Endophytes: A Hidden Treasure of Novel Antimicrobial Metabolites

  • Palak Arora
  • Tanveer Ahmad
  • Sadaqat Farooq
  • Syed Riyaz-Ul-HassanEmail author


An endophyte is a microorganism which colonizes the healthy tissues of the host plant without causing any symptoms of disease. The relationship between the endophyte and the host ranges from latent phytopathogenesis to mutualistic symbiosis. Endophytes obtain nutrition and protection from plants and, in return, help their hosts to adapt to different ecological stress conditions by producing certain functional metabolites. Consequently, endophytes are usually metabolically more active than their non-endophytic counterparts. By virtue of their functions in nature, endophytes produce multitude of natural products, particularly those having potential antimicrobial activities. As all the plants analysed for endophytism have been found to possess such organisms, endophytes represent a comparatively unexplored as well as a huge reservoir of bioactive metabolites. In this chapter, an effort is made to present an overview of the potential of endophytic microorganisms as a source for antimicrobial agents.


Endophytes Antibiotics Volatile organic compounds (VOCs) Fungi Secondary metabolites Natural products 



PA and SF are supported by the Department of Science and Technology, New Delhi, India, through INSPIRE Research Fellowship. T.A. is thankful to the UGC, India, for Junior Research Fellowship. The senior author acknowledges the grant through the project MLP1008. This work is part of the PhD thesis of the first author.


  1. Adhikari, T., Joseph, C., Yang, G., et al. (2001). Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Canadian Journal of Microbiology, 47, 916–924.PubMedCrossRefGoogle Scholar
  2. Aly, A. H., Edrada-Ebel, R., Wray, V., et al. (2008). Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry, 69, 1716–1725.PubMedCrossRefGoogle Scholar
  3. Aly, A. H., Debbab, A., & Proksch, P. (2011). Fungal endophytes: Unique plant inhabitants with great promises. Applied Microbiology and Biotechnology, 90, 1829–1845.PubMedCrossRefGoogle Scholar
  4. Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1), 143–169.PubMedPubMedCentralGoogle Scholar
  5. Arora, P., Wani, Z. A., Nalli, Y., et al. (2016). Antimicrobial potential of thiodiketopiperazine derivatives produced by Phoma sp., an endophyte of Glycyrrhiza glabra Linn. Microbial Ecology, 72(4), 802–812.PubMedCrossRefGoogle Scholar
  6. Auge, R. M., Toler, H. D., Sams, C. E., et al. (2008). Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza, 18(3), 115–121.PubMedCrossRefGoogle Scholar
  7. Banik, J. J., & Brady, S. F. (2010). Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Current Opinion in Microbiology, 13, 603–609.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Benhamou, N., Kloepper, J. W., & Tuzun, S. (1998). Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: Ultrastructure and cytochemistry of the host response. Planta, 204(2), 153–168.CrossRefGoogle Scholar
  9. Bentley, S. D., Chater, K. F., Cerdeño-Tárraga, A. M., et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 417, 141–147.PubMedCrossRefGoogle Scholar
  10. Bergmann, S., Schuemann, J., Scherlach, K., et al. (2007). Genome driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nature Chemical Biology, 3, 213–217.PubMedCrossRefGoogle Scholar
  11. Bhoonobtong, A., Sawadsitang, S., Sodngam, S., et al. (2012). Characterization of endophytic bacteria, Bacillus amyloliquefaciens for antimicrobial agents. Production International Conference on Biological and Life Sciences, 40, 6–11.Google Scholar
  12. Bok, J. W., Hoffmeister, D., Maggio-Hall, L. A., et al. (2006). Genomic mining for Aspergillus natural products. Chemistry & Biology, 13, 31–37.CrossRefGoogle Scholar
  13. Brader, G., Compant, S., Mitter, B., et al. (2014). Metabolic potential of endophytic bacteria. Current Opinion in Biotechnology, 27, 30–37.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brady, S. F., Wagenaar, M. M., Singh, M. P., et al. (2000). The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Organic Letters, 2(25), 4043–4046.PubMedCrossRefGoogle Scholar
  15. Braun, K., Romero, J., Liddell, C., et al. (2003). Production of swainsonine by fungal endophytes of locoweed. Mycological Research, 378, 980–988.CrossRefGoogle Scholar
  16. Canova, S., Petta, T., Reyes, L., et al. (2010). Characterization of lipopeptides from Paenibacillus sp. (IIRAC30) suppressing Rhizoctonia solani. World Journal of Microbiology and Biotechnology, 26, 2241–2247.CrossRefGoogle Scholar
