Practical Applications of Bacteriophage Therapy: Biofilms to Bedside

  • Anna C. Jacobs
  • Jae Dugan
  • Chris Duplessis
  • Michael Rouse
  • Mike Deshotel
  • Mark Simons
  • Biswajit Biswas
  • Mikeljon Nikolich
  • Michael Stockelman
  • Stuart D. Tyner
  • Samandra Demons
  • Chase Watters


As the golden age of antibiotics crumbles away in the face of untreatable bacterial infections arising globally, novel, safe, and adaptable therapies are essential. Bacteriophages, co-discovered over 100 years ago by Félix d’Herelle, were widely utilized before the antibiotic era. Unable to compete with antibiotics in terms of price, manufacturing ease, and safety, phage use was largely terminated in the West, though clinical use has continued in the Eastern bloc. With rampant fears of a post-antibiotic era, phage has gained traction in the West and appears the ideal weapon to employ alongside and in conjunction with antibiotics. Up to 80% of human infections are caused by bacterial biofilms, and select phages have been reported to break up these bacterial cities via polysaccharide depolymerases and lysins, though quorum sensing can reduce phage receptors and increase resistance. Phage antibiotic synergy has been observed with specific antibiotic classes, where low levels of antibiotics cause bacterial filamentation and increased bacterial killing by phage. What has arisen from numerous animal infection models is that early treatment (post-infection) is critical to phage efficacy. With phage now being recognized as part of the human microbiome, the anti-inflammatory and apparent tolerized immune response to bacteriophage is fitting, though there are inflammatory concerns with increased endotoxin levels remaining following phage purification. Recent clinical studies using phage against a vast array of infections highlight the translational promise of this therapy.


Bacteriophage Phage antibiotic synergy Bacterial biofilms Bacteriophage clinical trials In vivo phage Neutralizing antibodies Microbiome Immune response 



This work was supported/funded by work unit number A1232. The views expressed are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Army, Department of Defense, nor the US Government. Some authors are service members of the US Government. This work was prepared as part of their official duties. Title 17 U.S.C. §105 provides that “Copyright protection under this title is not available for any work of the United States Government.” Title 17 U.S.C. §101 defines a US Government work as a work prepared by a military service member or employee of the US Government as part of that person’s official duties.


  1. Abedon, S. T. (2016). Bacteriophage exploitation of bacterial biofilms: Phage preference for less mature targets? FEMS Microbiology Letters, 363(3), fnv246.PubMedCrossRefGoogle Scholar
  2. Aghebati-Maleki, L., et al. (2016). Phage display as a promising approach for vaccine development. Journal of Biomedical Science, 23(1), 66.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmad, S. I. (2002). Treatment of post-burns bacterial infections by bacteriophages, specifically ubiquitous Pseudomonas spp. notoriously resistant to antibiotics. Medical Hypotheses, 58(4), 327–331.PubMedCrossRefGoogle Scholar
  4. Alemayehu, D., et al. (2012). Bacteriophages phiMR299-2 and phiNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio, 3(2), e00029–e00012.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alonso, J. C., Sarachu, A. N., & Grau, O. (1981). DNA gyrase inhibitors block development of Bacillus subtilis bacteriophage SP01. Journal of Virology, 39(3), 855–860.PubMedPubMedCentralGoogle Scholar
  6. Atterbury, R. J. (2009). Bacteriophage biocontrol in animals and meat products. Microbial Biotechnology, 2(6), 601–612.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Basu, S., et al. (2015). An in vivo wound model utilizing bacteriophage therapy of Pseudomonas aeruginosa biofilms. Ostomy/Wound Management, 61(8), 16–23.PubMedGoogle Scholar
  8. Bearden, C. M., Agarwal, A., Book, B. K., Vieira, C. A., Sidner, R. A., Ochs, H. D., Young, M., & Pescovitz, M. D. (2005a). Rituximab inhibits the in vivo primary and secondary antibody responses to a neoantigen bacteriophage phi X174. American Journal of Transplantation, 5, 50–57.PubMedCrossRefGoogle Scholar
