6):489CrossRefPubMedPubMedCentralGoogle Scholar
  35. Międzybrodzki R, Borysowski J, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Szufnarowski K, Pawełczyk Z, Rogóż P, Kłak M, Wojtasik E (2012) Chapter 3–Clinical aspects of phage therapy. In: Łobocka M, Szybalski W (eds) Advances in virus research, vol 83. Academic, Cambridge, MA, pp 73–121Google Scholar
  36. Międzybrodzki R, Borysowski J, Kłak M, Jończyk-Matysiak E, Obmińska-Mrukowicz B, Suszko-Pawłowska A, Bubak B, Weber-Dąbrowska B, Górski A (2017) In vivo studies on the influence of bacteriophage preparations on the autoimmune inflammatory process. Biomed Res Int 2017:3612015CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mohaidat QI, Sheikh K, Palchaudhuri S, Rehse SJ (2012) Pathogen identification with laser-induced breakdown spectroscopy: the effect of bacterial and biofluid specimen contamination. Appl Opt 51(7):B99–B107CrossRefPubMedPubMedCentralGoogle Scholar
  38. Myelnikov D (2018) An alternative cure: the adoption and survival of bacteriophage therapy in the USSR, 1922-1955. J Hist Med Allied Sci 73(4):385–411.  https://doi.org/10.1093/jhmas/jry024CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nathan C, Goldberg FM (2005) The profit problem in antibiotic R&D. Nat Rev Drug Discov 4(11):887CrossRefPubMedPubMedCentralGoogle Scholar
  40. Orlova EV (March 14th 2012). Bacteriophages and their structural organisation, Bacteriophages, Ipek Kurtboke, IntechOpen,  https://doi.org/10.5772/34642
  41. Nilsson AS (2014) Phage therapy—constraints and possibilities. Ups J Med Sci 119(2):192–198CrossRefPubMedPubMedCentralGoogle Scholar
  42. PhagoBurn (2018) Evaluation of Phage Therapy for the Treatment of Escherichia coli and Pseudomonas aeruginosa Burn Wound Infections. Accessed 18 Apr 2018. Available online: http://www.phagoburn.eu/
  43. Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A (2009) Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 18(6):237–243CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rhoads DD, Wolcott RD, Sun Y, Dowd SE (2012) Comparison of culture and molecular identification of bacteria in chronic wounds. Int J Mol Sci 13(3):2535–2550CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ruska H (1940) Die Sichtbarmachung der bakteriophagen lyse im übermikroskop. Naturwissenschaften 28(3):45–46CrossRefGoogle Scholar
  46. Sankaran N (2010) The bacteriophage, its role in immunology: how Macfarlane Burnet’s phage research shaped his scientific style. Stud Hist Philos Sci C: Stud Hist Philos Biol Biomed Sci 41(4):367–375Google Scholar
  47. Saussereau E, Vachier I, Chiron R, Godbert B, Sermet I, Dufour N, Pirnay JP, De Vos D, Carrié F, Molinari N, Debarbieux L (2014) Effectiveness of bacteriophages in the sputum of cystic fibrosis patients. Clin Microbiol Infect 20(12):O983–O990CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S, Segall AM (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61(10):e00954–e00917CrossRefPubMedPubMedCentralGoogle Scholar
  49. Servick, Kelly. “Beleaguered phage therapy trial presses on.” (2016): 1506-1506. Google Scholar
  50. Slopek S, Weber-Dabrowska B, Dabrowski M, Kucharewicz-Krukowska A (1987) Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch Immunol Ther Exp 35(5):569–583Google Scholar
  51. Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. Microbiology 128(2):307–318CrossRefGoogle Scholar
  52. Smith HW, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Microbiology 129(8):2659–2675CrossRefGoogle Scholar
  53. Smith HW, Huggins MB, Shaw KM (1987) The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. Microbiology 133(5):1111–1126CrossRefGoogle Scholar
  54. Stone R (2002) Bacteriophage therapy. Stalin’s forgotten cure. Science 298:728–731CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sulakvelidze A, Alavidze Z, Morris JG (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45(3):649–659CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sybesma W, Rohde C, Bardy P, Pirnay JP, Cooper I, Caplin J, Chanishvili N, Coffey A, De Vos D, Scholz AH, McCallin S (2018) Silk route to the acceptance and re-implementation of bacteriophage therapy—part II. Antibiotics 7(2):35CrossRefGoogle Scholar
  57. Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 186(4814):1241–1243CrossRefGoogle Scholar
  58. United Nations (2017) PRESS RELEASE: high-level meeting on antimicrobial resistance. 2016; Accessed Mar 29, 2017. Available from: http://www.un.org/pga/71/2016/09/21/press-release-hlmeeting-on-antimicrobial-resistance/
  59. World Health Organization (2017) Antibiotic resistance – a threat to global health security. 2013. Accessed Mar 29. Available from: http://www.who.int/drugresistance/activities/wha66_side_event/en/
  60. Wright A, Hawkins CH, Änggård EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34(4):349–357CrossRefGoogle Scholar
  61. Yoshikawa TT (2002) Antimicrobial resistance and aging: beginning of the end of the antibiotic era? J Am Geriatr Soc 50:226–229CrossRefGoogle Scholar
  62. Zhvania P, Hoyle NS, Nadareishvili L, Nizharadze D, Kutateladze M (2017) Phage therapy in a 16-year-old boy with Netherton syndrome. Front Med (4):94Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sadhana Sagar
    • 1
  • Shilpa Kaistha
    • 2
  • Amar Jyoti Das
    • 3
  • Rajesh Kumar
    • 3
  1. 1.Department of MicrobiologyRani Lakshmi Bai Central Agricultural UniversityJhansiIndia
  2. 2.Department of MicrobiologyChhatrapati Sahu Ji Maharaj UniversityKanpurIndia
  3. 3.Department of Environmental MicrobiologyBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations