Advertisement

Green Synthesis of Metal Nanoparticles: Characterization and their Antibacterial Efficacy

  • Faizan Abul Qais
  • Samreen
  • Iqbal Ahmad
Chapter

Abstract

The global emergence and spread of multi-drug resistance in bacterial pathogens has led the researchers to focus on the development of alternative measures or therapeutic agents to combat microbial infections caused by drug-resistant bacteria. Recent advances in nanotechnology have given a new hope for the development of novel nano-based formulations to address the problem. Green synthesis of metal nanoparticles has advantages over other chemical and physical methods such as, reduced toxicity, one-step process, cost-effectiveness, eco-friendliness, and does not require additional capping or stabilizing agents. The techniques employed for the characterization of nanoparticles are UV–Vis spectroscopy, XRD, FTIR, SEM, EDX, TEM, AFM, DLS, zeta potential, and TGA etc. The antibacterial nanoparticles studied most widely are metal nanoparticles. Metal nanoparticles have demonstrated potent antibacterial activity in vitro with promising therapeutic potential in wound dressings, medical implant coatings, drug delivery, tumour detection, and photoimaging. Many bioagents such as bacteria, fungi, plant extracts, etc. have been exploited for green synthesis of nanoparticles. Medicinal plants as bio-templates for the synthesis of metal nanoparticles might show an immense impact in biomedicine. However, toxicity of nanoparticles to the host is a major concern that needs to be scrutinized properly to monitor its long-term impact. Still, recently developed nano-based formulations, including metal nanoparticles, are expected to become the next generation therapeutic agents against bacterial pathogens, especially against MDR bacteria. In this chapter, we have reviewed the role of medicinal plants in metal nanoparticle synthesis, characterization techniques, and their efficacy against bacterial pathogens.

Keywords

Nanoparticles Antibacterial agents Toxicity Nanoparticles synthesis Characterization 

Abbreviations

AFM

Atomic Force Microscopy

DLS

Dynamic light Scattering

FTIR

Fourier Transform Infrared Spectroscopy

SEM

Scanning Electron Microscopy

TEM

Transmission Electron Microscopy

TGA

Thermogravimetric Analysis

UV Vis

UV Visible

XRD

X-ray diffraction

Notes

Acknowledgements

FAQ is thankful to Council of Scientific & Industrial Research (CSIR), New Delhi, India, [File no: 09/112(0626)2k19 EMR] for providing Senior Research Fellowship.

Conflict of Interest

The authors declare there are no conflicts of interest.

References

  1. Abdel-Aziz, M. S., Shaheen, M. S., El-Nekeety, A. A., & Abdel-Wahhab, M. A. (2014). Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society, 18, 356–363.  https://doi.org/10.1016/j.jscs.2013.09.011.CrossRefGoogle Scholar
  2. Ahmad, N., & Sharma, S. (2012). Green synthesis of silver nanoparticles using extracts of Ananas comosus. Green Sustainable Chemistry, 02, 141–147.  https://doi.org/10.4236/gsc.2012.24020.CrossRefGoogle Scholar
  3. Ahmed, S., & Ikram, S. (2015). Silver nanoparticles: One pot green synthesis using Terminalia arjuna extract for biological application. Journal of Nanomedicine and Nanotechnology, 06, 1–6.  https://doi.org/10.4172/2157-7439.1000309.CrossRefGoogle Scholar
  4. Ahmed, M. J., Murtaza, G., Mehmood, A., & Bhatti, T. M. (2015). Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: Characterization and antibacterial activity. Materials Letters, 153, 10–13.  https://doi.org/10.1016/j.matlet.2015.03.143.CrossRefGoogle Scholar
  5. Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7, 17–28.  https://doi.org/10.1016/j.jare.2015.02.007.CrossRefPubMedGoogle Scholar
  6. Ajitha, B., Ashok Kumar Reddy, Y., & Reddy, P. S. (2014a). Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 121, 164–172.  https://doi.org/10.1016/j.saa.2013.10.077.CrossRefGoogle Scholar
  7. Ajitha, B., Ashok Kumar Reddy, Y., & Sreedhara Reddy, P. (2014b). Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 128, 257–262.  https://doi.org/10.1016/j.saa.2014.02.105.CrossRefGoogle Scholar
  8. Ali, K., Ahmed, B., Dwivedi, S., et al. (2015). Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS One, 10, 1–20.  https://doi.org/10.1371/journal.pone.0131178.CrossRefGoogle Scholar
  9. Aliyu, A., Garba, S., & Bognet, O. (2017). Green synthesis, characterization and antimicrobial activity of vanadium nanoparticles using leaf extract of Moringa oleifera. International Journal of Chemical Sciences, 16, 231.Google Scholar
  10. Aljabali, A., Akkam, Y., Al Zoubi, M., et al. (2018). Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials, 8, 174.  https://doi.org/10.3390/nano8030174.CrossRefPubMedCentralGoogle Scholar
  11. Ambika, S., & Sundrarajan, M. (2015). Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: Spectroscopic investigation of interaction between ZnO nanoparticles and human serum albumin. Journal of Photochemistry and Photobiology B: Biology, 149, 143–148.  https://doi.org/10.1016/j.jphotobiol.2015.05.004.CrossRefGoogle Scholar
  12. Amin, M., Anwar, F., Janjua, M. R. S. A., et al. (2012). Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: Characterization, antimicrobial and urease inhibitory activities against helicobacter pylori. International Journal of Molecular Sciences, 13, 9923–9941.  https://doi.org/10.3390/ijms13089923.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Anandalakshmi, K., Venugobal, J., & Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6, 399–408.  https://doi.org/10.1007/s13204-015-0449-z.CrossRefGoogle Scholar
  14. Ankanna, S., Prasad, T., Elumalai, E., & Savithramma, N. (2010). Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Digest Journal of Nanomaterials and Biostructures, 5, 369–372.Google Scholar
  15. Annamalai, A., Christina, V. L. P., Sudha, D., et al. (2013). Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids and Surfaces. B, Biointerfaces, 108, 60–65.  https://doi.org/10.1016/j.colsurfb.2013.02.012.CrossRefPubMedGoogle Scholar
  16. Ansari, M. A., Khan, H. M., Alzohairy, M. A., et al. (2015). Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa. World Journal of Microbiology and Biotechnology, 31, 153–164.  https://doi.org/10.1007/s11274-014-1757-2.CrossRefPubMedGoogle Scholar
  17. Armendariz, V., Herrera, I., peralta-videa, J. R., et al. (2004). Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology. Journal of Nanoparticle Research, 6, 377–382.  https://doi.org/10.1007/s11051-004-0741-4.CrossRefGoogle Scholar
  18. Arokiyaraj, S., Arasu, M. V., Vincent, S., et al. (2014). Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: An in vitro study. International Journal of Nanomedicine, 9, 379–388.  https://doi.org/10.2147/IJN.S53546.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Asghar, M. A., Zahir, E., Shahid, S. M., et al. (2018). Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B 1 adsorption activity. LWT, 90, 98–107.  https://doi.org/10.1016/j.lwt.2017.12.009.CrossRefGoogle Scholar
  20. Asharani, P. V., Lian Wu, Y., Gong, Z., & Valiyaveettil, S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19, 255102.  https://doi.org/10.1088/0957-4484/19/25/255102.CrossRefPubMedGoogle Scholar
  21. Augustine, R., Kalarikkal, N., & Thomas, S. (2014). A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study. Applied Nanoscience, 4, 809–818.  https://doi.org/10.1007/s13204-013-0260-7.CrossRefGoogle Scholar
  22. Awwad, A. M., Salem, N. M., & Abdeen, A. O. (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 4, 29.  https://doi.org/10.1186/2228-5547-4-29.CrossRefGoogle Scholar
  23. Ayaz Ahmed, K. B., Subramanian, S., Sivasubramanian, A., et al. (2014). Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 130, 54–58.  https://doi.org/10.1016/j.saa.2014.03.070.CrossRefGoogle Scholar
  24. Baker, S., Rakshith, D., Kavitha, K. S., et al. (2013). Plants: Emerging as nanofactories towards facile route in synthesis of nanoparticles. BioImpacts: BI, 3, 111–117.PubMedGoogle Scholar
  25. Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing, 1, 3.  https://doi.org/10.1186/s40643-014-0003-y.CrossRefGoogle Scholar
  26. Bankar, A., Joshi, B., Ravi Kumar, A., & Zinjarde, S. (2010). Banana peel extract mediated synthesis of gold nanoparticles. Colloids and Surfaces. B, Biointerfaces, 80, 45–50.  https://doi.org/10.1016/j.colsurfb.2010.05.029.CrossRefPubMedGoogle Scholar
  27. Basavegowda, N., Idhayadhulla, A., & Lee, Y. R. (2014). Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. Industrial Crops and Products, 52, 745–751.  https://doi.org/10.1016/j.indcrop.2013.12.006.CrossRefGoogle Scholar
  28. Baskaralingam, V., Sargunar, C. G., Lin, Y. C., & Chen, J. C. (2012). Green synthesis of silver nanoparticles through Calotropis gigantea leaf extracts and evaluation of antibacterial activity against Vibrio alginolyticus. Nanotechnology Development, 2, 3.  https://doi.org/10.4081/nd.2012.e3.CrossRefGoogle Scholar
  29. Bhau, B. S., Ghosh, S., Puri, S., et al. (2015). Green synthesis of gold nanoparticles from the leaf extract of Nepenthes khasiana and antimicrobial assay. Advanced Materials Letters, 6, 55–58.  https://doi.org/10.5185/amlett.2015.5609.CrossRefGoogle Scholar
  30. Bindhu, M. R., & Umadevi, M. (2013). Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 101, 184–190.  https://doi.org/10.1016/j.saa.2012.09.031.CrossRefGoogle Scholar
  31. Bindhu, M. R., & Umadevi, M. (2014). Antibacterial activities of green synthesized gold nanoparticles. Materials Letters, 120, 122–125.  https://doi.org/10.1016/j.matlet.2014.01.108.CrossRefGoogle Scholar
  32. Bindhu, M. R., & Umadevi, M. (2015). Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 135, 373–378.  https://doi.org/10.1016/j.saa.2014.07.045.CrossRefGoogle Scholar
  33. Bogunia-Kubik, K., & Sugisaka, M. (2002). From molecular biology to nanotechnology and nanomedicine. Biosystems, 65, 123–138.  https://doi.org/10.1016/S0303-2647(02)00010-2.CrossRefPubMedGoogle Scholar
  34. Bonde, S. R., Rathod, D. P., Ingle, A. P., et al. (2012). Murraya koenigii -mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria. Nanoscience Methods, 1, 25–36.  https://doi.org/10.1080/17458080.2010.529172.CrossRefGoogle Scholar
  35. Brice-Profeta, S., Arrio, M.-A., Tronc, E., et al. (2005). Magnetic order in Fe3O3 nanoparticles: A XMCD study. Journal of Magnetism and Magnetic Materials, 288, 354–365.  https://doi.org/10.1016/j.jmmm.2004.09.120.CrossRefGoogle Scholar