  17. Casella, T. M., Eparvier, V., Mandavid, H., et al. (2013). Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: Isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC 2402. Phytochemistry, 96, 370–377.PubMedCrossRefGoogle Scholar
  18. Castillo, U. F., Strobel, G. A., Ford, E. J., et al. (2002). Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscansa. Microbiology, 148(9), 2675–2685.PubMedCrossRefGoogle Scholar
  19. Castillo, U. F., Strobel, G. A., Mullenberg, K., et al. (2006). Munumbicins E-4 and E-5: Novel broad-spectrum antibiotics from Streptomyces NRRL 3052. FEMS Microbiology Letters, 255(2), 296–300.PubMedCrossRefGoogle Scholar
  20. Challis, G. L. (2008). Genome miming for novel natural product discovery. Journal of Medicinal Chemistry, 51, 2618–2628.PubMedCrossRefGoogle Scholar
  21. Clardy, J., & Walsh, C. (2004). Lessons from natural molecules. Nature, 432, 829–837.PubMedCrossRefGoogle Scholar
  22. Clay, K., & Holah, J. (1999). Fungal endophyte symbiosis and plant diversity in successional fields. Science, 285, 1742–1744.PubMedCrossRefGoogle Scholar
  23. Connon, S. A., & Giovannoni, S. J. (2002). High-throughput methods for culturing microorganisms in very-low nutrient media yield diverse new marine isolates. Applied and Environmental Microbiology, 68, 3878–3885.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Corre, C., & Challis, G. L. (2007). Heavy tools for genome mining. Chemistry & Biology, 14, 7–9.CrossRefGoogle Scholar
  25. Cui, H. B., Mei, W. L., Miao, C. D., et al. (2008). Antibacterial constituents from the endophytic fungus Penicillium sp. 0935030 of a mangrove plant Acrostichum aureurm. Chinese Journal of Antibiotics, 7.Google Scholar
  26. Dai, J. Q., Krohn, K., Florke, U., et al. (2006). Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedre. European Journal of Organic Chemistry, 15, 3498–3506.CrossRefGoogle Scholar
  27. Dai, J., Krohn, K., Draeger, S., et al. (2009). New naphthalene chroman coupling products from the endophytic fungus, Nodulisporium sp. from Erica arborea. European Journal of Organic Chemistry, 10, 1564–1569.CrossRefGoogle Scholar
  28. de Assis, S. M. P., da Silveira, E. B., Mariano, R. D. L. R., et al. (1998). Endophytic bacteria-method for isolation and antagonistic potential against cabbage black rot. Summa Phytopathologica, 24(3/4), 216–220.Google Scholar
  29. de Carvalho, P. M., & Abraham, W. R. (2012). Antimicrobial and biofilm inhibiting diketopiperazines. Current Medicinal Chemistry, 19(21), 3564–3577.PubMedCrossRefGoogle Scholar
  30. Demain, A. L. (1999). Pharmaceutically active secondary metabolites of microorganisms. Applied Microbiology and Biotechnology, 52, 455–463.PubMedCrossRefGoogle Scholar
  31. Deshmukh, S. K., Verekar, S. A., & Bhave, S. V. (2015). Endophytic fungi: A reservoir of antibacterials. Frontiers in Microbiology, 5, 715.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ding, G., Liu, S., Guo, L., et al. (2008). Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. Journal of Natural Products, 71(4), 615–618.PubMedCrossRefGoogle Scholar
  33. Ding, G., Li, Y., Fu, S., et al. (2009). Ambuic acid and torreyanic acid derivatives from the endo lichenic fungus Pestalotiopsis sp. Journal of Natural Products, 72, 182–186.PubMedCrossRefGoogle Scholar
  34. Ding, L., Maier, A., Fiebig, H., et al. (2011). A family of multicyclic indolo sesquiterpenes from a bacterial endophyte. Organic & Biomolecular Chemistry, 9, 4029–4031.CrossRefGoogle Scholar
  35. Dunbar, J., Ticknor, L. O., & Kuske, C. R. (2000). Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Applied and Environmental Microbiology, 66, 2943–2950.PubMedPubMedCentralCrossRefGoogle Scholar
  36. El-Deeb, B., Fayez, K., & Gherbawy, Y. (2013). Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. Journal of Plant Interactions, 8, 56–64.CrossRefGoogle Scholar
  37. Elsebai, M. F., Natesan, L., Kehraus, S., et al. (2011a). HLE-inhibitory alkaloids with a polyketide skeleton from the marine-derived fungus Coniothyrium cereale. Journal of Natural Products, 74(10), 2282–2285.PubMedCrossRefGoogle Scholar
  38. Elsebai, M. F., Rempel, V., Schnakenburg, G., et al. (2011b). Identification of a potent and selective cannabinoid CB1 receptor antagonist from Auxarthron reticulatum. ACS Medicinal Chemistry Letters, 2(11), 866–869.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Erbert, C., Lopes, A. A., Yokoya, N. S., et al. (2012). Anti bacterial compound from the endophytic fungus Phomopsis longicolla isolated from the tropical red seaweed Bostrychia radicans. Botanica Marina, 55, 435–440.CrossRefGoogle Scholar
  40. Ezra, D., Hess, W. H., & Strobel, G. A. (2004). New endophytic isolates of M. albus, a volatile antibiotic-producing fungus. Microbiology, 150, 4023–4031.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ezra, D., Lousky, T., & Elad, Y. (2009). Endophytes as biological control agents for plant pathogens. Joint with COST Action 873, Working Group, 4(43), 11–14.Google Scholar
  42. Felczykowska, A., Bloch, S. K., Nejman-Falenczyk, B., et al. (2012). Metagenomic approach in the investigation of new bioactive compounds in the marine environment. Acta Biochimica Polonica, 59, 501–505.PubMedCrossRefGoogle Scholar
  43. Fischbach, M. A., & Walsh, C. T. (2006). Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms. Chemical Reviews, 106, 3468–3496.PubMedCrossRefGoogle Scholar
  44. Gagne-Bourgue, F., Aliferis, K. A., Seguin, P., et al. (2013). Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. Journal of Applied Microbiology, 114(3), 836–853.PubMedCrossRefGoogle Scholar
  45. Gao, S., Li, X., Zhang, Y., et al. (2011). Conidiogenones H and I, two new diterpenes of cyclopiane class from a marine derived endophytic fungus Penicillium chrysogenum QEN-24S. Chemistry & Biodiversity, 8, 1748–1753.CrossRefGoogle Scholar
  46. Gao, J. M., Yang, S. X., & Qin, J. C. (2013). Azaphilones: Chemistry and biology. Chemical Reviews, 113(7), 4755–4811.PubMedCrossRefGoogle Scholar
  47. Gouda, S., Das, G., Sen, S. K., et al. (2016). Endophytes: A treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7, 1538.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Griffin, M. A., Spakowicz, D. J., Gianoulis, T. A., et al. (2010). Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology, 156, 3814–3829.PubMedCrossRefGoogle Scholar
  49. Grover, N. D. (2010). Echinocandins: A ray of hope in antifungal drug therapy. The Indian Journal of Pharmacology, 42(1), 9.PubMedCrossRefGoogle Scholar
  50. Guo, B., Wang, Y., Sun, X., et al. (2008). Bioactive natural products from endophytes: A review. Applied Biochemistry and Microbiology, 44(2), 136–142.CrossRefGoogle Scholar
  51. Han, Z., Mei, W. L., Cui, H. B., et al. (2008). Antibacterial constituents from the endophytic fungus Penicillium sp. of mangrove plant Cerbera manghas. Chemical Journal of Chinese Universities, 29(4), 749–752.Google Scholar
  52. Haraguchi, H., Abo, T., Hashimoto, K., et al. (1992). Action-mode of antimicrobial altersolanol A in Pseudomonas aeruginosa. Bioscience, Biotechnology, and Biochemistry, 56, 1221–1224.CrossRefGoogle Scholar
  53. Harper, J. K., Arif, A. M., Ford, E. J., et al. (2003). Pestacin: A 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron, 59(14), 2471–2476.CrossRefGoogle Scholar
  54. Harri, E., LoeMer, W., Singh, H. P., et al. (1963). Die constitution von brefeldin A. Helvetica Chimica Acta, 46, 1235–1243.CrossRefGoogle Scholar
  55. Hertweck. (2009). Hidden biosynthetic treasures brought to light. Nature Chemical Biology, 5, 450–452.PubMedCrossRefGoogle Scholar
  56. Heywood, V. H. (Ed.). (1995). Global biodiversity assessment. Cambridge: Cambridge University Press.Google Scholar
  57. Hoffman, A. M., Mayer, S. G., Strobel, G. A., et al. (2008). Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry, 69, 1049–1056.PubMedCrossRefGoogle Scholar
  58. Huang, Z. J., Cai, X. L., Shao, C. L., et al. (2008). Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry, 69, 1604–1608.PubMedCrossRefGoogle Scholar
  59. Ikeda, H., Ishikawa, J., Hanamoto, A., et al. (2003). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnology, 21, 526–531.PubMedCrossRefGoogle Scholar
  60. Islam, A. S., Math, R., Kim, J., et al. (2010). Effect of plant age on endophytic bacterial diversity of balloon flower (Platycodon grandiflorum) root and their antimicrobial activities. Current Microbiology, 61, 346–356.CrossRefGoogle Scholar
  61. Jang, H. B., Kim, Y. K., Del-Castillo, C. S., et al. (2012). RNA Seq-based meta transcriptomic and microscopic investigation reveals novel metallo proteases of Neobodo sp. as potential virulence factors for soft tunic syndrome in Halocynthia roretzi. PLoS One, 7(12), e52379.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kanchiswamy, C. N., Malnoy, M., & Maffei, M. E. (2015). Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends in Plant Science, 20(4), 206–211.PubMedCrossRefGoogle Scholar
  63. Kang, Y. M., Lee, C. K., & Cho, K. M. (2013). Diversity and antimicrobial activity of isolated endophytic bacteria from Deodeok (Codonopsis lanceolata) of different locations and ages. African Journal of Microbiology Research, 7(12), 1015–1028.Google Scholar
  64. Keller, N. P., Turner, G., & Bennett, J. W. (2005). Fungal secondary metabolism-from biochemistry to genomics. Nature Reviews Microbiology, 3, 937–947.PubMedCrossRefGoogle Scholar
  65. Kharwar, R. N., Verma, V. C., Kumar, A., et al. (2009). Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Current Microbiology, 58(3), 233–238.PubMedCrossRefGoogle Scholar
  66. Kharwar, R. N., Mishra, A., Gond, S. K., et al. (2011). Anticancer compounds derived from fungal endophytes: Their importance and future challenges. Natural Product Reports, 28(7), 1208–1228.PubMedCrossRefGoogle Scholar
  67. Khosla, C. (1997). Harnessing the biosynthetic potential of modular polyketide synthases. Chemical Reviews, 97, 2577–2590.PubMedCrossRefGoogle Scholar
  68. Knappe, T. A., Linne, U., Zirah, S., et al. (2008). Isolation and structural characterization of Capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. Journal of the American Chemical Society, 13, 11446–11454.CrossRefGoogle Scholar
  69. Krajaejun, T., Lowhnoo, T., Yingyong, W., et al. (2012). In vitro antimicrobial activity of volatile organic compounds from Muscodor crispans against the pathogenic oomycete Pythium insidiosum. The Southeast Asian Journal of Tropical Medicine and Public Health, 43(6), 1474.PubMedGoogle Scholar
  70. Krohn, K., Kouam, S. F., Cludius-Brandt, S., et al. (2008a). Bioactive nitro naphthalenes from an endophyticf ungus, Coniothyrium sp., and their chemical synthesis. European Journal of Organic Chemistry, 21, 3615–3618.CrossRefGoogle Scholar
  71. Krohn, K., Sohrab, M. H., vanRee, T., et al. (2008b). Biologically active secondary metabolites from fungi, 39. Dinemasones A, B and C: New bioactive metabolites from the endophytic fungus Dinemasporium strigosum. European Journal of Organic Chemistry, 39, 5638–5646.CrossRefGoogle Scholar
  72. Kudalkar, P., Strobel, G., Hassan, S. R. U., et al. (2012). Muscodor sutura a novel endophytic fungus with volatile antibiotic activities. Mycoscience, 53, 319–325.CrossRefGoogle Scholar
  73. Kusari, S., Zühlke, S., & Spiteller, M. (2009). An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. Journal of Natural Products, 72, 2–7.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Laguerre, G., Allard, M. R., Revoy, F., et al. (1994). Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Applied and Environmental Microbiology, 60, 56–63.PubMedPubMedCentralGoogle Scholar
  75. Lee, D. H., Zo, Y. G., & Kim, S. J. (1996). Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Applied and Environmental Microbiology, 62, 3112–3120.PubMedPubMedCentralGoogle Scholar
  76. Li, J. Y., & Strobel, G. A. (2001). Jesterone andhydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry, 57(2), 261–265.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Li, J. Y., Strobel, G., Harper, J., et al. (2000). Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. q uercina. Organic Letters, 2(6), 767–770.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Li, E., Jiang, L., Guo, L., et al. (2008). Pestalachlorides A–C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorganic & Medicinal Chemistry, 16(17), 7894–7899.CrossRefGoogle Scholar
  79. Li, S., Wei, M., Chen, G., et al. (2012). Two new dihydro isocoumarins from the endophytic fungus Aspergillus sp. collected from the South China Sea. Chemistry of Natural Compounds, 48, 371–373.CrossRefGoogle Scholar
  80. Li, H., Xiao, J., Gao, Y. Q., et al. (2014). Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. Journal of Agricultural and Food Chemistry, 62(17), 3734–3741.PubMedCrossRefGoogle Scholar
  81. Liang, H. (2008). Sordarin, an antifungal agent with a unique mode of action. Beilstein Journal of Organic Chemistry, 4, 31.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Liu, X., Dong, M., Chen, X., et al. (2008). Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methyl coumarin. Applied Microbiology and Biotechnology, 78, 241–247.PubMedCrossRefGoogle Scholar
  83. Liu, B., Qiao, H., Huang, L., et al. (2009). Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biological Control, 49, 277–285.CrossRefGoogle Scholar
  84. Loesgen, S., Bruhn, T., Meindl, K., et al. (2011). (+)-Flavipucine, the missing member of the pyridione epoxide family of fungal antibiotics. European Journal of Organic Chemistry, 011, 5156–5162.CrossRefGoogle Scholar
  85. Lu, H., Zou, W. X., Meng, J. C., et al. (2000). New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Science, 151, 67–73.CrossRefGoogle Scholar
  86. Luo, J., Liu, X., Li, E., et al. (2013). Arundinols A-C and Arundinones A and B from the plant endophytic fungus Microsphaeropsis arundinis. Journal of Natural Products, 76, 107–112.PubMedCrossRefGoogle Scholar
  87. Ma, L., Cao, Y., & Cheng, M. (2013). Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie Van Leeuwenhoek, 103(2), 299–312.PubMedCrossRefGoogle Scholar
  88. Macı´as-Rubalcava, M. L., Herna´ndez-Bautista, B. E., Jime´nez-Estrada, M., et al. (2008). Naphthoquinone spiroketal with allele chemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochemistry, 69, 1185–1196.CrossRefGoogle Scholar
  89. Marco-Contelles, J., Molina, M. T., & Anjum, S. (2004). Naturally occurring cyclohexane epoxides: Sources, biological activities, and synthesis. Chemical Reviews, 104(6), 2857–2900.PubMedCrossRefGoogle Scholar
  90. McAlpine, J. B., Bachmann, B. O., Piraee, M., et al. (2005). Microbial genomics as a guide to drug discovery, structural elucidation: ECO02301, a novel antifungal agent, as an example. Journal of Natural Products, 68, 493–496.PubMedCrossRefGoogle Scholar
  91. Meng, L. H., Zhang, P., Li, X. M., et al. (2015). Penicibrocazines A–E, five new sulfide diketopiperazines from the marine-derived endophytic fungus Penicillium brocae. Marine Drugs, 13(1), 276–287.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Menpara, D., & Chanda, S. (2013). Endophytic bacteria-unexplored reservoir of antimicrobials for combating microbial pathogens. In Microbial pathogens and strategies for combating them: Science, technology and education (pp. 1095–1103). Badajoz: Formatex Research Center.Google Scholar
  93. Meshram, V., Kapoor, N., & Saxena, S. (2013). Muscodor kashayum sp. nov.–a new volatile anti-microbial producing endophytic fungus. Mycology, 4(4), 196–204.Google Scholar
  94. Miller, C. M., Miller, R. V., Garton-Kenny, D., et al. (1998). Ecomycins, unique antimycotics from Pseudomonas viridiflava. Journal of Applied Microbiology, 84(6), 937–944.PubMedCrossRefGoogle Scholar
  95. Mills, L., Leaman, T. M., Taghavi, S. M., et al. (2001). Leifsonia xyli-like bacteria are endophytes of grasses in eastern Australia. Australasian Plant Pathology, 30(2), 145–151.CrossRefGoogle Scholar
  96. Mitchell, A. M., Strobel, G. A., Moore, E., et al. (2010). Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology, 156(1), 270–277.PubMedCrossRefGoogle Scholar
  97. Momesso, L. S., Kawano, C. Y., Ribeiro, P. H., et al. (2008). Chaetoglobosins produced by Chaetomium globosum, an endophytic fungus found in association with Viguiera robusta Gardn (Asteraceae). Quim Nova, 31, 1680–1685.CrossRefGoogle Scholar
  98. Morath, S. U., Hung, R., & Bennett, J. W. (2012). Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26(2–3), 73–83.CrossRefGoogle Scholar
  99. Mousa, W. K., & Raizada, M. N. (2013). The diversity of anti-microbial secondary metabolites produced by fungal endophytes: An interdisciplinary perspective. Frontiers in Microbiology, 4, 65.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Nalli, Y., Mirza, D. N., Wani, Z. A., et al. (2015). Phialomustin A–D, new antimicrobial and cytotoxic metabolites from an endophytic fungus, Phialophora mustea. RSC Advances, 115, 95307–95312.CrossRefGoogle Scholar
  101. Noble, H. M., Langley, D., Sidebottom, P. J., et al. (1991). An echinocandin from an endophytic Cryptosporiopsis sp. and Pezicula sp. in Pinus sylvestris and Fagus sylvatica. Mycological Research, 95, 1439–1440.CrossRefGoogle Scholar
  102. Oliynyk, M., Samborsky, M., Lester, J. B., et al. (2007). Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL2338. Nature Biotechnology, 25, 447–453.PubMedCrossRefGoogle Scholar
  103. Paulsen, I. T., Press, C. M., Ravel, J., et al. (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology, 23, 873–878.PubMedCrossRefGoogle Scholar
  104. Peric-Concha, N., & Long, P. F. (2003). Mining the microbial metablome: A new frontier for natural product lead discovery. Drug Discovery Today, 8, 1078–1084.PubMedCrossRefGoogle Scholar
  105. Pinheiro, E. A., Carvalho, J. M., dos Santos, D. C., et al. (2013). Chemical constituents of Aspergillus sp EJC08 isolated as endophyte from Bauhinia guianensis and their antimicrobial activity. Anais Da Academia Brasileira De Ciencias, 85(4), 1247–1253.PubMedCrossRefGoogle Scholar
  106. Pocasangre, L., Sikora, R. A., Vilich, V., et al. (2000). Survey of banana endophytic fungi from Central America and screening for biological control of the burrowing nematode (Radopholus similis). InfoMusa, 9(1), 3–5.Google Scholar
  107. Pongcharoen, W., Rukachaisirikul, V., Phongpaichit, S., et al. (2007). A new dihydro benzofuran derivative from the endophytic fungus Botryosphaeria mamane PSU-M76. Chemical & Pharmaceutical Bulletin, 55, 1404–1405.CrossRefGoogle Scholar
  108. Pongcharoen, W., Rukachaisirikul, V., Phongpaichit, S., et al. (2008). Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry, 69, 1900–1902.PubMedCrossRefGoogle Scholar
  109. Porras-Alfaro, A., & Bayman, P. (2011). Hidden fungi, emergent properties: Endophytes and microbiomes. Annual Review of Phytopathology, 49, 291–315.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Puri, S. C., Nazir, A., Chawla, R., et al. (2006). The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. Journal of Biotechnology, 122(4), 494–510.PubMedCrossRefGoogle Scholar
  111. Qadri, M., Johri, S., Shah, B. A., et al. (2013). Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springerplus, 2(1), 8.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Qadri, M., Rajput, R., Abdin, M. Z., et al. (2014). Diversity, molecular phylogeny and bioactive potential of fungal endophytes associated with the Himalayan blue pine (Pinus wallichiana). Microbial Ecology, 67(4), 877–887.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Qadri, M., Nalli, Y., Jain, S. K., et al. (2017). An insight into the secondary metabolism of Muscodor yucatanensis: Small-molecule epigenetic modifiers induce expression of secondary metabolism-related genes and production of new metabolites in the endophyte. FEMS Microbiology Ecology, 73(4), 954–965.CrossRefGoogle Scholar
  114. Qin, J. C., Zhang, Y. M., Gao, J. M., et al. (2009). Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorganic & Medicinal Chemistry Letters, 9(6), 1572–1574.CrossRefGoogle Scholar
  115. Rakotoniriana, E., Rafamantanana, M., Randriamampionona, D., et al. (2013). Study in vitro of the impact of endophytic bacteria isolated from Centella asiatica on the disease incidence caused by the hemibiotrophic fungus Colletotrichum higginsianum. Antonie Van Leeuwenhoek, 103, 121–133.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Raviraja, N. S. (2005). Fungal endophytes in five medicinal plant species from Kudremukh Range, Western Ghats of India. Journal of Basic Microbiology, 45(3), 230–235.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Reiter, B., Pfeifer, U., Schwab, H., et al. (2002). Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Applied and Environmental Microbiology, 68(5), 2261–2268.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Riyaz-Ul-Hassan, S., Strobel, G. A., Booth, E., et al. (2012). Modulation of volatile organic compound formation in the mycodiesel producing endophyte- Hypoxylon sp. C1-4. Microbiology, 158, 464–473.Google Scholar
  119. Riyaz-Ul-Hassan, S., Strobel, G., Geary, B., et al. (2013). An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. Journal of Microbiology and Biotechnology, 23(1), 29–35.PubMedCrossRefGoogle Scholar
  120. Rukachaisirikul, V., Sommart, U., Phongpaichit, S., et al. (2008). Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry, 69, 783–787.PubMedCrossRefGoogle Scholar
  121. Saleem, M., Tousif, M. I., Riaz, N., et al. (2013). Cryptosporioptide: A bioactive polyketide produced by an endophytic fungus Cryptosporiopsis sp. Phytochemistry, 93, 199–202.PubMedCrossRefGoogle Scholar
  122. Schroeckh, V., Scherlach, K., Nützmann, H. W., et al. (2009). Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. PNAS, 106, 14558–14563.PubMedCrossRefGoogle Scholar
  123. Sebastianes, F. L. S., Cabedo, N., ElAouad, N., et al. (2012). 3-Hydroxy propionic acid as an anti bacterial agent from endophytic fungus Diaporthe phaseolorum. Current Microbiology, 65, 622–632.PubMedCrossRefGoogle Scholar
  124. Senadeera, S. P., Wiyakrutta, S., Mahidol, C., et al. (2012). A novel tri cyclic polyketide and its biosynthetic precursor azaphilone derivatives from the endophytic fungus Dothideomycete sp. Organic & Biomolecular Chemistry, 10, 7220–7226.CrossRefGoogle Scholar
  125. Seo, W., Lim, W., Kim, E., et al. (2010). Endophytic bacterial diversity in the young radish and their antimicrobial activity against pathogens. Journal of Korean Society for Applied Biological Chemistry, 53, 493–503.CrossRefGoogle Scholar
  126. Shang, Z., Li, X. M., Li, C. S., et al. (2012). Diverse secondary metabolites produced by marine derived fungus Nigrospora sp. MA75 on various culture media. Chemistry & Biodiversity, 9, 1338–1348.CrossRefGoogle Scholar
  127. Shukla, S. T., Habbu, P. V., Kulkarni, V. H., et al. (2014). Endophytic microbes: A novel source for biologically/pharmacologically active secondary metabolites. The Asian Journal of Pharmacology, Toxicology, 2(3), 1–6.Google Scholar
  128. Shweta, S., Bindu, J. H., Raghu, J., et al. (2013). Isolation of endophytic bacteria producing the anti-cancer alkaloid camptothecine from Miquelia dentata Bedd. (Icacinaceae). Phytomedicine, 20(10), 913–917.PubMedCrossRefGoogle Scholar
  129. Siddiqui, I. N., Zahoor, A., Hussain, H., et al. (2011). Diversonol and blennolide derivatives from the endophytic fungus Microdiplodia sp.: Absolute configuration of diversonol. Journal of Natural Products, 74, 365–373.PubMedCrossRefGoogle Scholar
  130. Sieber, S. A., & Marahiel, M. A. (2005). Molecular mechanisms underlying nonribosomal peptide synthesis: Approaches to new antibiotics. Chemical Reviews, 105, 715–738.PubMedCrossRefGoogle Scholar
  131. Silva, G. H., Teles, H. L., & Zanardi, L. M. (2006). Cadinaneses quiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry, 67, 1964–1969.PubMedCrossRefGoogle Scholar
  132. Singh, L. P., Gill, S. S., & Tuteja, N. (2011a). Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling & Behavior, 6(2), 175–191.CrossRefGoogle Scholar
  133. Singh, S. K., Strobel, G. A., Knighton, B., et al. (2011b). An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microbial Ecology, 61, 729–739.PubMedCrossRefGoogle Scholar
  134. Singh, R. K., Malik, N., & Singh, S. (2013). Improved nutrient use efficiency increases plant growth of rice with the use of IAA- overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microbial Ecology, 66(2), 375–384.PubMedCrossRefGoogle Scholar
  135. Staley, J. T., Castenholz, R. W., Colwell, R. R., et al. (1997). The microbial world: Foundation of the biosphere (p. 32). Washington, DC: American Academy of Microbiology.Google Scholar
  136. Staniek, A., Woerdenbag, H. J., & Kayser, O. (2009). Taxomyces andreanae: A presumed paclitaxel producer demystified? Planta Medica, 75, 1561–1566.PubMedCrossRefGoogle Scholar
  137. Stierle, A., Strobel, G. A., & Stierle, D. B. (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260, 214–216.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Strobel, G. A. (2003). Endophytes as a source of bioactive products. Microbes and Infection, 6, 535–544.CrossRefGoogle Scholar
  139. Strobel, G. (2006). Harnessing endophytes for industrial microbiology. Current Opinion in Microbiology, 9, 240–244.PubMedCrossRefGoogle Scholar
  140. Strobel, G. (2006a). Muscodor albus and its biological promise. Journal of Industrial Microbiology & Biotechnology, 33(7), 514–522.CrossRefGoogle Scholar
  141. Strobel, G. A., & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67, 491–502.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Strobel, G. A., Torzynski, R., & Bollon, A. (1997). Acremonium sp.-a leucinostatin A producing endophyte of European yew (Taxus baccata). Plant Science, 128, 97–108.CrossRefGoogle Scholar
  143. Strobel, G. A., Miller, R. V., Martinez-Miller, C., et al. (1999). Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology, 145(8), 1919–1926.PubMedCrossRefGoogle Scholar
  144. Strobel, G. A., Dirkse, E., Sears, J., et al. (2001). Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 147(11), 2943–2950.PubMedCrossRefGoogle Scholar
  145. Strobel, G. B., Daisy, U., Castillo, U., et al. (2004). Natural products from endophytic microorganisms. Journal of Natural Products, 67, 257–268.PubMedCrossRefGoogle Scholar
  146. Strobel, G. A., Knighton, B., Kluck, K., et al. (2008). The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology, 154, 3319–3328.PubMedCrossRefGoogle Scholar
  147. Strobel, G., Singh, S. K., Riyaz-Ul-Hassan, S., et al. (2011). An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiology Letters, 320, 87–94.PubMedCrossRefGoogle Scholar
  148. Subban, K., Subramani, R., & Johnpaul, M. (2013). A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Natural Product Research, 27, 1445–1449.PubMedCrossRefGoogle Scholar
  149. Sun, L., Lu, Z., Bie, X., et al. (2006). Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World Journal of Microbiology and Biotechnology, 22, 1259–1266.CrossRefGoogle Scholar
  150. Sun, H., He, Y., Xiao, Q., et al. (2013a). Isolation, characterization, and antimicrobial activity of endophytic bacteria from Polygonum cuspidatum. African Journal of Microbiology Research, 7(16), 1496–1504.CrossRefGoogle Scholar
  151. Sun, P., Huo, J., Kurtan, T., et al. (2013b). Structural and stereo chemical studies of hydroxyl anthraquinone derivatives from the endophytic fungus Coniothyrium sp. Chirality, 25, 141–148.PubMedCrossRefGoogle Scholar
  152. Takai, K., & Horikoshi, K. (2000). Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Applied and Environmental Microbiology, 66, 5066–5072.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tejesvi, M. V., & Prakash, H. S. (2009). Phylogenetic tools for the identification of fungi. In K. R. Sridhar (Ed.), Frontiers in fungal ecology, diversity and metabolites (1st ed., pp. 285–299). New Delhi: I. K. International Pvt Ltd..Google Scholar
  154. Tiwari, R., Kalra, A., Darokar, M. P., et al. (2010). Endophytic bacteria from Ocimum sanctum and their yield enhancing capabilities. Current Microbiology, 60(3), 167–171.PubMedCrossRefGoogle Scholar
  155. Tomsheck, A., Strobel, G. A., Booth, E., et al. (2010). Hypoxylon sp. an endophyte of Persea indica, producing 1, 8-cineole and other bioactive volatiles with fuel potential. Microbial Ecology, 60, 903–914.PubMedCrossRefGoogle Scholar
  156. Tunali, B., Shelby, R. A., Morgan-Jones, G., et al. (2000). Endophytic fungi and ergot alkaloids in native Turkish grasses. Phytoparasitica, 28(4), 375–377.CrossRefGoogle Scholar
  157. Udwary, D. W., Zeigler, L., Asolkar, R. N., et al. (2007). Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proceedings of the National Academy of Sciences, 104, 10376–10381.CrossRefGoogle Scholar
  158. Vianna, M. E., Conrads, G., Gomes, B. P., et al. (2009). T-RFLP based mcrA gene analysis of methanogenic archaea in association with oral infections and evidence of a novel Methanobrevibacter phylotype. Oral Microbiology and Immunology, 24, 417–422.PubMedCrossRefGoogle Scholar
  159. Wagenaar, M. M., & Clardy, J. (2001). Dicerandrols, new antibiotic and cytotoxic dimmers produced by the fungus Phomopsis longicolla isolated from an endangered mint. Journal of Natural Products, 64, 1006–1009.PubMedCrossRefGoogle Scholar
  160. Wang, F. W., Ye, Y. H., Ding, H., et al. (2010). Benzophenones from Guignardia sp. IFB-E028, an endophyte on Hopea hainanensis. Chemistry & Biodiversity, 7, 216–220.CrossRefGoogle Scholar
  161. Wang, L. W., Zhang, Y. L., Lin, F. C., et al. (2011a). Natural products with antitumor activity from endophytic fungi. Mini Reviews in Medicinal Chemistry, 11, 1056–1074.PubMedCrossRefGoogle Scholar
  162. Wang, Q. X., Li, S. F., Zhao, F., et al. (2011b). Chemical constituents from endophytic fungus Fusarium oxysporum. Fitoterapia, 82, 777–781.PubMedCrossRefGoogle Scholar
  163. Wani, Z. A., Mirza, D. N., Arora, P., et al. (2016). Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: An insight into the microbiome of Crocus sativus Linn. Fungal Biology, 120(12), 1509–1524.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Wani, Z. A., Kumar, A., Sultan, P., et al. (2017). Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant. Scientific Reports, 7(1), 8598.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Wheatley, R. E. (2002). The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek, 81, 357–364.PubMedCrossRefGoogle Scholar
  166. Yamaji, K., Watanabe, Y., Masuya, H., et al. (2016). Root fungal endophytes enhance heavy-metal stress tolerance of Clethra barbinervis growing naturally at mining sites via growth enhancement, promotion of nutrient uptake and decrease of heavy-metal concentration. PLoS One, 11(12), e0169089.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Yedukondalu, N., Arora, P., Wadhwa, B., et al. (2017). Diapolic acid A–B from an endophytic fungus, Diaporthe terebinthifolii depicting antimicrobial and cytotoxic activity. The Journal of Antibiotics, 70(2), 212.PubMedCrossRefGoogle Scholar
  168. Yu, H., Zhang, L., Li, L., et al. (2010). Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiological Research, 165(6), 437–449.PubMedCrossRefGoogle Scholar
  169. Zhang, W., Krohn, K., Draeger, S., et al. (2008). Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi. Journal of Natural Products, 71, 1078–1081.PubMedCrossRefGoogle Scholar
  170. Zhao, J., Mou, Y., Shan, T., et al. (2010). Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Parispolyphylla var. yunnanensis. Molecules, 15, 7961–7970.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zinniel, D. K., Lambrecht, P., Harris, N. B., et al. (2002). Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Applied and Environmental Microbiology, 68(5), 2198–2208.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Zou, W. X., Meng, J. C., Lu, H., et al. (2000). Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. Journal of Natural Products, 63, 1529–1530.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Palak Arora
    • 1
    • 2
  • Tanveer Ahmad
    • 1
    • 2
  • Sadaqat Farooq
    • 1
    • 2
  • Syed Riyaz-Ul-Hassan
    • 1
    • 2
    Email author
  1. 1.Microbial Biotechnology DivisionCSIR-Indian Institute of Integrative MedicineJammuIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative MedicineJammuIndia

Personalised recommendations