  9. Bearden, C. M., et al. (2005b). Rituximab inhibits the in vivo primary and secondary antibody response to a neoantigen, bacteriophage phiX174. American Journal of Transplantation, 5(1), 50–57.PubMedCrossRefGoogle Scholar
  10. Bedi, M. S., Verma, V., & Chhibber, S. (2009). Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World Journal of Microbiology and Biotechnology, 25, 1145–1151.CrossRefGoogle Scholar
  11. Biswas, B., et al. (2002). Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infection and Immunity, 70(1), 204–210.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bocian, K., et al. (2016). LPS-activated monocytes are unresponsive to T4 phage and T4-generated Escherichia coli lysate. Frontiers in Microbiology, 7, 1356.PubMedPubMedCentralGoogle Scholar
  13. Borysowski, J., et al. (2010). The effects of T4 and A3/R phage preparations on whole-blood monocyte and neutrophil respiratory burst. Viral Immunology, 23(5), 541–544.PubMedCrossRefGoogle Scholar
  14. Borysowski, J., et al. (2017). A3R phage and Staphylococcus aureus lysate do not induce neutrophil degranulation. Viruses, 9(2), E36.PubMedCrossRefGoogle Scholar
  15. Breitbart, M., et al. (2003). Metagenomic analyses of an uncultured viral community from human feces. Journal of Bacteriology, 185(20), 6220–6223.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cao, F., et al. (2015). Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. BioMed Research International, 2015, 752930.PubMedPubMedCentralGoogle Scholar
  17. Capparelli, R., et al. (2007). Experimental phage therapy against Staphylococcus aureus in mice. Antimicrobial Agents and Chemotherapy, 51(8), 2765–2773.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carson, L., Gorman, S. P., & Gilmore, B. F. (2010). The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunology and Medical Microbiology, 59(3), 447–455.PubMedCrossRefGoogle Scholar
  19. Chan, B. K., et al. (2016). Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Scientific Reports, 6, 26717.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chao, L., Levin, B. R., & Stewart, F. M. (1977). A complex community in a simple habitat: An experimental study with bacteria and phage. Ecology, 58, 369–378.CrossRefGoogle Scholar
  21. Chaudhry, W. N., et al. (2017). Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS One, 12(1), e0168615.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cheng, M., et al. (2017). The bacteriophage EF-P29 efficiently protects against lethal vancomycin-resistant Enterococcus faecalis and alleviates gut microbiota imbalance in a murine bacteremia model. Frontiers in Microbiology, 8, 837.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chhibber, S., Kaur, T., & Sandeep, K. (2013). Co-therapy using lytic bacteriophage and linezolid: Effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One, 8(2), e56022.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Colomer-Lluch, M., et al. (2011). Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry. Antimicrobial Agents and Chemotherapy, 55(10), 4908–4911.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Comeau, A. M., et al. (2007). Phage-Antibiotic Synergy (PAS): Beta-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One, 2(8), e799.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Constantinou, A., et al. (1986). Involvement of host DNA gyrase in growth of bacteriophage T5. Journal of Virology, 57(3), 875–882.PubMedPubMedCentralGoogle Scholar
  27. Coulter, L. B., et al. (2014). Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses, 6(10), 3778–3786.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dabrowska, K. (2018). Interaction of bacteriophages with the immune system: Induction of bacteriophage-specific antibodies. Methods in Molecular Biology, 1693, 139–150.PubMedCrossRefGoogle Scholar
  29. Dabrowska, K., et al. (2001). Current clinical application of bacteriophages and perspectives for their genetic modifications. Polskie Archiwum Medycyny Wewnętrznej, 105(1), 85–90.PubMedGoogle Scholar
  30. Dabrowska, K., et al. (2014). Immunogenicity studies of proteins forming the T4 phage head surface. Journal of Virology, 88(21), 12551–12557.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dalmasso, M., Hill, C., & Ross, R. P. (2014). Exploiting gut bacteriophages for human health. Trends in Microbiology, 22(7), 399–405.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Debarbieux, L., et al. (2010). Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. The Journal of Infectious Diseases, 201(7), 1096–1104.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Drulis-Kawa, Z., et al. (2002). The sensitivity of the uropathogenic Escherichia coli strains to antibiotics, bacteriophages and bactericidal serum activity. Polski Merkuriusz Lekarski, 13(78), 470–472.PubMedPubMedCentralGoogle Scholar
  34. Duerkop, B. A., et al. (2016). Molecular basis for lytic bacteriophage resistance in enterococci. MBio, 7(4), e01304-16.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Duerr, D. M., White, S. J., & Schluesener, H. J. (2004). Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. Journal of Virological Methods, 116(2), 177–180.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Duplessis, C., et al. (2017). Refractory pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy. Journal of the Pediatric Infectious Diseases Society, 7(3), 253–256.CrossRefGoogle Scholar
  37. Easwaran, M., et al. (2015). Functional characterization of a novel lytic phage EcSw isolated from Sus scrofa domesticus and its potential for phage therapy. Molecular and Cellular Probes, 29(3), 151–157.PubMedCrossRefPubMedCentralGoogle Scholar
  38. El-Shibiny, A., & El-Sahhar, S. (2017). Bacteriophages: The possible solution to treat infections caused by pathogenic bacteria. Canadian Journal of Microbiology, 63(11), 865–879.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Escobar-Paramo, P., Gougat-Barbera, C., & Hochberg, M. E. (2012). Evolutionary dynamics of separate and combined exposure of Pseudomonas fluorescens SBW25 to antibiotics and bacteriophage. Evolutionary Applications, 5(6), 583–592.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Essoh, C., et al. (2013). The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages. PLoS One, 8(4), e60575.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fish, R., et al. (2016). Bacteriophage treatment of intransigent diabetic toe ulcers: A case series. Journal of Wound Care, 25(Suppl 7), S27–S33.CrossRefGoogle Scholar
  42. Fish, R., et al. (2018). Compassionate use of bacteriophage therapy for foot ulcer treatment as an effective step for moving toward clinical trials. Methods in Molecular Biology, 1693, 159–170.PubMedCrossRefGoogle Scholar
  43. Forthal, D. N., & Moog, C. (2009). Fc receptor-mediated antiviral antibodies. Current Opinion in HIV and AIDS, 4(5), 388–393.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fukuda, K., et al. (2012). Pseudomonas aeruginosa keratitis in mice: Effects of topical bacteriophage KPP12 administration. PLoS One, 7(10), e47742.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Furfaro, L. L., Chang, B. J., & Payne, M. S. (2017). Applications for bacteriophage therapy during pregnancy and the perinatal period. Frontiers in Microbiology, 8, 2660.PubMedCrossRefGoogle Scholar
  46. Galtier, M., et al. (2017). Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease. Journal of Crohn’s & Colitis, 11(7), 840–847.Google Scholar
  47. Gomez, P., & Buckling, A. (2011). Bacteria-phage antagonistic coevolution in soil. Science, 332(6025), 106–109.PubMedCrossRefGoogle Scholar
  48. Gorski, A., & Weber-Dabrowska, B. (2005). The potential role of endogenous bacteriophages in controlling invading pathogens. Cellular and Molecular Life Sciences, 62(5), 511–519.PubMedCrossRefGoogle Scholar
  49. Gorski, A., et al. (2006). Bacteriophages and transplantation tolerance. Transplantation Proceedings, 38(1), 331–333.PubMedCrossRefGoogle Scholar
  50. Gorski, A., et al. (2012). Phage as a modulator of immune responses: Practical implications for phage therapy. Advances in Virus Research, 83, 41–71.PubMedCrossRefGoogle Scholar
  51. Gorski, A., et al. (2016). Phage therapy: Combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Frontiers in Microbiology, 7, 1515.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gupta, G. W., Wren, M., Ganguly, K., & Pardington, P. (2014). Multi-drug resistance efflux pumps confer additional resistance against host innate immune defense via induction of genes for biofilm formation and virulence. The Journal of Immunology, 192(1 Suppl), 132.3.Google Scholar
  53. Hamatake, R. K., Mukai, R., & Hayashi, M. (1981). Role of DNA gyrase subunits in synthesis of bacteriophage phi X174 viral DNA. Proceedings of the National Academy of Sciences of the United States of America, 78(3), 1532–1536.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hamzeh-Mivehroud, M., et al. (2008). Non-specific translocation of peptide-displaying bacteriophage particles across the gastrointestinal barrier. European Journal of Pharmaceutics and Biopharmaceutics, 70(2), 577–581.PubMedCrossRefGoogle Scholar
  55. Hanlon, G. W., et al. (2001). Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 67(6), 2746–2753.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hashiguchi, S., et al. (2010). Immunological basis of M13 phage vaccine: Regulation under MyD88 and TLR9 signaling. Biochemical and Biophysical Research Communications, 402(1), 19–22.PubMedCrossRefGoogle Scholar
  57. Henry, M., et al. (2012). Development of a high throughput assay for indirectly measuring phage growth using the OmniLog(TM) system. Bacteriophage, 2(3), 159–167.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Heo, Y. J., et al. (2009). Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrobial Agents and Chemotherapy, 53(6), 2469–2474.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hodyra-Stefaniak, K., et al. (2015). Mammalian host-versus-phage immune response determines phage fate in vivo. Scientific Reports, 5, 14802.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hoyland-Kroghsbo, N. M., Maerkedahl, R. B., & Svenningsen, S. L. (2013). A quorum-sensing-induced bacteriophage defense mechanism. MBio, 4(1), e00362–e00312.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hraiech, S., Bregeon, F., & Rolain, J. M. (2015). Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: Rationale and current status. Drug Design, Development and Therapy, 9, 3653–3663.PubMedPubMedCentralGoogle Scholar
  62. Huff, W. E., et al. (2004). Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. Poultry Science, 83(12), 1944–1947.PubMedCrossRefGoogle Scholar
  63. Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214.CrossRefGoogle Scholar
  64. Hung, C. H., et al. (2011). Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrobial Agents and Chemotherapy, 55(4), 1358–1365.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jerne, N. K. (1956). The presence in normal serum of specific antibody against bacteriophage T4 and its increase during the earliest stages of immunization. Journal of Immunology, 76(3), 209–216.Google Scholar
  66. Jerne, N. K., & Avegno, P. (1956). The development of the phage-inactivating properties of serum during the course of specific immunization of an animal: Reversible and irreversible inactivation. Journal of Immunology, 76(3), 200–208.Google Scholar
  67. Jikia, D., et al. (2005). The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant Staphylococcus aureus-infected local radiation injuries caused by exposure to Sr90. Clinical and Experimental Dermatology, 30(1), 23–26.PubMedCrossRefGoogle Scholar
  68. Jonczyk-Matysiak, E., et al. (2015). The effect of bacteriophage preparations on intracellular killing of bacteria by phagocytes. Journal of Immunology Research, 2015, 482863.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jonczyk-Matysiak, E., et al. (2017). Phage-phagocyte interactions and their implications for phage application as therapeutics. Viruses, 9(6), 150.PubMedCentralCrossRefPubMedGoogle Scholar
  70. Jover, L. F., Cortez, M. H., & Weitz, J. S. (2013). Mechanisms of multi-strain coexistence in host–phage systems with nested infection networks. Journal of Theoretical Biology, 332, 65–77.PubMedCrossRefGoogle Scholar
  71. Kamal, F., & Dennis, J. J. (2015). Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): Antibiotics stimulate lytic phage activity. Applied and Environmental Microbiology, 81(3), 1132–1138.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kamme, C. (1973). Antibodies against staphylococcal bacteriophages in human sera. I. Assay of antibodies in healthy individuals and in patients with staphylococcal infections. Acta Pathologica et Microbiologica Scandinavica. Section B: Microbiology and Immunology, 81(6), 741–748.Google Scholar
  73. Kaur, S., Harjai, K., & Chhibber, S. (2012). Methicillin-resistant Staphylococcus aureus phage plaque size enhancement using sublethal concentrations of antibiotics. Applied and Environmental Microbiology, 78(23), 8227–8233.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kaur, S., Harjai, K., & Chhibber, S. (2016). In vivo assessment of phage and linezolid based implant coatings for treatment of Methicillin Resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS One, 11(6), e0157626.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Khalifa, L., et al. (2015). Targeting Enterococcus faecalis biofilms with phage therapy. Applied and Environmental Microbiology, 81(8), 2696–2705.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kirby, A. E. (2012). Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One, 7(11), e51017.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kishor, C., et al. (2016). Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. The Indian Journal of Medical Research, 143(1), 87–94.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kleinschmidt, W. J., Douthart, R. J., & Murphy, E. B. (1970). Interferon production by T4 coliphage. Nature, 228(5266), 27–30.PubMedCrossRefGoogle Scholar
  79. Knezevic, P., et al. (2013). Phage-antibiotic synergism: A possible approach to combatting Pseudomonas aeruginosa. Research in Microbiology, 164(1), 55–60.PubMedCrossRefGoogle Scholar
  80. Kobayashi, S. D., et al. (2005). Neutrophils in the innate immune response. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 53(6), 505–517.Google Scholar
  81. Kucharewicz-Krukowska, A., & Slopek, S. (1987). Immunogenic effect of bacteriophages in patients subjected to phage therapy. Archivum Immunologiae et Therapiae Experimentalis, 35, 553–561.PubMedGoogle Scholar
  82. Kumar, H., Kawai, T., & Akira, S. (2009). Toll-like receptors and innate immunity. Biochemical and Biophysical Research Communications, 388(4), 621–625.PubMedCrossRefGoogle Scholar
  83. Kumaran, D., et al. (2018). Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Frontiers in Microbiology, 9, 127.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kumari, S., Harjai, K., & Chhibber, S. (2011). Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. Journal of Medical Microbiology, 60(Pt 2), 205–210.PubMedCrossRefGoogle Scholar
  85. Kurzepa-Skaradzinska, A., et al. (2013). Influence of bacteriophage preparations on intracellular killing of bacteria by human phagocytes in vitro. Viral Immunology, 26(2), 150–162.PubMedCrossRefGoogle Scholar
  86. Kutter, E. M., Kuhl, S. J., & Abedon, S. T. (2015). Re-establishing a place for phage therapy in western medicine. Future Microbiology, 10(5), 685–688.PubMedCrossRefGoogle Scholar
  87. Latka, A., et al. (2017). Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Applied Microbiology and Biotechnology, 101(8), 3103–3119.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Le, T. S., et al. (2018). Protective effects of bacteriophages against Aeromonas hydrophila species causing Motile Aeromonas Septicemia (MAS) in striped catfish. Antibiotics (Basel), 7(1), E16.CrossRefGoogle Scholar
  89. Leitner, L., et al. (2017). Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: A randomized, placebo-controlled, double-blind clinical trial. BMC Urology, 17(1), 90.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Letkiewicz, S., et al. (2009). Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis – Case report. Folia Microbiologia (Praha), 54(5), 457–461.CrossRefGoogle Scholar
  91. Levin, B. R., Stewart, F. M., & Chao, L. (1977). Resource-limited growth, competition, and predation: A model and experimental studies with bacteria and bacteriophage. The American Naturalist, 111, 3–24.CrossRefGoogle Scholar
  92. Lu, T. K., & Collins, J. J. (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4629–4634.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Majewska, J., et al. (2015). Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses, 7(8), 4783–4799.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Malik, R., & Chhibber, S. (2009). Protection with bacteriophage KO1 against fatal Klebsiella pneumoniae-induced burn wound infection in mice. Journal of Microbiology, Immunology, and Infection, 42(2), 134–140.PubMedGoogle Scholar
  95. Mankiewicz, E., Kurti, V., & Adomonis, H. (1974). The effect of mycobacteriophage particles on cell-mediated immune reactions. Canadian Journal of Microbiology, 20(9), 1209–1218.PubMedCrossRefGoogle Scholar
  96. Markoishvili, K., et al. (2002). A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. International Journal of Dermatology, 41(7), 453–458.PubMedPubMedCentralCrossRefGoogle Scholar
  97. McVay, C. S., Velasquez, M., & Fralick, J. A. (2007). Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrobial Agents and Chemotherapy, 51(6), 1934–1938.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Meyer, J. R., et al. (2016). Ecological speciation of bacteriophage lambda in allopatry and sympatry. Science, 354(6317), 1301–1304.PubMedCrossRefGoogle Scholar
  99. Miedzybrodzki, R., et al. (2008). Bacteriophage preparation inhibition of reactive oxygen species generation by endotoxin-stimulated polymorphonuclear leukocytes. Virus Research, 131(2), 233–242.PubMedCrossRefGoogle Scholar
  100. Miedzybrodzki, R., et al. (2017). Means to facilitate the overcoming of gastric juice barrier by a therapeutic staphylococcal bacteriophage A5/80. Frontiers in Microbiology, 8, 467.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Miernikiewicz, P., et al. (2013). T4 phage and its head surface proteins do not stimulate inflammatory mediator production. PLoS One, 8(8), e71036.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Minot, S., et al. (2011). The human gut virome: Inter-individual variation and dynamic response to diet. Genome Research, 21(10), 1616–1625.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Mirzaei, M. K., & Maurice, C. F. (2017). Menage a trois in the human gut: Interactions between host, bacteria and phages. Nature Reviews. Microbiology, 15(7), 397–408.PubMedCrossRefGoogle Scholar
  104. Morello, E., et al. (2011). Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: First steps towards treatment and prevention. PLoS One, 6(2), e16963.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Morozova, V. V., et al. (2018). Bacteriophage treatment of infected diabetic foot ulcers. Methods in Molecular Biology, 1693, 151–158.PubMedCrossRefGoogle Scholar
  106. Mulet, N., et al. (2018). Evaluating trifluridine + tipiracil hydrochloride in a fixed combination (TAS-102) for the treatment of colorectal cancer. Expert Opinion on Pharmacotherapy, 19(6), 623–629.PubMedCrossRefGoogle Scholar
  107. Nguyen, S., et al. (2017). Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. MBio, 8(6), e01874-17.PubMedPubMedCentralCrossRefGoogle Scholar
  108. NIAID. (2014). NIAID’s antibacterial program: Current status and future directions. National Institute of Allergy and Infectious Diseases.Google Scholar
  109. Ochs, H. D., Davis, S. D., & Wedgwood, R. J. (1971). Immunologic responses to bacteriophage phi-X 174 in immunodeficiency diseases. The Journal of Clinical Investigation, 50(12), 2559–2568.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Oechslin, F., et al. (2017). Synergistic interaction between phage therapy and antibiotics clears Pseudomonas Aeruginosa infection in endocarditis and reduces virulence. The Journal of Infectious Diseases, 215(5), 703–712.PubMedGoogle Scholar
  111. Oh, J., et al. (2014). Biogeography and individuality shape function in the human skin metagenome. Nature, 514(7520), 59–64.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Payne, R. J., & Jansen, V. A. (2001). Understanding bacteriophage therapy as a density-dependent kinetic process. Journal of Theoretical Biology, 208(1), 37–48.PubMedCrossRefGoogle Scholar
  113. Piggott, J. J., Townsend, C. R., & Matthaei, C. D. (2015). Reconceptualizing synergism and antagonism among multiple stressors. Ecology and Evolution, 5(7), 1538–1547.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Pincus, N. B., et al. (2015). Strain specific phage treatment for Staphylococcus aureus infection is influenced by host immunity and site of infection. PLoS One, 10(4), e0124280.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Pires, D. P., et al. (2015). Phage therapy: A step forward in the treatment of Pseudomonas aeruginosa infections. Journal of Virology, 89(15), 7449–7456.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Pires, D. P., et al. (2017). Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Current Opinion in Microbiology, 39, 48–56.PubMedCrossRefGoogle Scholar
  117. Przerma, A., Kniotek, M., Nowaczyk, M., Weber-Dabrowska, B., Switala-Jelen, K., Dabrowska, K., & Gorski, A. (2005). Bacteriophages inhibit interleukin-2 production by human T lymphocytes. 12th congress of the European Society for Organ Transplantation, Geneva, Switzerland.Google Scholar
  118. Regeimbal, J. M., et al. (2016). Personalized therapeutic cocktail of wild environmental phages rescues mice from Acinetobacter baumannii wound infections. Antimicrobial Agents and Chemotherapy, 60(10), 5806–5816.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Rhoads, D. D., et al. (2009). Bacteriophage therapy of venous leg ulcers in humans: Results of a phase I safety trial. Journal of Wound Care, 18(6), 237–238. 240–3.PubMedCrossRefGoogle Scholar
  120. Roach, D. R., et al. (2017). Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host & Microbe, 22(1), 38–47.e4.CrossRefGoogle Scholar
  121. Ronayne, E. A., et al. (2016). P1 ref endonuclease: A molecular mechanism for phage-enhanced antibiotic lethality. PLoS Genetics, 12(1), e1005797.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Rose, T., et al. (2014). Experimental phage therapy of burn wound infection: Difficult first steps. The International Journal of Burns and Trauma, 4(2), 66–73.PubMedGoogle Scholar
  123. Ryan, E. M., et al. (2012). Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunology and Medical Microbiology, 65(2), 395–398.PubMedCrossRefGoogle Scholar
  124. Sabouri, S., et al. (2017). A minireview on the in vitro and in vivo experiments with anti-Escherichia coli O157: H7 phages as potential biocontrol and phage therapy agents. International Journal of Food Microbiology, 243, 52–57.PubMedCrossRefGoogle Scholar
  125. Sahota, J. S., et al. (2015). Bacteriophage delivery by nebulization and efficacy against phenotypically diverse Pseudomonas aeruginosa from cystic fibrosis patients. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 28(5), 353–360.PubMedCrossRefGoogle Scholar
  126. Sarker, S. A., et al. (2016). Oral phage therapy of acute bacterial diarrhea with two Coliphage preparations: A randomized trial in children from Bangladesh. eBioMedicine, 4, 124–137.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Saussereau, E., et al. (2014). Effectiveness of bacteriophages in the sputum of cystic fibrosis patients. Clinical Microbiology and Infection, 20(12), O983–O990.PubMedCrossRefGoogle Scholar
  128. Schooley, R. T., et al. (2017). Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrobial Agents and Chemotherapy, 61(10), e00954-17.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Sender, R., Fuchs, S., & Milo, R. (2016). Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 164(3), 337–340.PubMedCrossRefGoogle Scholar
  130. Shan, J., et al. (2018). Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Scientific Reports, 8(1), 5091.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sokoloff, A. V., et al. (2000). The interactions of peptides with the innate immune system studied with use of T7 phage peptide display. Molecular Therapy, 2(2), 131–139.PubMedCrossRefGoogle Scholar
  132. Solodovnikov Iu, P., et al. (1971). Preventive use of dry polyvalent dysentery bacteriophage in preschool institutions. II. Principles of present-day tactics and application schedule of bacteriophage. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii, 48(2), 123–127.PubMedGoogle Scholar
  133. Soudeiha, M. A. H., et al. (2017). In vitro evaluation of the colistin-carbapenem combination in clinical isolates of A. baumannii using the checkerboard, Etest, and time-kill curve techniques. Frontiers in Cellular and Infection Microbiology, 7, 209.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Srivastava, A. S., Chauhan, D. P., & Carrier, E. (2004a). In utero detection of T7 phage after systemic administration to pregnant mice. BioTechniques, 37(1), 81–83.PubMedCrossRefGoogle Scholar
  135. Srivastava, A. S., Kaido, T., & Carrier, E. (2004b). Immunological factors that affect the in vivo fate of T7 phage in the mouse. Journal of Virological Methods, 115(1), 99–104.PubMedCrossRefGoogle Scholar
  136. Sulakvelidze, A., & Barrow, P. A. (2005). Phage therapy in animals and agribusiness. In E. Kutter & A. Sulakvelidze (Eds.), Bacteriophages. Biology and applications. Boca Raton: CRC Press.Google Scholar
  137. Sunagar, R., Patil, S. A., & Chandrakanth, R. K. (2010). Bacteriophage therapy for Staphylococcus aureus bacteremia in streptozotocin-induced diabetic mice. Research in Microbiology, 161(10), 854–860.PubMedCrossRefGoogle Scholar
  138. Tikhonenko, A. S., et al. (1976). Electron-microscopic study of the serological affinity between the antigenic components of phages T4 and DDVI. Molekuliarnaia Biologiia (Mosk), 10(4), 667–673.Google Scholar
  139. Tiwari, B. R., et al. (2011). Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models. Journal of Microbiology, 49(6), 994–999.CrossRefGoogle Scholar
  140. Torres-Barcelo, C., et al. (2014). A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS One, 9(9), e106628.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Van Belleghem, J. D., et al. (2017). Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Scientific Reports, 7(1), 8004.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Verma, V., Harjai, K., & Chhibber, S. (2009). Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment. The Journal of Antimicrobial Chemotherapy, 64(6), 1212–1218.PubMedCrossRefGoogle Scholar
  143. Verma, V., Harjai, K., & Chhibber, S. (2010). Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae. Biofouling, 26(6), 729–737.PubMedCrossRefGoogle Scholar
  144. Virgin, H. W. (2014). The virome in mammalian physiology and disease. Cell, 157(1), 142–150.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Warner, N., & Nunez, G. (2013). MyD88: A critical adaptor protein in innate immunity signal transduction. Journal of Immunology, 190(1), 3–4.CrossRefGoogle Scholar
  146. Watanabe, R., et al. (2007). Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrobial Agents and Chemotherapy, 51(2), 446–452.PubMedCrossRefGoogle Scholar
  147. Waterbury, J. B., & Valois, F. W. (1993). Resistance to co-occurring phages enables marine synechococcus communities to coexist with cyanophages abundant in seawater. Applied and Environmental Microbiology, 59(10), 3393–3399.PubMedPubMedCentralGoogle Scholar
  148. Weber-Dabrowska, B., Zimecki, M., & Mulczyk, M. (2000a). Effective phage therapy is associated with normalization of cytokine production by blood cell cultures. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 48(1), 31–37.Google Scholar
  149. Weber-Dabrowska, B., Mulczyk, M., & Gorski, A. (2000b). Bacteriophage therapy of bacterial infections: An update of our institute’s experience. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 48(6), 547–551.Google Scholar
  150. Weissman, J. L., et al. (2018). Immune loss as a driver of coexistence during host-phage coevolution. The ISME Journal, 12(2), 585–597.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Wright, A., et al. (2009). A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clinical Otolaryngology, 34(4), 349–357.PubMedCrossRefGoogle Scholar
  152. Yilmaz, C., et al. (2013). Bacteriophage therapy in implant-related infections: An experimental study. The Journal of Bone and Joint Surgery. American Volume, 95(2), 117–125.PubMedCrossRefGoogle Scholar
  153. Yu, L., et al. (2018). A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli. Applied Microbiology and Biotechnology, 102(2), 971–983.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Zhang, Q. G., & Buckling, A. (2012). Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms. Evolutionary Applications, 5(6), 575–582.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Zimecki, M., et al. (2003). Bacteriophages provide regulatory signals in mitogen-induced murine splenocyte proliferation. Cellular & Molecular Biology Letters, 8(3), 699–711.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anna C. Jacobs
    • 1
  • Jae Dugan
    • 2
  • Chris Duplessis
    • 2
  • Michael Rouse
    • 2
  • Mike Deshotel
    • 2
  • Mark Simons
    • 2
  • Biswajit Biswas
    • 2
  • Mikeljon Nikolich
    • 1
  • Michael Stockelman
    • 2
  • Stuart D. Tyner
    • 1
  • Samandra Demons
    • 1
  • Chase Watters
    • 2
  1. 1.Walter Reed Army Institute of ResearchSilver SpringUSA
  2. 2.Naval Medical Research CenterSilver SpringUSA

Personalised recommendations