  36. Cao, Y. W., Jin, R., & Mirkin, C. A. (2001). DNA-modified core−shell Ag/Au nanoparticles. Journal of the American Chemical Society, 123, 7961–7962.  https://doi.org/10.1021/ja011342n.CrossRefPubMedGoogle Scholar
  37. Černík, M., & Thekkae Padil, V. V. (2013). Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. International Journal of Nanomedicine, 8, 889–898.  https://doi.org/10.2147/IJN.S40599.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Chandran, S. P., Chaudhary, M., Pasricha, R., et al. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 22, 577–583.  https://doi.org/10.1021/bp0501423.CrossRefPubMedGoogle Scholar
  39. Chauhan, R. P., Charu, G., & Dhan, P. (2012). Methodological advancements in green nanotechnology and their applications in biological synthesis of herbal nanoparticles. International Journal of Bioassays, 1, 6–10.Google Scholar
  40. Choi, Y., Ho, N.-H., & Tung, C.-H. (2007). Sensing phosphatase activity by using gold nanoparticles. Angewandte Chemie, International Edition, 46, 707–709.  https://doi.org/10.1002/anie.200603735.CrossRefGoogle Scholar
  41. Cox, S. G., Cullingworth, L., & Rode, H. (2011). Treatment of paediatric burns with a nanocrystalline silver dressing compared with standard wound care in a burns unit: A cost analysis. South African Medical Journal, 101, 728–731.PubMedGoogle Scholar
  42. Daniel, M.-C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104, 293–346.  https://doi.org/10.1021/cr030698+.CrossRefPubMedGoogle Scholar
  43. Das, J., Paul Das, M., & Velusamy, P. (2013). Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 104, 265–270.  https://doi.org/10.1016/j.saa.2012.11.075.CrossRefGoogle Scholar
  44. De Jaeger, N., Demeyere, H., Finsy, R., et al. (1991). Particle sizing by photon correlation spectroscopy part I: Monodisperse latices: Influence of scattering angle and concentration of dispersed material. Particle and Particle Systems Characterization, 8, 179–186.  https://doi.org/10.1002/ppsc.19910080134.CrossRefGoogle Scholar
  45. Devatha, C. P., Jagadeesh, K., & Patil, M. (2018). Effect of green synthesized iron nanoparticles by Azardirachta Indica in different proportions on antibacterial activity. Environmental Nanotechnology, Monitoring and Management, 9, 85–94.  https://doi.org/10.1016/j.enmm.2017.11.007.CrossRefGoogle Scholar
  46. Devi, N. N., Dheeban Shankar, P., Femina, W., & Paramasivam, T. (2012). Antimicrobial efficacy of green synthesized silver nanoparticles from the medicinal plant Plectranthus amboinicus. International Journal of Pharmaceutical Sciences Review and Research, 12, 164–168.Google Scholar
  47. Dhand, V., Soumya, L., Bharadwaj, S., et al. (2016). Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Materials Science and Engineering: C, 58, 36–43.  https://doi.org/10.1016/j.msec.2015.08.018.CrossRefGoogle Scholar
  48. Dinesh, D., Murugan, K., Madhiyazhagan, P., et al. (2015). Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi? Parasitology Research, 114, 1519–1529.  https://doi.org/10.1007/s00436-015-4336-z.CrossRefPubMedGoogle Scholar
  49. Dipankar, C., & Murugan, S. (2012). The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids and Surfaces. B, Biointerfaces, 98, 112–119.  https://doi.org/10.1016/j.colsurfb.2012.04.006.CrossRefPubMedGoogle Scholar
  50. Donda MR, Rao K, Alwala J, et al (2013) Synthesis of silver nanoparticles using extracts of Securinega leucopyrus and evaluation of its antibacterial activity. International Journal of Current Science, 7, 1–8.Google Scholar
  51. Dorosti, N., & Jamshidi, F. (2016). Plant-mediated gold nanoparticles by Dracocephalum kotschyi as anticholinesterase agent: Synthesis, characterization, and evaluation of anticancer and antibacterial activity. Journal of Applied Biomedicine, 14, 235–245.  https://doi.org/10.1016/j.jab.2016.03.001.CrossRefGoogle Scholar
  52. Dubey, S. P., Lahtinen, M., & Sillanpää, M. (2010). Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochemistry, 45, 1065–1071.  https://doi.org/10.1016/j.procbio.2010.03.024.CrossRefGoogle Scholar
  53. Dwivedi, A. D., & Gopal, K. (2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369, 27–33.  https://doi.org/10.1016/j.colsurfa.2010.07.020.CrossRefGoogle Scholar
  54. Eby, D. M., Schaeublin, N. M., Farrington, K. E., et al. (2009). Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. ACS Nano, 3, 984–994.  https://doi.org/10.1021/nn900079e.CrossRefPubMedGoogle Scholar
  55. Elumalai, K., & Velmurugan, S. (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Applied Surface Science, 345, 329–336.  https://doi.org/10.1016/j.apsusc.2015.03.176.CrossRefGoogle Scholar
  56. Elumalai, E., Prasad, T. N. V. K. V., Hemachandran, J., et al. (2010). Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. Journal of Pharmaceutical Sciences and Research, 2, 549–554.Google Scholar
  57. Emeka, E. E., Ojiefoh, O. C., Aleruchi, C., et al. (2014). Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus). Micron, 57, 1–5.  https://doi.org/10.1016/j.micron.2013.09.003.CrossRefPubMedGoogle Scholar
  58. Faraji, M., Yamini, Y., & Rezaee, M. (2010). Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. Journal of the Iranian Chemical Society, 7, 1–37.  https://doi.org/10.1007/BF03245856.CrossRefGoogle Scholar
  59. Gade, A., Gaikwad, S., Tiwari, V., et al. (2010). Biofabrication of silver nanoparticles by Opuntia ficus-indica: In vitro antibacterial activity and study of the mechanism involved in the synthesis. Current Nanoscience, 6, 370–375.  https://doi.org/10.2174/157341310791659026.CrossRefGoogle Scholar
  60. Geethalakshmi, R., & Sarada, D. V. L. (2010). Synthesis of plant-mediated silver nanoparticles using Trianthema decandra extract and evaluation of their anti microbial activities. International Journal of Engineering, Science and Technology, 2, 970–975.  https://doi.org/10.1155/2011/573429.CrossRefGoogle Scholar
  61. Geethalakshmi, R., & Sarada, D. V. L. (2012). Gold and silver nanoparticles from Trianthema decandra: Synthesis, characterization, and antimicrobial properties. International Journal of Nanomedicine, 7, 5375–5384.  https://doi.org/10.2147/IJN.S36516.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Geethalakshmi, R., & Sarada, D. V. L. (2013). Characterization and antimicrobial activity of gold and silver nanoparticles synthesized using saponin isolated from Trianthema decandra L. Industrial Crops and Products, 51, 107–115.  https://doi.org/10.1016/j.indcrop.2013.08.055.CrossRefGoogle Scholar
  63. Gericke, M., & Pinches, A. (2006). Biological synthesis of metal nanoparticles. Hydrometallurgy, 83, 132–140.  https://doi.org/10.1016/j.hydromet.2006.03.019.CrossRefGoogle Scholar
  64. Ghaedi, M., Yousefinejad, M., Safarpoor, M., et al. (2015). Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. Journal of Industrial and Engineering Chemistry, 31, 167–172.  https://doi.org/10.1016/j.jiec.2015.06.020.CrossRefGoogle Scholar
  65. Ghaffari-Moghaddam, M., & Hadi-Dabanlou, R. (2014). Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. Journal of Industrial and Engineering Chemistry, 20, 739–744.  https://doi.org/10.1016/j.jiec.2013.09.005.CrossRefGoogle Scholar
  66. Ghosh, S., Patil, S., Ahire, M., et al. (2012). Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International Journal of Nanomedicine, 7, 483–496.  https://doi.org/10.2147/IJN.S24793.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Gnanajobitha, G., Annadurai, G., & Kannan, C. (2012). Green synthesis of silver nanoparticle using Elettaria cardamomum and assessment of its antimicrobial activity. International Journal of Pharmaceutical Sciences and Research (IJPSR), 3, 323–330.Google Scholar
  68. Gnanajobitha, G., Paulkumar, K., Vanaja, M., et al. (2013). Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. Journal of Nanostructure in Chemistry, 3, 67.CrossRefGoogle Scholar
  69. Godipurge, S. S., Yallappa, S., Biradar, N. J., et al. (2016). A facile and green strategy for the synthesis of Au, Ag and Au–Ag alloy nanoparticles using aerial parts of R. hypocrateriformis extract and their biological evaluation. Enzyme and Microbial Technology, 95, 174–184.  https://doi.org/10.1016/j.enzmictec.2016.08.006.CrossRefPubMedGoogle Scholar
  70. Gogoi, N., Babu, P. J., Mahanta, C., & Bora, U. (2015). Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities. Materials Science and Engineering: C, 46, 463–469.  https://doi.org/10.1016/j.msec.2014.10.069.CrossRefGoogle Scholar
  71. Gopinath, V., MubarakAli, D., Priyadarshini, S., et al. (2012). Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids and Surfaces. B, Biointerfaces, 96, 69–74.  https://doi.org/10.1016/j.colsurfb.2012.03.023.CrossRefPubMedGoogle Scholar
  72. Gopinath, K., Kumaraguru, S., Bhakyaraj, K., et al. (2016). Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microbial Pathogenesis, 101, 1–11.  https://doi.org/10.1016/j.micpath.2016.10.011.CrossRefPubMedGoogle Scholar
  73. Gowramma, B., Keerthi, U., Rafi, M., & Muralidhara Rao, D. (2015). Biogenic silver nanoparticles production and characterization from native stain of Corynebacterium species and its antimicrobial activity. 3 Biotech, 5, 195–201.  https://doi.org/10.1007/s13205-014-0210-4.CrossRefPubMedGoogle Scholar
  74. Gupta, V., Gupta, A. R., & Vinay, K. (2013). Synthesis, characterization and biomedical applications of nanoparticles. Science International, 1, 167–174.CrossRefGoogle Scholar
  75. Gurunathan, S., Han, J. W., Kwon, D., & Kim, J. (2014). Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against gram- negative and gram-positive bacteria. Nanoscale Research Letters, 9, 373.  https://doi.org/10.1186/1556-276X-9-373.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Haneefa, M. M. (2017). Green synthesis characterization and antimicrobial activity evaluation of manganese oxide nanoparticles and comparative studies with salicylalchitosan functionalized nanoform. Asian Journal of Pharmaceutics, 11, 65–74.  https://doi.org/10.22377/AJP.V11I01.1045.CrossRefGoogle Scholar
  77. Huang, J., Li, Q., Sun, D., et al. (2007a). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18, 105104.  https://doi.org/10.1088/0957-4484/18/10/105104.CrossRefGoogle Scholar
  78. Huang, Y., Li, X., Liao, Z., et al. (2007b). A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns, 33, 161–166.  https://doi.org/10.1016/j.burns.2006.06.020.CrossRefPubMedGoogle Scholar
  79. Ibrahim, H. M. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Science, 8, 265–275.  https://doi.org/10.1016/j.jrras.2015.01.007.CrossRefGoogle Scholar
  80. Ijaz, U., Bhatti, I. A., Mirza, S., & Ashar, A. (2017). Characterization and evaluation of antibacterial activity of plant mediated calcium oxide (CaO) nanoparticles by employing Mentha pipertia extract. Materials Research Express, 4, 105402.  https://doi.org/10.1088/2053-1591/aa8603.CrossRefGoogle Scholar
  81. Ingale, A. G. (2013). Biogenic synthesis of nanoparticles and potential applications: An eco- friendly approach. Journal of Nanomedicine and Nanotechnology, 04, 165.  https://doi.org/10.4172/2157-7439.1000165.CrossRefGoogle Scholar
  82. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13, 2638.  https://doi.org/10.1039/c1gc15386b.CrossRefGoogle Scholar
  83. Irfan, M., Ahmad, T., Moniruzzaman, M., & Abdullah, B. (2017). Effect of pH on ionic liquid mediated synthesis of gold nanoparticle using Elaeis guineensis (palm oil) kernel extract. IOP Conference Series: Materials Science and Engineering, 204, 012002.  https://doi.org/10.1088/1757-899X/204/1/012002.CrossRefGoogle Scholar
  84. Islam, N. U., Jalil, K., Shahid, M., et al. (2015a). Pistacia integerrima gall extract mediated green synthesis of gold nanoparticles and their biological activities. Arabian Journal of Chemistry.  https://doi.org/10.1016/j.arabjc.2015.02.014.
  85. Islam, N. U., Jalil, K., Shahid, M., et al. (2015b). Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arabian Journal of Chemistry, 2015, 1–12.  https://doi.org/10.1016/j.arabjc.2015.06.025.CrossRefGoogle Scholar
  86. Jagtap, U. B., & Bapat, V. A. (2013). Green synthesis of silver nanoparticles using Artocarpus heterophyllus lam. seed extract and its antibacterial activity. Industrial Crops and Products, 46, 132–137.  https://doi.org/10.1016/j.indcrop.2013.01.019.CrossRefGoogle Scholar
  87. Jain, D., Kumar Daima, H., Kachhwaha, S., & Kothari, S. L. (2009). Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Digest Journal of Nanomaterials and Biostructures, 4, 557–563.  https://doi.org/10.1155/2011/573429.CrossRefGoogle Scholar
  88. Jayandran, M., Haneefa, M., & Balasubramanian, V. (2015). Green synthesis and characterization of manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity. Journal of Applied Pharmaceutical Science, 5, 105–110.  https://doi.org/10.7324/JAPS.2015.501218.CrossRefGoogle Scholar
  89. Jeeva, K., Thiyagarajan, M., Elangovan, V., et al. (2014). Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Industrial Crops and Products, 52, 714–720.  https://doi.org/10.1016/j.indcrop.2013.11.037.CrossRefGoogle Scholar
  90. Joerger, R., Klaus, T., & Granqvist, C. G. (2000). Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Advanced Materials, 12, 407–409.  https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O.CrossRefGoogle Scholar
  91. Jores, K., Mehnert, W., Drechsler, M., et al. (2004). Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. Journal of Controlled Release, 95, 217–227.  https://doi.org/10.1016/j.jconrel.2003.11.012.CrossRefPubMedGoogle Scholar
  92. Kanchana, A., Agarwal, I., Sunkar, S., et al. (2011). Biogenic silver nanoparticles from Spinacia Oleracea and their potential antimicrobial activity. Digest Journal of Nanomaterials and Biostructures, 6, 1741–1750.Google Scholar
  93. Kathiravan, V., Ravi, S., Ashokkumar, S., et al. (2015). Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochimica Acta – Part A Molecular Biomolecular Spectroscopy, 139, 200–205.  https://doi.org/10.1016/j.saa.2014.12.022.CrossRefGoogle Scholar
  94. Kaviya, S., Santhanalakshmi, J., Viswanathan, B., et al. (2011a). Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta – Part A Molecular and Biomolecular Spectroscopy, 79, 594–598.  https://doi.org/10.1016/j.saa.2011.03.040.CrossRefGoogle Scholar
  95. Kaviya, S., Santhanalakshmi, J., & Viswanathan, B. (2011b). Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol: Study of antibacterial activity. Journal of Nanotechnology, 2011, 1–5.  https://doi.org/10.1155/2011/152970.CrossRefGoogle Scholar
  96. Khalil, M. M. H., Ismail, E. H., El-Baghdady, K. Z., & Mohamed, D. (2014). Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry, 7, 1131–1139.  https://doi.org/10.1016/j.arabjc.2013.04.007.CrossRefGoogle Scholar
  97. Khomutov GB, Gubin SP (2002) Interfacial synthesis of noble metal nanoparticles. Material Science Engineering, C 22:141–146.  https://doi.org/10.1016/S0928-4931(02)00162-5CrossRefGoogle Scholar
  98. Kiruba Daniel, S. C. G., Vinothini, G., Subramanian, N., et al. (2013). Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. Journal of Nanoparticle Research, 15, 1319.  https://doi.org/10.1007/s11051-012-1319-1.CrossRefGoogle Scholar
  99. Klueh, U., Wagner, V., Kelly, S., et al. (2000). Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. Journal of Biomedical Materials Research, 53, 621–631.  https://doi.org/10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q.CrossRefPubMedGoogle Scholar
  100. Kora, A. J., Sashidhar, R. B. B., & Arunachalam, J. (2010). Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydrate Polymers, 82, 670–679.  https://doi.org/10.1016/j.carbpol.2010.05.034.CrossRefGoogle Scholar
  101. Kora, A., Beedu, S., & Jayaraman, A. (2012). Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Organic and Medicinal Chemistry Letters, 2, 17.  https://doi.org/10.1186/2191-2858-2-17.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Kreuter, J. (1991). Peroral administration of nanoparticles. Advanced Drug Delivery Reviews, 7, 71–86.  https://doi.org/10.1016/0169-409X(91)90048-H.CrossRefGoogle Scholar
  103. Krishnaraj, C., Jagan, E. G., Rajasekar, S., et al. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces. B, Biointerfaces, 76, 50–56.  https://doi.org/10.1016/j.colsurfb.2009.10.008.CrossRefPubMedGoogle Scholar
  104. Krithiga, N., Rajalakshmi, A., & Jayachitra, A. (2015). Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. Journal of Nanoscience, 2015, 1–8.  https://doi.org/10.1155/2015/928204.CrossRefGoogle Scholar
  105. Kulkarni, N., & Muddapur, U. (2014). Biosynthesis of metal nanoparticles: A review. J Nanotechnol, 2014, 1–8.  https://doi.org/10.1155/2014/510246.CrossRefGoogle Scholar
  106. Kumar, S. P., Darshit, P., Ankita, P., et al. (2011). Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. African Journal of Biotechnology, 10, 8122–8130.  https://doi.org/10.5897/AJB11.394.CrossRefGoogle Scholar
  107. Kumar, D. A., Palanichamy, V., & Roopan, S. M. (2014a). Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 127, 168–171.  https://doi.org/10.1016/j.saa.2014.02.058.CrossRefGoogle Scholar
  108. Kumar, P., Pammi, S., Kollu, P., et al. (2014b). Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Industrial Crops and Products, 52, 562–566.  https://doi.org/10.1016/j.indcrop.2013.10.050.CrossRefGoogle Scholar
  109. Kuppusamy, P., Yusoff, M. M., Maniam, G. P., & Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharmaceutical Journal, 24, 473–484.  https://doi.org/10.1016/j.jsps.2014.11.013.CrossRefPubMedGoogle Scholar
  110. Lalitha, A., Subbaiya, R., & Ponmurugan, P. (2013). Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property. International Journal of Current Microbiology and Applied Sciences, 2, 228–235.Google Scholar
  111. Logeswari, P., Silambarasan, S., & Abraham, J. (2013). Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Scientia Iranica, 20, 1049–1054.  https://doi.org/10.1016/j.scient.2013.05.016.CrossRefGoogle Scholar
  112. Logeswari, P., Silambarasan, S., & Abraham, J. (2015). Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society, 19, 311–317.  https://doi.org/10.1016/j.jscs.2012.04.007.CrossRefGoogle Scholar
  113. Lokina, S., & Narayanan, V. (2013). Antimicrobial and anticancer activity of gold nanoparticles synthesized from grapes fruit extract. Chemical Science Transactions, 2, S105–S110.  https://doi.org/10.7598/cst2013.22.CrossRefGoogle Scholar
  114. Lokina, S., Suresh, R., Giribabu, K., et al. (2014). Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles. Spectrochimica Acta – Part A Molecular Biomolecular Spectroscopy, 129, 484–490.  https://doi.org/10.1016/j.saa.2014.03.100.CrossRefGoogle Scholar
  115. Maiti, S., Krishnan, D., Barman, G., et al. (2014). Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. Journal of Analytical Science and Technology, 5, 40.  https://doi.org/10.1186/s40543-014-0040-3.CrossRefGoogle Scholar
  116. Makarov, V. V., Love, A. J., Sinitsyna, O. V., et al. (2014). “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 6, 35–44.  https://doi.org/10.1039/c1gc15386b.CrossRefPubMedPubMedCentralGoogle Scholar
  117. Manju, S., Malaikozhundan, B., Vijayakumar, S., et al. (2016). Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles. Microbial Pathogenesis, 91, 129–135.  https://doi.org/10.1016/j.micpath.2015.11.021.CrossRefPubMedGoogle Scholar
  118. Mariselvam, R., Ranjitsingh, A. J. A., Usha Raja Nanthini, A., et al. (2014). Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (family: Arecaceae) for enhanced antibacterial activity. Spectrochimica Acta – Part A Molecular Biomolecular Spectroscopy, 129, 537–541.  https://doi.org/10.1016/j.saa.2014.03.066.CrossRefGoogle Scholar
  119. Masurkar, S. A., Chaudhari, P. R., Shidore, V. B., & Kamble, S. P. (2011). Rapid biosynthesis of silver nanoparticles using Cymbopogon citratus (lemongrass) and its antimicrobial activity. Nano-Micro Letters, 3, 189–194.  https://doi.org/10.3786/nml.v3i3.p189-194.CrossRefGoogle Scholar
  120. Mata, R., Bhaskaran, A., & Sadras, S. R. (2016). Green-synthesized gold nanoparticles from Plumeria alba flower extract to augment catalytic degradation of organic dyes and inhibit bacterial growth. Particuology, 24, 78–86.  https://doi.org/10.1016/j.partic.2014.12.014.CrossRefGoogle Scholar
  121. Miri, A., Sarani, M., Rezazade Bazaz, M., & Darroudi, M. (2015). Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties. Spectrochimica Acta – Part A Molecular and Biomolecular Spectroscopy, 141, 287–291.  https://doi.org/10.1016/j.saa.2015.01.024.CrossRefGoogle Scholar
  122. Mohan Kumar, K., Sinha, M., Mandal, B. K., et al. (2012). Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochimica Acta – Part A Molecular and Biomolecular Spectroscopy, 91, 228–233.  https://doi.org/10.1016/j.saa.2012.02.001.CrossRefGoogle Scholar
  123. Monopoli, M. P., Åberg, C., Salvati, A., & Dawson, K. A. (2012). Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology, 7, 779–786.  https://doi.org/10.1038/nnano.2012.207.CrossRefPubMedGoogle Scholar
  124. MubarakAli, D., Thajuddin, N., Jeganathan, K., & Gunasekaran, M. (2011). Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces. B, Biointerfaces, 85, 360–365.  https://doi.org/10.1016/j.colsurfb.2011.03.009.CrossRefPubMedGoogle Scholar
  125. Mucalo, M. R., Bullen, C. R., Manley-Harris, M., & McIntire, T. M. (2002). Arabinogalactan from the Western larch tree: A new, purified and highly water-soluble polysaccharide-based protecting agent for maintaining precious metal nanoparticles in colloidal suspension. Journal of Materials Science, 37, 493–504.  https://doi.org/10.1023/A:1013757221776.CrossRefGoogle Scholar
  126. Mühlen, A. z., Mühlen, E. z., Niehus, H., & Mehnert, W. (1996). Atomic force microscopy studies of solid lipid nanoparticles. Pharmaceutical Research, 13, 1411–1416.  https://doi.org/10.1023/A:1016042504830.CrossRefPubMedGoogle Scholar
  127. Mukherjee, S., Sushma, V., Patra, S., et al. (2012). Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology, 23, 455103.  https://doi.org/10.1088/0957-4484/23/45/455103.CrossRefPubMedGoogle Scholar
  128. Muniyappan, N., & Nagarajan, N. S. (2014a). Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochemistry, 49, 1054–1061.  https://doi.org/10.1016/j.procbio.2014.03.015.CrossRefGoogle Scholar
  129. Muniyappan, N., & Nagarajan, N. S. (2014b). Green synthesis of gold nanoparticles using Curcuma pseudomontana essential oil, its biological activity and cytotoxicity against human ductal breast carcinoma cells T47D. Journal of Environmental Chemical Engineering, 2, 2037–2044.  https://doi.org/10.1016/j.jece.2014.03.004.CrossRefGoogle Scholar
  130. Murugan, K., Senthilkumar, B., Senbagam, D., & Al-Sohaibani, S. (2014). Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. International Journal of Nanomedicine, 9, 2431–2438.  https://doi.org/10.2147/IJN.S61779.CrossRefPubMedPubMedCentralGoogle Scholar
  131. Muthukrishnan, S., Bhakya, S., Senthil Kumar, T., & Rao, M. V. (2015). Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii – An endemic species. Industrial Crops and Products, 63, 119–124.  https://doi.org/10.1016/j.indcrop.2014.10.022.CrossRefGoogle Scholar
  132. Muthukumar, T., Sudhakumari, S. B., et al. (2016). Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects. Process Biochemistry, 51, 384–391.  https://doi.org/10.1016/j.procbio.2015.12.017.CrossRefGoogle Scholar
  133. Muthuvel, A., Adavallan, K., Balamurugan, K., & Krishnakumar, N. (2014). Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomedicine & Preventive Nutrition, 4, 325–332.  https://doi.org/10.1016/j.bionut.2014.03.004.CrossRefGoogle Scholar
  134. Nagajyothi, P. C., & Lee, K. D. (2011). Synthesis of plant-mediated silver nanoparticles using Dioscorea batatas rhizome extract and evaluation of their antimicrobial activities. Journal of Nanomaterials, 2011, 1–7.  https://doi.org/10.1155/2011/573429.CrossRefGoogle Scholar
  135. Nagati, V. b., Koyyati, R., Donda, M. R., et al. (2012). Green synthesis and characterization of silver nanoparticles from Cajanus cajan leaf extract and its antibacterial activity. International Journal of Nanomaterials and Biostructures, 2, 39–43.Google Scholar
  136. Naika, H. R., Lingaraju, K., Manjunath, K., et al. (2015). Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. Journal of Taibah University for Science, 9, 7–12.  https://doi.org/10.1016/j.jtusci.2014.04.006.CrossRefGoogle Scholar
  137. Nakkala, J. R., Mata, R., Gupta, A. K., & Sadras, S. R. (2014). Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. European Journal of Medicinal Chemistry, 85, 784–794.  https://doi.org/10.1016/j.ejmech.2014.08.024.CrossRefPubMedGoogle Scholar
  138. Narayanan, K. B., & Sakthivel, N. (2010). Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Materials Characterization, 61, 1232–1238.  https://doi.org/10.1016/j.matchar.2010.08.003.CrossRefGoogle Scholar
  139. Nayak, D., Ashe, S., Rauta, P. R., et al. (2016). Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science and Engineering: C, 58, 44–52.  https://doi.org/10.1016/j.msec.2015.08.022.CrossRefGoogle Scholar
  140. Nazeruddin, G. M., Prasad, N. R., Prasad, S. R., et al. (2014). Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. Industrial Crops and Products, 60, 212–216.  https://doi.org/10.1016/j.indcrop.2014.05.040.CrossRefGoogle Scholar
  141. Niraimathi, K. L., Sudha, V., Lavanya, R., & Brindha, P. (2013). Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids and Surfaces. B, Biointerfaces, 102, 288–291.  https://doi.org/10.1016/j.colsurfb.2012.08.041.CrossRefPubMedGoogle Scholar
  142. Okafor, F., Janen, A., Kukhtareva, T., et al. (2013). Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International Journal of Environmental Research and Public Health, 10, 5221–5238.  https://doi.org/10.3390/ijerph10105221.CrossRefPubMedPubMedCentralGoogle Scholar
  143. Padalia, H., Moteriya, P., & Chanda, S. (2015). Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arabian Journal of Chemistry, 8, 732–741.  https://doi.org/10.1016/j.arabjc.2014.11.015.CrossRefGoogle Scholar
  144. Pal, S. L., Jana, U., Manna, P. K., et al. (2011). Nanoparticle: An overview of preparation and characterization. Journal of Applied Pharmaceutical Science, 1, 228–234.Google Scholar
  145. Pandian, C. J., Palanivel, R., & Dhanasekaran, S. (2016). Screening antimicrobial activity of nickel nanoparticles synthesized using Ocimum sanctum leaf extract. Journal of Nanoparticles, 2016, 1–13.  https://doi.org/10.1155/2016/4694367.CrossRefGoogle Scholar
  146. Panyam, J., Dali, M. M., Sahoo, S. K., et al. (2003). Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. Journal of Controlled Release, 92, 173–187.CrossRefGoogle Scholar
  147. Park, J., Lim, D.-H., Lim, H.-J., et al. (2011). Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chemical Communications, 47, 4382.  https://doi.org/10.1039/c1cc10357a.CrossRefPubMedGoogle Scholar
  148. Pasupuleti, V. R., Prasad, S. R. A., et al. (2013). Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: Synthesis, spectral analysis, and antimicrobial studies. International Journal of Nanomedicine, 8, 3355–3364.  https://doi.org/10.2147/IJN.S49000.CrossRefPubMedPubMedCentralGoogle Scholar
  149. Patil, S. V., Borase, H. P., Patil, C. D., & Salunke, B. K. (2012). Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Applied Biochemistry and Biotechnology, 167, 776–790.  https://doi.org/10.1007/s12010-012-9710-z.CrossRefPubMedGoogle Scholar
  150. Patra, J. K., & Baek, K.-H. (2014). Green nanobiotechnology: Factors affecting synthesis and characterization techniques. Journal of Nanomaterials, 2014, 1–12.  https://doi.org/10.1155/2014/417305.CrossRefGoogle Scholar
  151. Patra, J. K., & Baek, K.-H. (2015). Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. International Journal of Nanomedicine, 10, 7253–7264.  https://doi.org/10.2147/IJN.S95483.CrossRefPubMedPubMedCentralGoogle Scholar
  152. Pereira, L., Mehboob, F., Stams, A. J. M., et al. (2015). Metallic nanoparticles: Microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Critical Reviews in Biotechnology, 35, 114–128.  https://doi.org/10.3109/07388551.2013.819484.CrossRefPubMedGoogle Scholar
  153. Pollini, M., Paladini, F., Catalano, M., et al. (2011). Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. Journal of Materials Science. Materials in Medicine, 22, 2005–2012.  https://doi.org/10.1007/s10856-011-4380-x.CrossRefPubMedGoogle Scholar
  154. Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2, 32.  https://doi.org/10.1186/2228-5326-2-32.CrossRefGoogle Scholar
  155. Prakash, P., Gnanaprakasam, P., Emmanuel, R., et al. (2013). Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids and Surfaces. B, Biointerfaces, 108, 255–259.  https://doi.org/10.1016/j.colsurfb.2013.03.017.CrossRefPubMedGoogle Scholar
  156. Prasad, T. N. V. K. V., & Elumalai, E. K. (2011). Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine, 1, 439–442.  https://doi.org/10.1016/S2221-1691(11)60096-8.CrossRefPubMedPubMedCentralGoogle Scholar
  157. Prashanth, S., Menaka, I., Muthezhilan, R., & Sharma, N. K. (2011). Synthesis of plant-mediated silver nano particles using medicinal plant extract and evaluation of its anti microbial activities. International Journal of Engineering, Science and Technology, 3, 6235–6250.Google Scholar
  158. Prathna, T. C., Chandrasekaran, N., Raichur, A. M., & Mukherjee, A. (2011). Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377, 212–216.  https://doi.org/10.1016/J.COLSURFA.2010.12.047.CrossRefGoogle Scholar
  159. Priya, M. M., Selvi, B. K., & Paul, J. A. J. (2011). Green synthesis of silver nanoparticles from the leaf extracts of Euphorbia hirta and Nerium indicum. Digest Journal of Nanomaterials and Biostructures, 6, 869–877.Google Scholar
  160. Qais, F. A., Samreen, A. I., et al. (2018). Broad-spectrum inhibitory effect of green synthesised silver nanoparticles from Withania somnifera (L.) on microbial growth, biofilm and respiration: A putative mechanistic approach. IET Nanobiotechnology, 12, 325–335.  https://doi.org/10.1049/iet-nbt.2017.0193.CrossRefGoogle Scholar
  161. Rahaman Mollick, M. M., Bhowmick, B., Mondal, D., et al. (2014). Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route. RSC Advances, 4, 37838.  https://doi.org/10.1039/C4RA07285E.CrossRefGoogle Scholar
  162. Rai, M., Ingle, A. P., Birla, S., et al. (2016). Strategic role of selected noble metal nanoparticles in medicine. Critical Reviews in Microbiology, 42, 696–719.  https://doi.org/10.3109/1040841X.2015.1018131.CrossRefPubMedGoogle Scholar
  163. Raja, A., Ashokkumar, S., Pavithra Marthandam, R., et al. (2018). Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. Journal of Photochemistry and Photobiology B: Biology, 181, 53–58.  https://doi.org/10.1016/j.jphotobiol.2018.02.011.CrossRefGoogle Scholar
  164. Rajan, A., Vilas, V., & Philip, D. (2015). Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. Journal of Molecular Liquids, 212, 331–339.  https://doi.org/10.1016/j.molliq.2015.09.013.CrossRefGoogle Scholar
  165. Rajendran, R., Ganesan, N., Balu, S. K., et al. (2015). Green synthesis, characterization, antimicrobial and cytotoxic effects of silver nanoparticles using Origanum heracleoticum L. leaf extract. International Journal of Pharmacy and Pharmaceutical Sciences, 7, 288–293.Google Scholar
  166. Ramamurthy, C. H., Padma, M., mariya samadanam, I. D., et al. (2013). The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids and Surfaces. B, Biointerfaces, 102, 808–815.  https://doi.org/10.1016/j.colsurfb.2012.09.025.CrossRefPubMedGoogle Scholar
  167. Ramesh, C., Mohan Kumar, K. T., Latha, N., & Ragunathan, V. (2012). Green synthesis of Cr2O3 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Escherichia coli. Current Nanoscience, 8, 603–607.  https://doi.org/10.2174/157341312801784366.CrossRefGoogle Scholar
  168. Ramesh, P. S., Kokila, T., & Geetha, D. (2015). Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochimica Acta – Part A Molecular and Biomolecular Spectroscopy, 142, 339–343.  https://doi.org/10.1016/j.saa.2015.01.062.CrossRefGoogle Scholar
  169. Rao, P., & Gan, S. (2015). Recent advances in nanotechnology-based diagnosis and treatments of diabetes. Current Drug Metabolism, 16, 371–375.  https://doi.org/10.2174/1389200215666141125120215.CrossRefPubMedGoogle Scholar
  170. Rao, M. L., & Savithramma, N. (2011). Biological synthesis of silver nanoparticles using Svensonia hyderabadensis leaf extract and evaluation of their antimicrobial efficacy. Journal of Pharmaceutical Sciences and Research, 3, 1117–1121.Google Scholar
  171. Rao, N. H., Lakshmidevi, N., Pammi, S. V. N., et al. (2016). Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Materials Science and Engineering: C, 62, 553–557.  https://doi.org/10.1016/j.msec.2016.01.072.CrossRefGoogle Scholar
  172. Rastogi, L., & Arunachalam, J. (2011). Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Materials Chemistry and Physics, 129, 558–563.  https://doi.org/10.1016/j.matchemphys.2011.04.068.CrossRefGoogle Scholar
  173. Rathi Sre, P. R., Reka, M., Poovazhagi, R., et al. (2015). Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochimica Acta Part A Molecula and Biomolecular Spectroscopy, 135, 1137–1144.  https://doi.org/10.1016/j.saa.2014.08.019.CrossRefGoogle Scholar
  174. Rauwel, P., & Rauwel, E. (2017). Emerging trends in nanoparticle synthesis using plant extracts for biomedical applications. Global Journal of Nanomedicine, 1, 555562.CrossRefGoogle Scholar
  175. Ravichandran, V., Vasanthi, S., Shalini, S., et al. (2016). Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Materials Letters, 180, 264–267.  https://doi.org/10.1016/j.matlet.2016.05.172.CrossRefGoogle Scholar
  176. Reddy, N. J., Nagoor Vali, D., Rani, M., & Rani, S. S. (2014). Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Science and Engineering: C, 34, 115–122.  https://doi.org/10.1016/j.msec.2013.08.039.CrossRefGoogle Scholar
  177. Rout, Y., Behera, S., Ojha, A. K., & Nayak, P. L. (2012). Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. Journal of Microbiology and Antimicrobials, 4, 103–109.  https://doi.org/10.5897/JMA11.060.CrossRefGoogle Scholar
  178. Roy, K., Sarkar, C. K., & Ghosh, C. K. (2015). Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: Spectral analysis of the particles and antibacterial study. Applied Nanoscience, 5, 945–951.  https://doi.org/10.1007/s13204-014-0393-3.CrossRefGoogle Scholar
  179. Sadeghi, B. (2015). Zizyphus mauritiana extract-mediated green and rapid synthesis of gold nanoparticles and its antibacterial activity. Journal of Nanostructure in Chemistry, 5, 265–273.  https://doi.org/10.1007/s40097-015-0157-y.CrossRefGoogle Scholar
  180. Sadeghi, B., Rostami, A., & Momeni, S. S. (2015). Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochimica Acta – Part A Molecular and Biomolecular Spectroscopy, 134, 326–332.  https://doi.org/10.1016/j.saa.2014.05.078.CrossRefGoogle Scholar
  181. Salunke, G. R., Ghosh, S., Santosh Kumar, R. J., et al. (2014). Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. International Journal of Nanomedicine, 9, 2635–2653.  https://doi.org/10.2147/IJN.S59834.CrossRefPubMedPubMedCentralGoogle Scholar
  182. Sankar, R., Karthik, A., Prabu, A., et al. (2013). Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids and Surfaces. B, Biointerfaces, 108, 80–84.  https://doi.org/10.1016/j.colsurfb.2013.02.033.CrossRefPubMedGoogle Scholar
  183. Santhoshkumar, T., Rahuman, A. A., Jayaseelan, C., et al. (2014). Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine, 7, 968–976.  https://doi.org/10.1016/S1995-7645(14)60171-1.CrossRefPubMedGoogle Scholar
  184. Santhoshkumar, J., Kumar, S. V., & Rajeshkumar, S. (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies, 3, 459–465.  https://doi.org/10.1016/j.reffit.2017.05.001.CrossRefGoogle Scholar
  185. Sathishkumar, M., Sneha, K., Kwak, I. S., et al. (2009a). Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. Journal of Hazardous Materials, 171, 400–404.  https://doi.org/10.1016/j.jhazmat.2009.06.014.CrossRefPubMedGoogle Scholar
  186. Sathishkumar, M., Sneha, K., Won, S. W., et al. (2009b). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces. B, Biointerfaces, 73, 332–338.  https://doi.org/10.1016/j.colsurfb.2009.06.005.CrossRefPubMedGoogle Scholar
  187. Sathishkumar, M., Sneha, K., & Yun, Y.-S. S. (2010). Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource Technology, 101, 7958–7965.  https://doi.org/10.1016/j.biortech.2010.05.051.CrossRefPubMedGoogle Scholar
  188. Saxena, A., Tripathi, R. M., & Singh, R. P. (2010). Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Digest Journal of Nanomaterials and Biostructures, 5, 427–432.Google Scholar
  189. Saxena, A., Tripathi, R. M., Zafar, F., & Singh, P. (2012). Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Materials Letters, 67, 91–94.  https://doi.org/10.1016/j.matlet.2011.09.038.CrossRefGoogle Scholar
  190. Shah, M., Fawcett, D., Sharma, S., et al. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials (Basel), 8, 7278–7308.  https://doi.org/10.3390/ma8115377.CrossRefGoogle Scholar
  191. Shanmugam, N., Rajkamal, P., Cholan, S., et al. (2014). Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Applied Nanoscience, 4, 881–888.  https://doi.org/10.1007/s13204-013-0271-4.CrossRefGoogle Scholar
  192. Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145, 83–96.  https://doi.org/10.1016/j.cis.2008.09.002.CrossRefPubMedGoogle Scholar
  193. Sharma, G., Soni, R., & Jasuja, N. D. (2017). Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayita. Journal of Taibah University for Science, 11, 471–477.  https://doi.org/10.1016/j.jtusci.2016.09.004.CrossRefGoogle Scholar
  194. Shende, S., Ingle, A. P., Gade, A., & Rai, M. (2015). Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World Journal of Microbiology and Biotechnology, 31, 865–873.  https://doi.org/10.1007/s11274-015-1840-3.CrossRefPubMedGoogle Scholar
  195. Shi, H. G., Farber, L., Michaels, J. N., et al. (2003). Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques. Pharmaceutical Research, 20, 479–484.  https://doi.org/10.1023/A:1022676709565.CrossRefPubMedGoogle Scholar
  196. Singh, A., Jain, D., Upadhyay, M. K., & Khandelwal, N. (2010). Green synthesis of silver nanoparticles using Argemone mexicana leaf extracts and evaluation of their antimicrobial activities. Digest Journal of Nanomaterials and Biostructures, 5, 483–489.Google Scholar
  197. Singh, P., Kim, Y.-J., Zhang, D., & Yang, D.-C. (2016a). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34, 588–599.  https://doi.org/10.1016/j.tibtech.2016.02.006.CrossRefPubMedGoogle Scholar
  198. Singh, P., Kim, Y. J., Wang, C., et al. (2016b). The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. Artif Cells, Nanomedicine and Biotechnology, 44, 1150–1157.  https://doi.org/10.3109/21691401.2015.1011809.CrossRefGoogle Scholar
  199. Singh, P., Kim, Y. J., Wang, C., et al. (2016c). Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artificial Cells, Nanomedicine and Biotechnology, 44, 811–816.  https://doi.org/10.3109/21691401.2015.1008514.CrossRefGoogle Scholar
  200. Sintubin, L., Verstraete, W., & Boon, N. (2012). Biologically produced nanosilver: Current state and future perspectives. Biotechnology and Bioengineering, 109, 2422–2436.  https://doi.org/10.1002/bit.24570.CrossRefPubMedGoogle Scholar
  201. Sivakumar, P., Nethradevi, C., & Renganathan, S. (2012). Synthesis of silver nanoparticles using Lantana camara fruit extract and its effect on pathogens. Asian Journal of Pharmaceutical and Clinical Research, 5, 77–101.Google Scholar
  202. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.  https://doi.org/10.1016/j.jcis.2004.02.012.CrossRefPubMedGoogle Scholar
  203. Song, J. Y., Jang, H.-K. K., & Kim, B. S. (2009). Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochemistry, 44, 1133–1138.  https://doi.org/10.1016/j.procbio.2009.06.005.CrossRefGoogle Scholar
  204. Sulaiman, G. M., Mohammed, W. H., Marzoog, T. R., et al. (2013). Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pacific Journal of Tropical Biomedicine, 3, 58–63.  https://doi.org/10.1016/S2221-1691(13)60024-6.CrossRefPubMedPubMedCentralGoogle Scholar
  205. Sundrarajan, M., & Gowri, S. (2011). Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Letters, 8, 447–451.Google Scholar
  206. Suresh, G., Gunasekar, P. H., Kokila, D., et al. (2014). Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochimica Acta – Part A Molecular and Biomolecular Spectroscopy, 127, 61–66.  https://doi.org/10.1016/j.saa.2014.02.030.CrossRefGoogle Scholar
  207. Suzuki, E. (2002). High-resolution scanning electron microscopy of immunogold-labelled cells by the use of thin plasma coating of osmium. Journal of Microscopy, 208, 153–157.  https://doi.org/10.1046/j.1365-2818.2002.01082.x.CrossRefPubMedGoogle Scholar
  208. Tiede, K., Boxall, A. B. A., Tear, S. P., et al. (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Additives and Contaminants Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 25, 795–821.  https://doi.org/10.1080/02652030802007553.CrossRefGoogle Scholar
  209. Umashankari, J., Inbakandan, D., Ajithkumar, T. T., & Balasubramanian, T. (2012). Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquatic Biosystems, 8, 1–7.  https://doi.org/10.1186/2046-9063-8-11.CrossRefGoogle Scholar
  210. Vahabi, K., Mansoori, G. A., & Karimi, S. (2011). Biosynthesis of silver nanoparticles by fungus Trichoderma Reesei (a route for large-scale production of AgNPs). Insciences Journal, 1, 65–79.  https://doi.org/10.5640/insc.010165.CrossRefGoogle Scholar
  211. Valodkar, M., Nagar, P. S., Jadeja, R. N., et al. (2011). Euphorbiaceae latex induced green synthesis of non-cytotoxic metallic nanoparticle solutions: A rational approach to antimicrobial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384, 337–344.  https://doi.org/10.1016/j.colsurfa.2011.04.015.CrossRefGoogle Scholar
  212. Vanaja, M., & Annadurai, G. (2013). Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied Nanoscience, 3, 217–223.  https://doi.org/10.1007/s13204-012-0121-9.CrossRefGoogle Scholar
  213. Varaprasad, T., Govindh, B., & Venkateswara Rao, B. (2017). Green synthesized cobalt nanoparticles using Asparagus racemosus root extract and evaluation of antibacterial activity. International Journal of ChemTech Research, 10, 339–345.Google Scholar
  214. Veeraputhiran, V. (2013). Bio-catalytic synthesis of silver nanoparticles. International Journal of ChemTech Research, 5, 2555–2562.Google Scholar
  215. Veerasamy, R., Xin, T. Z., Gunasagaran, S., et al. (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 15, 113–120.  https://doi.org/10.1016/j.jscs.2010.06.004.CrossRefGoogle Scholar
  216. Velmurugan, P., Anbalagan, K., Manosathyadevan, M., et al. (2014a). Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess and Biosystems Engineering, 37, 1935–1943.  https://doi.org/10.1007/s00449-014-1169-6.CrossRefPubMedGoogle Scholar
  217. Velmurugan, P., Iydroose, M., Lee, S.-M., et al. (2014b). Synthesis of silver and gold nanoparticles using cashew nut shell liquid and its antibacterial activity against fish pathogens. Indian Journal of Microbiology, 54, 196–202.  https://doi.org/10.1007/s12088-013-0437-5.CrossRefPubMedGoogle Scholar
  218. Vesenka, J., Manne, S., Giberson, R., et al. (1993). Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. Biophysical Journal, 65, 992–997.  https://doi.org/10.1016/S0006-3495(93)81171-8.CrossRefPubMedPubMedCentralGoogle Scholar
  219. Vijayakumar, M., Priya, K., Nancy, F. T., et al. (2013). Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Industrial Crops and Products, 41, 235–240.  https://doi.org/10.1016/j.indcrop.2012.04.017.CrossRefGoogle Scholar
  220. Vijayakumar, S., Krishnakumar, C., Arulmozhi, P., et al. (2018a). Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microbial Pathogenesis, 116, 44–48.  https://doi.org/10.1016/j.micpath.2018.01.003.CrossRefPubMedGoogle Scholar
  221. Vijayakumar, S., Mahadevan, S., Arulmozhi, P., et al. (2018b). Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Materials Science in Semiconductor Processing, 82, 39–45.  https://doi.org/10.1016/j.mssp.2018.03.017.CrossRefGoogle Scholar
  222. Vijayan, S. R., Santhiyagu, P., Singamuthu, M., et al. (2014). Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, turbinaria conoides, and their antimicrofouling activity. Scientific World Journal, 2014, 1–10.  https://doi.org/10.1155/2014/938272.CrossRefGoogle Scholar
  223. Vijayan, R., Joseph, S., & Mathew, B. (2018). Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artificial Cells, Nanomedicine, Biotechnology, 46, 861–871.  https://doi.org/10.1080/21691401.2017.1345930.CrossRefPubMedGoogle Scholar
  224. Vilas, V., Philip, D., & Mathew, J. (2016). Biosynthesis of Au and Au/Ag alloy nanoparticles using Coleus aromaticus essential oil and evaluation of their catalytic, antibacterial and antiradical activities. Journal of Molecular Liquids, 221, 179–189.  https://doi.org/10.1016/j.molliq.2016.05.066.CrossRefGoogle Scholar
  225. Yallappa, S., Manjanna, J., & Dhananjaya, B. L. (2015). Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy, 137, 236–243.  https://doi.org/10.1016/j.saa.2014.08.030.CrossRefGoogle Scholar
  226. Yang, N., & Li, W. H. (2013). Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Industrial Crops and Products, 48, 81–88.  https://doi.org/10.1016/j.indcrop.2013.04.001.CrossRefGoogle Scholar
  227. Zahir, A. A., Chauhan, I. S., Bagavan, A., et al. (2015). Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G 0 /G 1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrobial Agents and Chemotherapy, 59, 4782–4799.  https://doi.org/10.1128/AAC.00098-15.CrossRefPubMedPubMedCentralGoogle Scholar
  228. Zargar, M., Hamid, A. A., Bakar, F. A., et al. (2011). Green synthesis and antibacterial effect of silver nanoparticles using vitex negundo L. Molecules, 16, 6667–6676.  https://doi.org/10.3390/molecules16086667.CrossRefPubMedPubMedCentralGoogle Scholar
  229. Zharov, V. P., Kim, J.-W., Curiel, D. T., & Everts, M. (2005). Self-assembling nanoclusters in living systems: Application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine: Nanotechnology, Biology and Medicine, 1, 326–345.  https://doi.org/10.1016/j.nano.2005.10.006.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Faizan Abul Qais
    • 1
  • Samreen
    • 1
  • Iqbal Ahmad
    • 1
  1. 1.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations