Advertisement

Nanoparticles as New Emerging Antibacterials: Potentials and Limitations

  • Fohad Mabood HusainEmail author
  • Mohammad Shavez Khan
  • Saba Siddiqui
  • Altaf Khan
  • Mohammed Arshad
  • Abdullah A. Alyousef
  • Mashihur Rahman
  • Nasser A. Al-Shabib
  • Iqbal Ahmad
Chapter

Abstract

The use and abuse of antimicrobials have led to the emergence of multi-drug resistant (MDR) bacteria and the spread of resistant organisms and is one of the major global threats for healthcare professionals. Alternatives to conventional antibiotics for combating resistant infections are the need of the hour. Nanotechnology-based drugs offer a ray of hope in the fight against MDR bacteria for patients as well as clinicians. Diverse types of nanomaterials have been synthesized from metallic particles with promising antibacterial activity. Efficacy of these nanomaterials depends on their interactions with bacterial cells and their mechanisms of action differ based on their physico-chemical properties. Development of novel and potent nanoantimicrobials requires in-depth knowledge of the physico-chemical properties of nanoparticles and the biological characteristics of bacteria. However, there is still a long way to go as there are major issues related to the toxicity and stability of nanoparticles. Moreover, the economic feasibility of transferring the technology from bench to bedside needs to be addressed. The present review highlights the antibacterial effects of nanoparticles, their mechanisms of action, factors affecting the activity of NPs and challenges of ongoing and future research.

Keywords

Nanoparticle Drug resistance MDR Biofilm 

Notes

Acknowledgement

The authors are grateful to the King Saud University and Aligarh Muslim University for providing research facilities.

References

  1. Acharya, D., Singha, K. M., Pandey, P., Mohanta, B., Rajkumari, J., & Singha, L. P. (2018). Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Scientific Reports, 8(1), 201.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Al-Shabib, N. A., Husain, F. M., Ahmed, F., et al. (2016). Biogenic synthesis of zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Scientific Reports, 6.  https://doi.org/10.1038/srep36761.
  3. Al-Shabib, N. A., Husain, F. M., Ahmad, N., et al. (2018a). Facile synthesis of Tin Oxide hollow nanoflowers interfering with quorum sensing-regulated functions and bacterial biofilms. Journal of Nanomaterials, 2018, 1–11.  https://doi.org/10.1155/2018/6845026.CrossRefGoogle Scholar
  4. Al-Shabib, N. A., Husain, F. M., Ahmed, F., et al. (2018b). Low temperature synthesis of superparamagnetic iron oxide (Fe3O4) nanoparticles and their ROS mediated inhibition of biofilm formed by food-associated bacteria. Frontiers in Microbiology, 9, 2567.  https://doi.org/10.3389/fmicb.2018.02567.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Al-Shabib, N. A., Husain, F. M., Hassan, I., et al. (2018c). Biofabrication of zinc oxide nanoparticle from ochradenus baccatus leaves: Broad-spectrum antibiofilm activity, protein binding studies, and in vivo toxicity and stress studies. Journal of Nanomaterials, 2018, 1.  https://doi.org/10.1155/2018/8612158.CrossRefGoogle Scholar
  6. Andrade, F., Rafael, D., Videira, M., Ferreira, D., Sosnik, A., & Sarmento, B. (2013a). Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Advanced Drug Delivery Reviews, 65, 1816–1827.  https://doi.org/10.1016/j.addr.2013.07.020.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Andrade, F., Rafael, D., Videira, M., et al. (2013b). Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Advanced Drug Delivery Reviews, 65, 1816–1827.  https://doi.org/10.1016/j.addr.2013.07.020.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ansari, M. A., Khan, H. M., Khan, A. A., Pal, R., & Cameotra, S. S. (2013). Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates. Journal of Nanoparticle Research.Google Scholar
  9. Ansari, M. A., Khan, H. M., Khan, A. A., et al. (2014). Interaction of Al 2 O 3 nanoparticles with Escherichia coli and their cell envelope biomolecules. Journal of Applied Microbiology, 116, 772–783.  https://doi.org/10.1111/jam.12423.CrossRefPubMedGoogle Scholar
  10. Antonelli, M., De Pascale, G., Ranieri, V. M., et al. (2012). Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (AgTive®) vs conventional catheters in intensive care unit patients. The Journal of Hospital Infection, 82, 101–107.  https://doi.org/10.1016/j.jhin.2012.07.010.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Argueta-Figueroa, L., Morales-Luckie, R. A., Scougall-Vilchis, R. J., & Olea-Mejía, O. F. (2014). Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic cu-Ni nanoparticles for potential use in dental materials. Prog Nat Sci Mater Int, 24, 321–328.CrossRefGoogle Scholar
  12. Ashfaq, M., Verma, N., & Khan, S. (2016). Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: A novel potential antibiotic material. Materials Science and Engineering: C, 59, 938–947.CrossRefGoogle Scholar
  13. Baptista, P. V., McCusker, M. P., Carvalho, A., et al. (2018). Nano-strategies to fight multidrug resistant bacteria-“A Battle of the Titans”. Frontiers in Microbiology, 9, 1–26.  https://doi.org/10.3389/fmicb.2018.01441.CrossRefGoogle Scholar
  14. Beyth, N., Houri-haddad, Y., Domb, A., et al. (2015). Alternative antimicrobial approach: Nano-antimicrobial materials. Evidence-based Complementary and Alternative Medicine, 2015, 2015.  https://doi.org/10.1155/2015/246012.CrossRefGoogle Scholar
  15. Bjarnsholt, T. (2013). The role of bacterial biofilms in chronic infections. APMIS, 121, 1–58.  https://doi.org/10.1111/apm.12099.CrossRefGoogle Scholar
  16. Brown, A., Smith, K., Samuels, T. A., Lu, J., Obare, S., & Scott, M. E. (2012). Nanoparticles functionalized with Ampicillin destroy multiple antibiotic resistant isolates of Pseudomonas aeruginosa, enterobacter aerogenes and Methicillin resistant Staphylococcus aureus. Applied and Environmental Microbiology.  https://doi.org/10.1128/AEM.06513-11.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Burygin, G. L., Khlebtsov, B. N., Shantrokha, A. N., et al. (2009). On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Research Letters, 4, 794–801.  https://doi.org/10.1007/s11671-009-9316-8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Caster, J. M., Patel, A. N., Zhang, T., & Wang, A. (2017). Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 9, 1.  https://doi.org/10.1002/wnan.1416.CrossRefGoogle Scholar
  19. Cavassin, E. D., de Figueiredo, L. F., Otoch, J. P., Seckler, M. M., de Oliveira, R. A., Franco, F. F., Marangoni, V. S., Zucolotto, V., Levin, A. S., & Costa, S. F. (2015). Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of Nanobiotechnology, 13(1), 64.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cha, S. H., Hong, J., McGuffie, M., Yeom, B., VanEpps, J. S., & Kotov, N. A. (2015). Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano, 9(9), 9097–9105.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chakraborti, S., Mandal, A. K., Sarwar, S., Singh, P., Chakraborty, R., & Chakrabarti, P. (2014). Bactericidal effect of polyethyleneimine capped ZnO nanoparticles on multiple antibiotic resistant bacteria harboring genes of high-pathogenicity island. Colloids and Surfaces. B, Biointerfaces, 121, 44–53.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chang, T. Y., Chen, C. C., Cheng, K. M., Chin, C. Y., Chen, Y. H., Chen, X. A., Sun, J. R., Young, J. J., & Chiueh, T. S. (2017). Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii. Colloids and Surfaces. B, Biointerfaces, 155, 61–70.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chaurasia, A. K., Thorat, N. D., Tandon, A., Kim, J. H., Park, S. H., & Kim, K. K. (2016). Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria. Scientific Reports, 6, 1–13.CrossRefGoogle Scholar
  24. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284(80), 1318.  https://doi.org/10.1126/science.284.5418.1318.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Courvalin, P. (2016). Why is antibiotic resistance a deadly emerging disease? Clinical Microbiology and Infection, 22, 405–407.  https://doi.org/10.1016/j.cmi.2016.01.012.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lü, X., & Jiang, X. (2012). The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 33(7), 2327–2333.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1–17.  https://doi.org/10.3389/fmicb.2016.01831.CrossRefGoogle Scholar
  28. De Jong, W. H. (2008). 10.0000@www.iumj.indiana.edu@generic-B29BB9CC780E.pdf. 3:133–149. https://  https://doi.org/10.2147/IJN.S596
  29. De Matteis, V. (2017). Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics, 5.  https://doi.org/10.3390/toxics5040029.PubMedCentralCrossRefGoogle Scholar
  30. Ding, F., Songkiatisak, P., Cherukuri, P. K., Huang, T., & Xu, X. H. (2018). Size-Dependent Inhibitory Effects of Antibiotic Drug Nanocarriers against Pseudomonas aeruginosa. ACS omega, 3(1), 1231–1243.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Djafari, J., Marinho, C., Santos, T., Igrejas, G., Torres, C., Capelo, J. L., Poeta, P., Lodeiro, C., & Fernández-Lodeiro, J. (2016). New synthesis of gold-and silver-based nano-tetracycline composites. ChemistryOpen, 5(3), 206–212.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Doi, Y., Adams-Haduch, J. M., Peleg, A. Y., & D’Agata, E. M. C. (2012). The role of horizontal gene transfer in the dissemination of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in an endemic setting. Diagnostic Microbiology and Infectious Disease, 74, 34–38.  https://doi.org/10.1016/j.diagmicrobio.2012.05.020.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dos Santos, V. E., Filho, A. V., Ribeiro Targino, A. G., et al. (2014). A new “silver-Bullet” to treat caries in children – Nano silver fluoride: A randomised clinical trial. Journal of Dentistry, 42, 945–951.  https://doi.org/10.1016/j.jdent.2014.05.017.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Drulis-Kawa, Z., & Dorotkiewicz-Jach, A. (2010). Liposomes as delivery systems for antibiotics. International Journal of Pharmaceutics, 387, 187–198.  https://doi.org/10.1016/j.ijpharm.2009.11.033.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ehsan, S., & Sajjad, M. (2017). Bioinspired synthesis of zinc oxide nanoparticle and its combined efficacy with different antibiotics against multidrug resistant bacteria. Journal of Biomaterials and Nanobiotechnology., 8(02), 159.CrossRefGoogle Scholar
  36. El-Zowalaty, M. E., Al-Ali, S. H. H., Husseiny, M. I., Geilich, B. M., Webster, T. J., & Hussein, M. Z. (2015). The ability of streptomycin-loaded chitosancoated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. International Journal of Nanomedicine, 10, 3269–3274.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Esmaeillou, M., Zarrini, G., & Rezaee, M. A. (2017). Vancomycin capped with silver Nanoparticles as an antibacterial agent against multi-drug resistance bacteria. Advanced pharmaceutical bulletin., 7(3), 479.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fernandes, P., & ScienceDirect. (2015). The global challenge of new classes of antibacterial agents: An industry perspective. Current Opinion in Pharmacology, 24, 7–11.  https://doi.org/10.1016/j.coph.2015.06.003.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Foster, H. A., Ditta, I. B., Varghese, S., & Steele, A. (2011). Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology, 90, 1847–1868.  https://doi.org/10.1007/s00253-011-3213-7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Galanzha, E. I., Shashkov, E., Sarimollaoglu, M., Beenken, K. E., Basnakian, A. G., Shirtliff, M. E., Kim, J. W., Smeltzer, M. S., & Zharov, V. P. (2012). In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles. PLoS One, 7(9), e45557.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gholipourmalekabadi, M., Mobaraki, M., Ghaffari, M., & Zarebkohan, A. (2017). Send orders for print-reprints and e-prints to reprints@benthamscience.ae Targeted Drug Delivery Based on Gold Nanoparticle Derivatives Targeted Drug Delivery Based on Gold Nanoparticle Derivatives.  https://doi.org/10.2174/138161282366617041910541.
  42. Guo, L., Yuan, W., Lu, Z., & Li, C. M. (2013). Polymer/nanosilver composite coatings for antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 69–83.  https://doi.org/10.1016/j.colsurfa.2012.12.029.CrossRefGoogle Scholar
  43. Hadiya, S., Liu, X., & Abd El-Hammed, W., et al. (2018). Levofloxacin-loaded nanoparticles decrease emergence of fluoroquinolone resistance in Escherichia coli. Microb Drug Resist 00:mdr.2017.0304.  https://doi.org/10.1089/mdr.2017.0304.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hagens, W. I., Oomen, A. G., de Jong, W. H., et al. (2007). What do we (need to) know about the kinetic properties of nanoparticles in the body? Regulatory Toxicology and Pharmacology, 49, 217–229.  https://doi.org/10.1016/j.yrtph.2007.07.006.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., et al. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30, 499–511.  https://doi.org/10.1016/j.tibtech.2012.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Hemeg, H. A. (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine, 12, 8211–8225.  https://doi.org/10.2147/IJN.S132163.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Huang, Y., Yu, F., Park, Y. S., et al. (2010). Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials, 31, 9086–9091.  https://doi.org/10.1016/j.biomaterials.2010.08.046.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Huang, N., Chen, X., Zhu, X., Xu, M., & Liu, J. (2017). Ruthenium complexes/polypeptide self-assembled nanoparticles for identification of bacterial infection and targeted antibacterial research. Biomaterials, 141, 296–313.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156, 128–145.  https://doi.org/10.1016/j.jconrel.2011.07.002.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Husain, F. M., & Ahmad, I. (2013). Doxycycline interferes with quorum sensing-mediated virulence factors and biofilm formation in Gram-negative bacteria. World Journal of Microbiology and Biotechnology, 29, 29.  https://doi.org/10.1007/s11274-013-1252-1.CrossRefGoogle Scholar
  51. Hussain, A., Alajmi, M., Khan, M. A., Pervez, A., Ahmed, F., Amir, Samira, Husain, F. M., Khan, M. S., Gouse, S. K., Hassan, I., Khan, R. A., & Rehman, M. T. (2019). Biosynthesized silver nanoparticle (AgNP) from pandanus odorifer leaf extract exhibits anti-metastasis and Anti-Biofilm potentialso title. Frontiers in Microbiology, 10.  https://doi.org/10.3389/fmicb.2019.00008.
  52. Hwang, T. J., Carpenter, D., & Kesselheim, A. S. (2015). Paying for innovation: Reimbursement incentives for antibiotics. Science Translational Medicine, 7, 7–10.CrossRefGoogle Scholar
  53. Jakobsen, T. H., Tolker-Nielsen, T., & Givskov, M. (2017). Bacterial biofilm control by perturbation of bacterial signaling processes. International Journal of Molecular Sciences, 18.  https://doi.org/10.3390/ijms18091970.PubMedCentralCrossRefGoogle Scholar
  54. Jamil, B., & Imran, M. (2018). Factors pivotal for designing of nanoantimicrobials: An exposition. Critical Reviews in Microbiology, 44, 79–94.  https://doi.org/10.1080/1040841X.2017.1313813.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Jankauskaitė, V., Vitkauskienė, A., Lazauskas, A., et al. (2016). Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. International Journal of Pharmaceutics, 511, 90–97.  https://doi.org/10.1016/j.ijpharm.2016.06.121.CrossRefGoogle Scholar
  56. Joost, U., Juganson, K., Visnapuu, M., et al. (2015). Photocatalytic antibacterial activity of nano-TiO2(anatase)-based thin films: Effects on Escherichia coli cells and fatty acids. Journal of Photochemistry and Photobiology B: Biology, 142, 178–185.  https://doi.org/10.1016/j.jphotobiol.2014.12.010.CrossRefGoogle Scholar
  57. Khan, M. F., Ansari, A. H., Hameedullah, M., et al. (2016). Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Scientific Reports, 6.  https://doi.org/10.1038/srep27689.
  58. Khan, S., Khan, S. N., Meena, R., Dar, A. M., Pal, R., & Khan, A. U. (2017). Photoinactivation of multidrug resistant bacteria by monomeric methylene blue conjugated gold nanoparticles. Journal of Photochemistry and Photobiology, B: Biology, 174, 150–161.CrossRefGoogle Scholar
  59. Kim, D. Y., Kim, M., Shinde, S., Sung, J. S., & Ghodake, G. (2017). Cytotoxicity and antibacterial assessment of gallic acid capped gold nanoparticles. Colloids and Surfaces. B, Biointerfaces, 149, 162–167.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kruk, T., Szczepanowicz, K., Stefańska, J., Socha, R. P., & Warszyński, P. (2015). Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids and Surfaces. B, Biointerfaces, 128, 17–22.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces. B, Biointerfaces, 75, 1–18.  https://doi.org/10.1016/j.colsurfb.2009.09.001.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lai, H. Z., Chen, W. Y., Wu, C. Y., & Chen, Y. C. (2015). Potent antibacterial nanoparticles for pathogenic bacteria. ACS Applied Materials & Interfaces, 7(3), 2046–2054.CrossRefGoogle Scholar
  63. Lara, H. H., Ayala-Núñez, N. V., Turrent, L. D., & Padilla, C. R. (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26(4), 615–621.CrossRefGoogle Scholar
  64. LaSarre, B., & Federle, M. J. (2013). Exploiting quorum sensing to confuse bacterial pathogens. Microbiology and Molecular Biology Reviews, 77, 73–111.  https://doi.org/10.1128/MMBR.00046-12.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lee, J. H., Kim, Y. G., Cho, M. H., & Lee, J. (2014). ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiological Research, 169, 888–896.  https://doi.org/10.1016/j.micres.2014.05.005.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lee, W. S., Hsieh, T. C., Shiau, J. C., et al. (2017). Bio-Kil, a nano-based disinfectant, reduces environmental bacterial burden and multidrug-resistant organisms in intensive care units. Journal of Microbiology, Immunology, and Infection, 50, 737–746.  https://doi.org/10.1016/j.jmii.2016.04.008.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Li, Y., Zhang, W., Niu, J., & Chen, Y. (2012). Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal oxide nanoparticles. ACS Nano, 6, 1–22.CrossRefGoogle Scholar
  68. Mahon, E., Salvati, A., Baldelli Bombelli, F., et al. (2012). Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. Journal of Controlled Release, 161, 164–174.  https://doi.org/10.1016/j.jconrel.2012.04.009.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Mandal, B., Bhattacharjee, H., Mittal, N., et al. (2013). Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine: Nanotechnology, Biology and Medicine, 9, 474–491.  https://doi.org/10.1016/j.nano.2012.11.010.CrossRefGoogle Scholar
  70. Mohamed, M. M., Fouad, S. A., Elshoky, H. A., et al. (2017). Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. International Journal of Veterinary Science and Medicine, 5, 23–29.  https://doi.org/10.1163/18763332-03901005.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Nagy, A., Harrison, A., Sabbani, S., Munson, R. S., Jr., Dutta, P. K., & Waldman, W. J. (2011). Silver nanoparticles embedded in zeolite membranes: Release of silver ions and mechanism of antibacterial action. International Journal of Nanomedicine, 6, 1833.PubMedPubMedCentralGoogle Scholar
  72. Naik, K., & Kowshik, M. (2014). Anti-quorum sensing activity of AgCl-TiO2 nanoparticles with potential use as active food packaging material. Journal of Applied Microbiology, 117, 972–983.  https://doi.org/10.1111/jam.12589.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Niemirowicz, K., Swiecicka, I., Wilczewska, A. Z., Misztalewska, I., Kalska-Szostko, B., Bienias, K., et al. (2014). Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa. International Journal of Nanomedicine, 9, 2217–2224.  https://doi.org/10.2147/IJN.S56588.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ocsoy, I., Yusufbeyoglu, S., Yılmaz, V., McLamore, E. S., Ildız, N., & Ülgen, A. (2017). DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-resistant Staphylococcus aureus. Colloids and Surfaces. B, Biointerfaces, 159, 16–22.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Otari, S. V., Patil, R. M., Waghmare, S. R., Ghosh, S. J., & Pawar, S. H. (2013). A novel microbial synthesis of catalytically active Ag–alginate biohydrogel and its antimicrobial activity. Dalton Transactions, 42(27), 9966–9975.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Pan, W. Y., Huang, C. C., Lin, T. T., et al. (2016a). Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomedicine: Nanotechnology, Biology and Medicine, 12, 431–438.  https://doi.org/10.1016/j.nano.2015.11.014.CrossRefGoogle Scholar
  77. Pan, W. Y., Huang, C. C., Lin, T. T., Hu, H. Y., Lin, W. C., Li, M. J., & Sung, H. W. (2016b). Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 431–438.CrossRefGoogle Scholar
  78. Panáček, A., Kvítek, L., Smékalová, M., et al. (2018). Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology, 13, 65–71.  https://doi.org/10.1038/s41565-017-0013-y.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Payne, J. N., Waghwani, H. K., Connor, M. G., Hamilton, W., Tockstein, S., Moolani, H., Chavda, F., Badwaik, V., Lawrenz, M. B., & Dakshinamurthy, R. (2016). Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Frontiers in Microbiology, 7, 607.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Perez, F., Endimiani, A., Hujer, K. M., & Bonomo, R. A. (2007). The continuing challenge of ESBLs. Current Opinion in Pharmacology, 7, 459–469.  https://doi.org/10.1016/j.coph.2007.08.003.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Piddock, L. J. V. (2016). Assess drug-resistance phenotypes, not just genotypes. Nature Microbiology, 1, 16120.  https://doi.org/10.1038/nmicrobiol.2016.120.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Poma, A., & Giorgio, M. L. Di. (2008). 基因毒性综述.Pdf. 571–585.Google Scholar
  83. Potgieter, M. D., & Meidany, P. (2018). Evaluation of the penetration of nanocrystalline silver through various wound dressing mediums: An in vitro study. Burns, 44, 596–602.  https://doi.org/10.1016/j.burns.2017.10.011.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Poulikakos, P., Tansarli, G. S., & Falagas, M. E. (2014). Combination antibiotic treatment versus monotherapy for multidrug-resistant, extensively drug-resistant, and pandrug-resistant Acinetobacter infections: a systematic review. European Journal of Clinical Microbiology & Infectious Diseases, 33, 1675–1685.  https://doi.org/10.1007/s10096-014-2124-9.CrossRefGoogle Scholar
  85. Pradeepa, V. S. M., Mutalik, S., Udaya Bhat, K., Huilgol, P., & Avadhani, K. (2016). Preparation of gold nanoparticles by novel bacterial exopolysaccharide for antibiotic delivery. Life Sciences, 153, 171–179.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Qayyum, S., Oves, M., & Khan, A. U. (2017). Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS One, 12, 1–18.  https://doi.org/10.1371/journal.pone.0181363.CrossRefGoogle Scholar
  87. Rai, M., Ingle, A. P., Gaikwad, S., et al. (2016). Nanotechnology based anti-infectives to fight microbial intrusions. Journal of Applied Microbiology, 120, 527–542.  https://doi.org/10.1111/jam.13010.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Reddy, L. S., Nisha, M. M., Joice, M., & Shilpa, P. N. (2014a). Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharmaceutical Biology, 52, 1388–1397.  https://doi.org/10.3109/13880209.2014.893001.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Reddy, L. S., Nisha, M. M., Joice, M., & Shilpa, P. N. (2014b). Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharmaceutical Biology, 52(11), 1388–1397.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Reen, F. J., Gutiérrez-Barranquero, J. A., Parages, M. L., & O Gara, F. (2018). Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Applied Microbiology and Biotechnology, 102, 2063–2073.  https://doi.org/10.1007/s00253-018-8787-x.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Roy, A. S., Parveen, A., Koppalkar, A. R., & Prasad, M. A. (2010). Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. Journal of Biomaterials and Nanobiotechnology., 1(01), 37.CrossRefGoogle Scholar
  92. Rudramurthy, G. R., Swamy, M. K., Sinniah, U. R., & Ghasemzadeh, A. (2016). Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules, 21, 1–30.  https://doi.org/10.3390/molecules21070836.CrossRefGoogle Scholar
  93. Rutherford, S. T., Bassler, B. L., Delany, I., et al. (2014). Bacterial quorum sensing : Its role in virulence and possibilities for its Control. Cold Spring Harbor Perspectives in Medicine, 1;2(11).  https://doi.org/10.1101/cshperspect.a012427.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Saeb, A., Alshammari, A. S., Al-Brahim, H., & Al-Rubeaan, K. A. (2014). Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. Scientific World Journal, 704708.Google Scholar
  95. Saha, B., Bhattacharya, J., Mukherjee, A., Ghosh, A. K., Santra, C. R., & Dasgupta, A. K. K. P. (2007). In Vitro Structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Research Letters, 2, 614.PubMedCentralCrossRefGoogle Scholar
  96. Sandhiya, S., Dkhar, S. A., & Surendiran, A. (2009). Emerging trends of nanomedicine – an overview. Fundamental & Clinical Pharmacology, 23, 263–269.  https://doi.org/10.1111/j.1472-8206.2009.00692.x.CrossRefGoogle Scholar
  97. Shaikh, S., Rizvi, S. M. D., Shakil, S., et al. (2017). Synthesis and characterization of cefotaxime conjugated gold nanoparticles and their use to target drug-resistant CTX-M-Producing Bacterial Pathogens. Journal of Cellular Biochemistry, 118, 2802–2808.  https://doi.org/10.1002/jcb.25929.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Shaker, M. A., & Shaaban, M. I. (2017). Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: in vitro antibacterial study. International Journal of Pharmaceutics, 15;525(1), 71–84.CrossRefGoogle Scholar
  99. Siddiqi, K. S., Husen, A., & Rao, R. A. K. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of nanobiotechnology, 16, 14.  https://doi.org/10.1186/s12951-018-0334-5.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Singh, R., Smitha, M. S., & Singh, S. P. (2014). The role of nanotechnology in combating multi-drug resistant bacteria. Journal of Nanoscience and Nanotechnology, 14(7), 4745–4756.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Singh, B. N., Prateeksha, U. D. K., et al. (2017). Bactericidal, quorum quenching and anti-biofilm nanofactories: A new niche for nanotechnologists. Critical Reviews in Biotechnology, 37, 525–540.  https://doi.org/10.1080/07388551.2016.1199010.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Su, Y., Zheng, X., Chen, Y., et al. (2015a). Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Scientific Reports, 5, 1–11.  https://doi.org/10.1038/srep15824.CrossRefGoogle Scholar
  103. Su, Y., Zheng, X., Chen, Y., Li, M., & Liu, K. (2015b). Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Scientific Reports, 5, 15824.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Thapa, R., Bhagat, C., Shrestha, P., Awal, S., & Dudhagara, P. (2017). Enzyme-mediated formulation of stable elliptical silver nanoparticles tested against clinical pathogens and MDR bacteria and development of antimicrobial surgical thread. Annals of Clinical Microbiology and Antimicrobials, 16(1), 39.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Thorley, A. J., & Tetley, T. D. (2013). New perspectives in nanomedicine. Pharmacology & Therapeutics, 140, 176–185.  https://doi.org/10.1016/j.pharmthera.2013.06.008.CrossRefGoogle Scholar
  106. Ulloa-Ogaz, A. L., Piñón-Castillo, H. A., Muñoz-Castellanos, L. N., et al. (2017). Oxidative damage to Pseudomonas aeruginosa ATCC 27833 and Staphylococcus aureus ATCC 24213 induced by CuO-NPs. Environmental Science and Pollution Research, 24, 22048–22060.  https://doi.org/10.1007/s11356-017-9718-6.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Vinoj, G., Pati, R., Sonawane, A., & Vaseeharan, B. (2015). In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against proteus species. Antimicrobial Agents and Chemotherapy, 59, 763–771.  https://doi.org/10.1128/AAC.03047-14.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Wagh, M. S., Patil, R. H., Thombre, D. K., et al. (2013). Evaluation of anti-quorum sensing activity of silver nanowires. Applied Microbiology and Biotechnology, 97, 3593–3601.  https://doi.org/10.1007/s00253-012-4603-1.CrossRefGoogle Scholar
  109. Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249.  https://doi.org/10.2147/IJN.S121956.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Warheit, D. B. (2018). Hazard and risk assessment strategies for nanoparticle exposures: How far have we come in the past 10 years? [ version 1; referees: 2 approved]. Referee Status, 7, 1–14.  https://doi.org/10.12688/f1000research.12691.1.CrossRefGoogle Scholar
  111. Xie, S., Tao, Y., Pan, Y., et al. (2014). Biodegradable nanoparticles for intracellular delivery of antimicrobial agents. Journal of Controlled Release, 187, 101–117.  https://doi.org/10.1016/j.jconrel.2014.05.034.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Yang, C. C., & Mai, Y. W. (2014). Thermodynamics at the nanoscale: A new approach to the investigation of unique physicochemical properties of nanomaterials. Materials Science and Engineering R: Reports, 79, 1–40.  https://doi.org/10.1016/j.mser.2014.02.001.CrossRefGoogle Scholar
  113. Yang, L., Wen, Z., Junfeng, N., & Yongsheng, C. (2012). Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 6, 5164–5173.  https://doi.org/10.1021/nn300934k.CrossRefGoogle Scholar
  114. Zaidi, S., Misba, L., & Khan, A. U. (2017). Nano-therapeutics: A revolution in infection control in post antibiotic era. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 2281–2301.  https://doi.org/10.1016/j.nano.2017.06.015.CrossRefGoogle Scholar
  115. Zhang, W., Li, Y., Niu, J., & Chen, Y. (2013a). Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir, 29, 4647–4651.  https://doi.org/10.1021/la400500t.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Zhang, W., Li, Y., Niu, J., & Chen, Y. (2013b). Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir, 29(15), 4647–4651.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Zhang, Y., Zhu, P., Li, G., Wang, W., Chen, L., Lu, D. D., et al. (2015). Highly stable and re-dispersible nano cu hydrosols with sensitively size-dependent catalytic and antibacterial activities. Nanoscale, 7, 13775–13783.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Zhao, Y., Ye, C., Liu, W., Chen, R., & Jiang, X. (2014). Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew Chem Int, 53, 8127–8131.  https://doi.org/10.1002/anie.201401035.CrossRefGoogle Scholar
  119. Zhou, Z., Peng, S., Sui, M., Chen, S., Huang, L., Xu, H., & Jiang, T. (2018). Multifunctional nanocomplex for surface-enhanced Raman scattering imaging and near-infrared photodynamic antimicrobial therapy of vancomycin-resistant bacteria. Colloids and Surfaces. B, Biointerfaces, 161, 394–402.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Fohad Mabood Husain
    • 1
    Email author
  • Mohammad Shavez Khan
    • 2
  • Saba Siddiqui
    • 3
  • Altaf Khan
    • 4
  • Mohammed Arshad
    • 5
  • Abdullah A. Alyousef
    • 5
  • Mashihur Rahman
    • 6
  • Nasser A. Al-Shabib
    • 1
  • Iqbal Ahmad
    • 2
  1. 1.Department of Food Science and NutritionCollege of Food and Agriculture, King Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia
  3. 3.College of Agricultural SciencesIntegral UniversityLucknowIndia
  4. 4.Microbiology Unit, Central Research LaboratoryCollege of Pharmacy, King Saud UniversityRiyadhKingdom of Saudi Arabia
  5. 5.Department of Clinical Laboratory ScienceCollege of Applied Medical Sciences, King Saud UniversityRiyadhKingdom of Saudi Arabia
  6. 6.School of Life SciencesB.S. Abdur Rahman UniversityChennaiIndia

Personalised recommendations