Advertisement

Impediments to Discovery of New Antimicrobials with New Modes of Action

  • Paul S. HoffmanEmail author
Chapter

Abstract

During the golden age of antibiotic discovery (1945–1970), little thought was given to the possibility that someday we would run out of them. It is shocking to admit that the last class of antibiotics was discovered over 30 years ago. What happened? The easy answer is that discovering new antibiotics is really hard, developing them is even harder, and once you get them to the clinic, there is little economic value for your efforts. This chapter seeks to explain some of the impediments to discovery of new antibiotics that include (1) the number of potential broad-spectrum “common” drug targets is small; (2) new pharmacophores are prone to early failure due to cytotoxicity, drug metabolism, or poor pharmacokinetics; (3) the general reticence to embrace and apply new technologies; (4) societal issues associated with their use and costs; and (5) the general lack of grant funding to support early discovery efforts. Despite these strong head winds, several concepts and approaches are discussed along with examples of what is working.

Keywords

Antibiotic pipeline Antimicrobial Amixicile Antimicrobial challenges 

References

  1. Ballard, T. E., Wang, X., Olekhnovich, I., Koerner, T., Seymour, C., Salamoun, J., Warthan, M., Hoffman, P. S., & Macdonald, T. L. (2011). Synthesis and antimicrobial evaluation of nitazoxanide-based analogues: Identification of selective and broad spectrum activity. Chem Med Chem, 6, 362–377.PubMedCrossRefGoogle Scholar
  2. Berube, B. J., Murphy, K. R., Torhan, M. C., Bowlin, N. O., Williams, J. D., Bowlin, T. L., Moir, D. T., & Hauser, A. R. (2017). Impact of type III secretion effectors and of phenoxyacetamide inhibitors of type III secretion on abscess formation in a mouse model of Pseudomonas aeruginosa infection. Antimicrobial Agents and Chemotherapy, 61(11), pii: e01202–17.CrossRefGoogle Scholar
  3. Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., Scheld, M., Spellberg, B., & Bartlett, J. (2009). Bad bugs, no drugs: no ESKAPE! an update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 48, 1–12.PubMedCrossRefGoogle Scholar
  4. Bush, K., & Bradford, P. A. (2016). β-Lactams and β-Lactamase inhibitors: An overview. Cold Spring Harbor Perspectives in Medicine, 6(8), pii: a025247.CrossRefGoogle Scholar
  5. Chahales, P., Hoffman, P. S., & Thanassi, D. G. (2016). Nitazoxanide inhibits pilus biogenesis by interfering with folding of the usher protein in the outer membrane. Antimicrobial Agents and Chemotherapy, 60(4), 2028–2038.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chalker, A. F., Minehart, H. W., Hughes, N. J., Koretke, K. K., Brown, J. R., Lonetto, M. A., Warren, P. V., Stanhope, M. J., Lupas, A., & Hoffman, P. S. (2001). Systematic identification of unique essential genes in Helicobacter pylori by genome prioritization and allelic replacement mutagenesis. Journal of Bacteriology, 183, 1259–1268.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chaudhary, A. S. (2016). A review of global initiatives to fight antibiotic resistance and recent antibiotics′ discovery. Acta Pharmaceutica Sinica B, 6, 552–556.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cole, S. T. (2014). Who will develop new antibacterial agents? Philosophical Transactions of the Royal Society B, 369, 20130430.  https://doi.org/10.1098/rstb.2013.0430.CrossRefGoogle Scholar
  9. D’Ari, R., & Casadesus, J. (1998). Underground metabolism. BioEssays, 20, 181–186.PubMedCrossRefGoogle Scholar
  10. Devasahayam, G., Scheld, W. M., & Hoffman, P. S. (2010). Newer antibacterial drugs for a new century. Expert Opinion, 19, 1–20.Google Scholar
  11. Dickey, S. W., Cheung, G. Y. C., & Otto, M. (2017). Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance. Nature Reviews Drug Discovery, 16, 457–471.PubMedCrossRefGoogle Scholar
  12. Durrant, J. D., & Amaro, R. E. (2015). Machine-learning techniques applied to antibacterial drug discovery. Chemical Biology & Drug Design, 85, 14–21.CrossRefGoogle Scholar
  13. Fernandes, P., & Martens, E. (2017). Antibiotics in late clinical development. Biochemical Pharmacology, 133, 152–163.PubMedCrossRefGoogle Scholar
  14. Flamm, R. K., Farrell, D. J., Rhomberg, P. R., Scangarella-Oman, N. E., & Sader, H. S. (2017). Gepotidacin (GSK2140944) in vitro activity against Gram-positive and Gram-negative bacteria. Antimicrobial Agents and Chemotherapy, 61, pii: e00468-17.  https://doi.org/10.1128/AAC.00468-17.CrossRefGoogle Scholar
  15. Francisco, R., Fields, F. R., Lee, S. W., & McConnell, M. J. (2017). Using bacterial genomes and essential genes for the development of new antibiotics. Biochemical Pharmacology, 134, 74–86.CrossRefGoogle Scholar
  16. Galkina, C. E., Beierlein, J. M., Khanuja, N. S., McNamee, L. M., & Ledley, F. D. (2018). Contribution of NIH funding to new drug approvals 2010-2016. Proceedings of the National Academy of Sciences of the United States of America, 115(10), 2329–2334.CrossRefGoogle Scholar
  17. Gwynn, M. N., Portnoy, A., Rittenhouse, S. F., & Payne, D. J. (2010). Challenges of antibacterial discovery revisited. Annals of the New York Academy of Sciences, 1213, 5–19.PubMedCrossRefGoogle Scholar
  18. Hoffman, P. S., Sission, G., Croxen, M. A., Welch, K., Harman, W. D., Cremades, N., & Morash, M. G. (2007). Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori and selected anaerobic bacteria and parasites, and Campylobacter jejuni. Antimicrobial Agents and Chemotherapy, 51, 868–876.PubMedCrossRefGoogle Scholar
  19. Hoffman, P. S., Bruce, A. M., Olekhnovich, I., Warren, C. A., Burgess, S. L., Hontecillas, R., Viladomiu, M., Bassaganya-Riera, J., Guerrant, R. L., & Macdonald, T. L. (2014). Preclinical studies of amixicile: A systemic therapeutic developed for treatment of Clostridium difficile infections also shows efficacy against Helicobacter pylori. Antimicrobial Agents and Chemotherapy, 58, 4703–4712.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Horner, D. S., Hirt, R. P., & Embley, T. M. (1999). A single eubacterial origin of eukaryotic pyruvate:ferredoxin oxidoreductase genes: Implications for the evolution of anaerobic eukaryotes. Molecular Biology and Evolution, 16, 1280–1291.PubMedCrossRefGoogle Scholar
  21. Hutcherson, J. A., Sinclair, K. M., Belvin, B. R., Gui, Q., Hoffman, P. S., & Lewis, J. P. (2017). Amixicile, a novel strategy for targeting oral anaerobic pathogens. Scientific Reports, 7(1), 10474.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Iannini, P. B. (2002). Cardiotoxicity of macrolides, ketolides and fluoroquinolones that prolong the QTc interval. Expert Opinion on Drug Safety, 2002(1), 121–128.CrossRefGoogle Scholar
  23. Ibberson, C. B., Stacy, A., Fleming, D., Dees, J. L., Rumbaugh, K., Gilmore, M. S., & Whiteley, M. (2017). Co-infecting microorganisms dramatically alter pathogen gene essentiality during polymicrobial infection. Nature Microbiology, 2, 17079.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Jackson, N., Czaplewski, L., & Piddock, L. J. V. (2018). Discovery and development of new antibacterial drugs: Learning from experience? Journal of Antimicrobial Chemotherapy.  https://doi.org/10.1093/jac/dky019.PubMedCrossRefGoogle Scholar
  25. Kennedy, A. J., Bruce, A. M., Gineste, C., Ballard, T. E., Olekhnovich, I. N., Macdonald, T. L., & Hoffman, P. S. (2016). Synthesis and antimicrobial evaluation of amixicile-based inhibitors of the pyruvate-ferredoxin oxidoreductases of anaerobic bacteria and epsilonproteobacteria. Antimicrobial Agents and Chemotherapy, 60, 3980–3987.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Lewis, K. (2013). Platforms for antibiotic discovery. Nature Reviews. Drug Discovery, 12, 371–387.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Lewis, K. (2017). New approaches to antimicrobial discovery. Biochemical Pharmacology, 15(134), 87–98.CrossRefGoogle Scholar
  28. Ling, L. L., Schneider, T., Peoples, A. J., Spoering, A. L., Engels, I., Conlon, B. P., Mueller, A., Schäberle, T. F., Hughes, D. E., Epstein, S., Jones, M., Lazarides, L., Steadman, V. A., Cohen, D. R., Felix, C. R., Fetterman, K. A., Millett, W. P., Nitti, A. G., Zullo, A. M., Chen, C., & Lewis, K. (2015). A new antibiotic kills pathogens without detectable resistance. Nature, 517(7535), 455–459.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46, 3–26.PubMedCrossRefGoogle Scholar
  30. Mitsugi, R., Sumida, K., Fujie, Y., Tukey, R. H., Itoh, T., & Fujiwara, R. (2016). Acyl-glucuronide as a possible cause of trovafloxacin-induced liver toxicity: Induction of chemokine (C-X-C Motif) ligand 2 by trovafloxacin acyl-glucuronide. Biological & Pharmaceutical Bulletin, 39, 1604–1610.CrossRefGoogle Scholar
  31. Mitton-Fry, M. J., Brickner, S. J., Hamel, J. C., Barham, R., Brennan, L., Casavant, J. M., Ding, X., Finegan, S., Hardink, J., Hoang, T., Huband, M. D., Maloney, M., Marfat, A., McCurdy, S. P., McLeod, D., Subramanyam, C., Plotkin, M., Reilly, U., Schafer, J., Stone, G. G., Uccello, D. P., Wisialowski, T., Yoon, K., Zaniewski, R., & Zook, C. (2017). Novel 3-fluoro-6-methoxyquinoline derivatives as inhibitors of bacterial DNA gyrase and topoisomerase IV. Bioorganic & Medicinal Chemistry Letters, 27, 3353–3358.CrossRefGoogle Scholar
  32. O’Dwyer, K., Spivak, A. T., Ingraham, K., Min, S., Holmes, D. J., Jakielaszek, C., Rittenhouse, S., Kwan, A. L., Livi, G. P., Sathe, G., Thomas, E., Van Horn, S., Miller, L. A., Twynholm, M., Tomayko, J., Dalessandro, M., Caltabiano, M., Scangarella-Oman, N. E., & Brown, J. R. (2015). Bacterial resistance to leucyl-tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections. Antimicrobial Agents and Chemotherapy, 59, 289–298.PubMedCrossRefGoogle Scholar
  33. Page, M. G., & Bush, K. (2014). Discovery and development of new antibacterial agents targeting Gram-negative bacteria in the era of pandrug resistance: Is the future promising? Current Opinion in Pharmacology, 18, 91–97.PubMedCrossRefGoogle Scholar
  34. Payne, D. J., Gwynn, M. N., Holmes, D. J., & Pompliano, D. L. (2007). Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nature Reviews Drug Discovery, 6, 29–40.PubMedCrossRefGoogle Scholar
  35. Payne, D. J., Miller, L. F., Findlay, D., Anderson, J., & Marks, L. (2015). Time for a change: Addressing R&D and commercialization challenges for antibacterials. Philosophical Transactions of the Royal Society B, 370, 2014086.CrossRefGoogle Scholar
  36. Qu, Y., Olsen, J. R., Yuan, X., Cheng, P. F., Levesque, M. P., Brokstad, K. A., Hoffman, P. S., Oyan, A. M., Zhang, W., Kalland, K. H., & Ke, X. (2018). Small molecule promotes β-catenin citrullination and inhibits Wnt signaling in cancer. Nature Chemical Biology, 14, 94–101.PubMedCrossRefGoogle Scholar
  37. Richter, M. F., Hergenrother, P. J. (2018). The challenge of converting gram-positive-only compounds into broad-spectrum antibiotics. Annals of the New York Academy of Sciences February 15.  https://doi.org/10.1111/nyas.13598.PubMedCrossRefGoogle Scholar
  38. Richter, M. F., Drown, B. S., Riley, A. P., Garcia, A., Shirai, T., Svec, R. L., & Hergenrother, P. J. (2017). Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature, 545(7654), 299–304.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Rossignol, J. F. (2014). Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antiviral Research, 110, 94–103.PubMedCrossRefGoogle Scholar
  40. Senkowski, W., Zhang, X., Olofsson, M. H., Isacson, R., Höglund, U., Gustafsson, M., Nygren, P., Linder, S., Larsson, R., & Fryknäs, M. (2015). Three-dimensional cell culture-based screening identifies the anthelmintic drug nitazoxanide as a candidate for treatment of colorectal cancer. Molecular Cancer Therapeutics, 14(6), 1504–1516.PubMedCrossRefGoogle Scholar
  41. Shakya, A., Bhat, H. R., Ghosh, S. K. (2017). Update on nitazoxanide: A multifunctional chemotherapeutic agent. Current Drug Discovery Technologies July 27.  https://doi.org/10.2174/1570163814666170727130003.PubMedCrossRefGoogle Scholar
  42. Shamir, E. R., Warthan, M., Brown, S. P., Nataro, J. P., Guerrant, R. L., & Hoffman, P. S. (2010). Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of AafA fimbriae. Antimicrobial Agents and Chemotherapy, 54, 1526–1533.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Silver, L. (2011). Challenges of antibacterial discovery. Clinical Microbiology Reviews, 24, 71–109.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Sisson, G., Jeong, J. Y., Goodwin, A., Bryden, L., Rossler, N., Lim-Morrison, S., Raudonikiene, A., Berg, D. E., & Hoffman, P. S. (2000). Metronidazole activation is mutagenic and causes DNA fragmentation in Helicobacter pylori and in Escherichia coli containing a cloned H. pylori RdxA(+) (Nitroreductase) gene. Journal of Bacteriology, 182(18), 5091–5096.PubMedPubMedCentralCrossRefGoogle Scholar
  45. So, A. D., Gupta, N., Brahmachari, S. K., et al. (2011). Towards a new business models for R&D for novel antibiotics. Drug Resistaence Updates, 14, 88–94.CrossRefGoogle Scholar
  46. Sun, J., Zhang, H., Liu, Y. H., & Feng, Y. (2018). Towards understanding MCR-like colistin resistance. Trends in Microbiology. Mar 7. pii: S0966-842X(18)30042-8.Google Scholar
  47. Tilmanis, D., van Baalen, C., Oh, D. Y., Rossignol, J. F., & Hurt, A. C. (2017). The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide. Antiviral Research, 147, 142–148.PubMedCrossRefGoogle Scholar
  48. Van Bambeke, F. (2015). Lipoglycopeptide antibacterial agents in Gram-positive infections: A comparative review. Drugs, 75, 2073–2095.PubMedCrossRefGoogle Scholar
  49. Warren, C. A., van Opstal, E., Ballard, T. E., Kennedy, A., Wang, X., Riggins, M., Olekhnovich, I., Warthan, M., Kolling, G. L., Guerrant, R. L., Macdonald, T. L., & Hoffman, P. S. (2012). Amixicile: A novel inhibitor of pyruvate: Ferredoxin oxidoreductase shows efficacy against Clostridium difficile in a mouse infection model. Antimicrobial Agents and Chemotherapy, 56, 1403–1411.CrossRefGoogle Scholar
  50. Wright, P. M., Seiple, I. B., & Myers, A. G. (2014). The evolving role of chemical synthesis in antibacterial drug discovery. Angewandte Chemie (International Ed. in English), 53(34), 8840–8869.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations