Advertisement

Pre- and Probiotics: Using Functional Foods in the Fight Against Microbial Resistance to Antibiotics

  • Swati Sharma
  • Ambreen Bano
  • Anmol Gupta
  • Preeti Bajpai
  • Minaxi Lohani
  • Neelam Pathak
Chapter

Abstract

Functional foods such as prebiotics, dietary fibers, and probiotic microorganisms have several beneficial effects on the human body. Probiotic microorganisms are reported to produce and enhance the absorption of vitamins and minerals, short-chain fatty acids, amino acids, and organic acids, resulting in the enhancement of the host immune system. Generally, lactic acid bacteria and yeasts are used as probiotics. Prebiotics are nonabsorbable polysaccharides/oligosaccharides such as fructooligosaccharides, inulin, and human milk oligosaccharides and have positive effects on host health, maintaining the balance of the gut microbiome, as well as stimulating immunomodulatory activity. Prebiotics are not metabolized by digestive enzymes, allowing them to reach the colon unaltered, where they can be fermented by probiotics. They also promote mineral absorption and act as a fertilizer for gut microflora. These prebiotics can act in synergy with probiotics (synbiotics) and can thus be even more effective if used wisely, selectively stimulating the growth of specific microorganisms. As these synbiotics can directly inhibit the growth and colonization of pathogens and regulate the immune system, they can be developed as an alternative strategy for combating antibiotic resistance in pathogens.

Keywords

Probiotic Prebiotic Synbiotic Antibiotic resistance Gut microflora 

References

  1. Alice, F., Albert, L., Stephanie, N., Iris, C., & Susan, C. (2012). Efficacy and safety of xylooligosaccharides. Dietary Fibre and Health, 497–518.Google Scholar
  2. Alvarez-Olmos, M. I., & Oberhelman, R. A. (2001). Probiotic agents and infectious diseases: A modern perspective on a traditional therapy. Clinical Infectious Diseases, 32(11), 1567–1576.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anadón, A., Martínez-Larrañaga, M. R., & Martínez, M. A. (2006). Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regulatory Toxicology and Pharmacology, 45(1), 91–95.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anukam, K. C., & Reid, G. (2007). Probiotics: 100 years (1907–2007) after Elie Metchnikoff’s observation. Communicating current research and educational topics and trends in applied. Microbiology, 1, 466–474.Google Scholar
  5. Arslanoglu, S., Moro, G. E., Schmitt, J., Tandoi, L., Rizzardi, S., & Boehm, G. (2008). Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. The Journal of Nutrition, 138(6), 1091–1095.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beachey, E. H., & Courtney, H. S. (1987). Bacterial adherence: The attachment of group A streptococci to mucosal surfaces. Reviews of Infectious Diseases, 9(Supplement_5), S475–S481.Google Scholar
  7. Begley, M., Hill, C., & Gahan, C. G. M. (2006). Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology, 72, 1729–1738.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Benjamin, J. L., Hedin, C. R., Koutsoumpas, A., Ng, S. C., McCarthy, N. E., Hart, A. L., ... & Stagg, A. J. (2011). Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut, gut-2010.Google Scholar
  9. Bian, J., Peng, F., Peng, X. P., Peng, P., Xu, F., & Sun, R. C. (2013). Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresource Technology, 127, 236–241.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: The case of functional foods. Trends in Food Science & Technology, 31(2), 118–129.CrossRefGoogle Scholar
  11. Brandão, R. L., Castro, I. M., Bambirra, E. A., Amaral, S. C., Fietto, L. G., Tropia, M. J. M., et al. (1998). Intracellular Signal triggered by cholera toxin in Saccharomyces boulardii and Saccharomyces cerevisiae. Applied and Environmental Microbiology, 64(2), 564–568.PubMedPubMedCentralGoogle Scholar
  12. Brestoff, J. R., & Artis, D. (2013). Commensal bacteria at the interface of host metabolism and the immune system. Journal Nature Immunology, 14(7), 676–684.Google Scholar
  13. Cao, Y., Gao, X., Zhang, W., Zhang, G., Nguyen, A. K., Liu, X., et al. (2011). Dietary fibre enhances TGF-β signaling and growth inhibition in the gut. American Journal of Physiology. Gastrointestinal and Liver Physiology, 301(1), G156–G164.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Carter, A., Adams, M., La Ragione, R. M., & Woodward, M. J. (2017). Colonisation of poultry by Salmonella Enteritidis S1400 is reduced by combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN-33. Veterinary Microbiology, 199, 100–107.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Carvalho, A. F. A., de Oliva Neto, P., Da Silva, D. F., & Pastore, G. M. (2013). Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Research International, 51(1), 75–85.CrossRefGoogle Scholar
  16. Chapla, D., Pandit, P., & Shah, A. (2012). Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresource Technology, 115, 215–221.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen, H., Mao, X., He, J., Yu, B., Huang, Z., Yu, J., et al. (2013). Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. British Journal of Nutrition, 110(10), 1837–1848.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chingwaru, W., & Vidmar, J. (2017). Potential of Zimbabwean commercial probiotic products and strains of Lactobacillus plantarum as prophylaxis and therapy against diarrhoea caused by Escherichia coli in children. Asian Pacific Journal of Tropical Medicine, 10(1), 57–63.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chung, W. S. F., Walker, A. W., Louis, P., Parkhill, J., Vermeiren, J., Bosscher, D., et al. (2016). Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology, 14(1), 3.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Coppa, G. V., Bruni, S., Morelli, L., Soldi, S., & Gabrielli, O. (2004). The first prebiotics in humans: Human milk oligosaccharides. Journal of Clinical Gastroenterology, 38, S80–S83.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Courtin, C. M., Swennen, K., Verjans, P., & Delcour, J. A. (2009). Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chemistry, 112(4), 831–837.CrossRefGoogle Scholar
  22. Crittenden, R. G., Morris, L. F., Harvey, M. L., Tran, L. T., Mitchell, H. L., & Playne, M. J. (2001). Selection of a Bifidobacterium strain to complement resistant starch in a synbiotic yoghurt. Journal of Applied Microbiology, 90(2), 268–278.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Crittenden, R., Weerakkody, R., Sanguansri, L., & Augustin, M. (2006). Synbiotic microcapsules that enhance microbial viability during nonrefrigerated storage and gastrointestinal transit. Applied and Environmental Microbiology, 72(3), 2280–2282.Google Scholar
  24. Cummings, J. H., Christie, S., & Cole, T. J. (2001a). A study of fructo oligosaccharides in the prevention of travellers’ diarrhoea. Alimentary Pharmacology & Therapeutics, 15(8), 1139–1145.Google Scholar
  25. Cummings, J. H., Macfarlane, G. T., & Englyst, H. N. (2001b). Prebiotic digestion and fermentation. The American Journal of Clinical Nutrition, 73(2), 415s–420s.Google Scholar
  26. De Vrese, M., & Schrezenmeir, J. (2008). Probiotics, prebiotics, and synbiotics. In Food biotechnology (pp. 1–66). Berlin/Heidelberg: Springer.Google Scholar
  27. Desai, A. R., Powell, I. B., & Shah, N. P. (2004). Survival and activity of probiotic lactobacilli in skim milk containing prebiotics. Journal of Food Science, 69(3).Google Scholar
  28. Dixit, Y., Wagle, A., & Vakil, B. (2016). Patents in the field of probiotics, prebiotics, synbiotics: A review. Journal of Food Microbiology, Safety and Hygiene, 1(111), 2.Google Scholar
  29. Elli, M., Zink, R., Rytz, A., Reniero, R., & Morelli, L. (2000). Iron requirement of Lactobacillus spp. in completely chemically defined growth media. Journal of Applied Microbiology, 88(4), 695–703.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fai, A. E. C., & Pastore, G. M. (2015). Galactooligosaccharides: Production, health benefits, application to foods and perspectives. Scientia Agropecuaria, 6(1), 69–81.Google Scholar
  31. Ferreira, S. A., Oslakovic, C., Cukalevski, R., Frohm, B., Dahlbäck, B., Linse, S., et al. (2012). Biocompatibility of mannan nanogel—safe interaction with plasma proteins. Biochimica et Biophysica Acta (BBA) - General Subjects, 1820(7), 1043–1051.CrossRefGoogle Scholar
  32. Figueroa-González, I., Hernández-Sánchez, H., Rodrıguez-Serrano, G., Gómez-Ruiz, L., Garcıa-Garibay, M., & Cruz-Guerrero, A. (2010). Antimicrobial effect of Lactobacillus casei strain shirota co-cultivated with Escherichia coli UAM0403 [Efecto antimicrobiano de Lactobacillus casei variedad shirota co-cultivado CON Escherichia coli UAM0403]. I i í Química Ingeniería Química, 11.Google Scholar
  33. Fishman, M. L., Chau, H. K., Hoagland, P., & Ayyad, K. (1999). Characterization of pectin, flash-extracted from orange albedo by microwave heating, under pressure. Carbohydrate Research, 323(1-4), 126–138.CrossRefGoogle Scholar
  34. Flickinger, E. A., Schreijen, E. M. W. C., Patil, A. R., Hussein, H. S., Grieshop, C. M., Merchen, N. R., & Fahey, G. C. (2003). Nutrient digestibilities, microbial populations, and protein catabolites as affected by fructan supplementation of dog diets. Journal of Animal Science, 81(8), 2008–2018.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Gaggìa, F., Mattarelli, P., & Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141, S15–S28.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gibbons, R. J., & Houte, J. V. (1975). Bacterial adherence in oral microbial ecology. Annual Reviews in Microbiology, 29(1), 19–42.CrossRefGoogle Scholar
  37. Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. The Journal of Nutrition, 125(6), 1401–1412.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gibson, G. R., Probert, H. M., Van Loo, J., Rastall, R. A., & Roberfroid, M. B. (2004). Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutrition Research Reviews, 17(2), 259–275.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gilliland, S. E., & Speck, M. L. (1977). Deconjugation of bile acids by intestinal lactobacilli. Applied and Environmental Microbiology, 33(1), 15–18.PubMedPubMedCentralGoogle Scholar
  40. Gu, Q., Zhang, C., Song, D., Li, P., & Zhu, X. (2015). Enhancing vitamin B12 content in soy-yogurt by Lactobacillus reuteri. International Journal of Food Microbiology, 206, 56–59.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Guillot, J. F. (2003). Probiotic feed additives. Journal of Veterinary Pharmacology and Therapeutics, 26, 52–55.Google Scholar
  42. Heldt, H. W. (2005). Plant biochemistry (3rd Ed., pp. 265–269). London: Elsevier Academic Press.Google Scholar
  43. Hemarajata, P., & Versalovic, J. (2013). Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 6(1), 39–51.Google Scholar
  44. Hijová, E., Szabadosova, V., Štofilová, J., & Hrčková, G. (2013). Chemopreventive and metabolic effects of inulin on colon cancer development. Journal of Veterinary Science, 14(4), 387–393.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hopping, B. N., Erber, E., Grandinetti, A., Verheus, M., Kolonel, L. N., & Maskarinec, G. (2009). Dietary fibre, magnesium, and glycemic load alter risk of type 2 diabetes in a multiethnic cohort in Hawaii. The Journal of Nutrition, 140(1), 68–74.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hussain, S. A., Patil, G. R., Reddi, S., Yadav, V., Pothuraju, R., Singh, R. R. B., & Kapila, S. (2017). Aloe vera (Aloe barbadensis Miller) supplemented probiotic lassi prevents Shigella infiltration from epithelial barrier into systemic blood flow in mice model. Microbial Pathogenesis, 102, 143–147.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Jakubczyk, E., & Kosikowska, M. (2000). Nowageneracjamlecznychproduktowfermentowanych z udzialemprobiotykowiprebiotykow, produktysynbiotyczne. PrzeglądMleczarski, 12.Google Scholar
  48. Jin, L. Z., Marquardt, R. R., & Zhao, X. (2000). A strain of Enterococcus faecium (18C23) inhibits adhesion of enterotoxigenic Escherichia coli K88 to porcine small intestine mucus. Applied and Environmental Microbiology, 66(10), 4200–4204.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kallel, F., Driss, D., Bouaziz, F., Neifer, M., Ghorbel, R., & Chaabouni, S. E. (2015a). Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK and their in vitro evaluation as prebiotics. Food and Bioproducts Processing, 94, 536–546.CrossRefGoogle Scholar
  50. Kallel, F., Driss, D., Chaabouni, S. E., & Ghorbel, R. (2015b). Biological activities of xylooligosaccharides generated from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK. Applied Biochemistry and Biotechnology, 175(2), 950–964.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Kano, M., Masuoka, N., Kaga, C., Sugimoto, S., Iizuka, R., Manabe, K., et al. (2013). Consecutive intake of fermented milk containing Bifidobacterium breve strain Yakult and galacto-oligosaccharides benefits skin condition in healthy adult women. Bioscience of Microbiota, Food and Health, 32(1), 33–39.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kumar, S., Bansal, A., Chakrabarti, A., & Singhi, S. (2013). Evaluation of efficacy of probiotics in prevention of Candida colonization in a PICU—a randomized controlled trial. Critical Care Medicine, 41(2), 565–572.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kumar, V., & Satyanarayana, T. (2011). Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnology Letters, 33(11), 2279.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kuo, S. M. (2013). The interplay between fibre and the intestinal microbiome in the inflammatory response. Advances in Nutrition, 4(1), 16–28.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kyoji, Y., Naoki, H., & Kunimasa, K. (2006). Inhibitory effects of acidic xylooligosaccharide on stress-induced gastric inflammation in mice. Food Hygienic Society of Japan, 47(6), 284–287.CrossRefGoogle Scholar
  56. Lam, K. L., & Cheung, P. C. K. (2013). Non-digestible long chain beta-glucans as novel prebiotics. Bioactive Carbohydrates and Dietary Fibre, 2(1), 45–64.CrossRefGoogle Scholar
  57. Lee, A. (1985). Neglected niches. In Advances in microbial ecology (pp. 115–162). Boston: Springer.CrossRefGoogle Scholar
  58. Lee, Y. K., & Salminen, S. (2009). Handbook of probiotics and prebiotics. New York: Wiley.Google Scholar
  59. Li, P., & Gu, Q. (2016). Complete genome sequence of Lactobacillus plantarum LZ95, a potential probiotic strain producing bacteriocins and B-group vitamin riboflavin. Journal of Biotechnology, 229, 1–2.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Liong, M. T., & Shah, N. P. (2005). Production of organic acids from fermentation of mannitol, fructooligosaccharide and inulin by a cholesterol removing Lactobacillus acidophilus strain. Journal of Applied Microbiology, 99(4), 783–793.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Marteau, P. R., Vrese, M. D., Cellier, C. J., & Schrezenmeir, J. (2001).Protection from gastrointestinal diseases with the use of probiotics. The American Journal of Clinical Nutrition, 73(2), 430s–436s.Google Scholar
  62. Macfarlane, G. T., Steed, H., & Macfarlane, S. (2008). Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology, 104(2), 305–344.PubMedPubMedCentralGoogle Scholar
  63. Mäkeläinen, H., Forssten, S., Saarinen, M., Stowell, J., Rautonen, N., & Ouwehand, A. (2009). Xylo-oligosaccharides enhance the growth of bifidobacteria and Bifidobacterium lactis in a simulated colon model. Beneficial Microbes, 1(1), 81–91.CrossRefGoogle Scholar
  64. Manigandan, T., Mangaiyarkarasi, S. P., Hemaltha, R., Hemaltha, V. T., & Murali, N. P. (2012). Probiotics, prebiotics and synbiotics—A review. Biomedical and Pharmacology Journal, 5, 295–304.CrossRefGoogle Scholar
  65. Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021.PubMedCentralCrossRefGoogle Scholar
  66. Meance, S. (2004). Acacia gum (Fibregum™), a very well tolerated specific natural prebiotic having a wide range of food applications-Part 1. Agro Food Industry Hi-Tech, 15(1), 24–29.Google Scholar
  67. Mikkelson, A., Maaheimo, H., & Hakala, T. K. (2013). Hydrolysis of konjac glucomannan by Trichoderma reesei mannanase and endoglucanases Cel7B and Cel5A for the production of glucomannooligosaccharides. Carbohydrate Research, 372, 60–68.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Mishra, C., & Lambert, J. (1996). Production of anti-microbial substances by probiotics. Asia Pacific Journal of Clinical Nutrition, 5, 20–24.PubMedPubMedCentralGoogle Scholar
  69. Moreira, L. R. S. (2008). An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology, 79(2), 165.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Muñiz-Márquez, D. B., Contreras, J. C., Rodríguez, R., Mussatto, S. I., Teixeira, J. A., & Aguilar, C. N. (2015). Biotechnological production of oligosaccharides: Advances and challenges. Advances in Food Biotechnology, 381.Google Scholar
  71. Näse, L., Hatakka, K., Savilahti, E., Saxelin, M., Pönkä, A., Poussa, T., et al. (2001). Effect of long–term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Research, 35(6), 412–420.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Nova, E., Wärnberg, J., Gómez-Martínez, S., Díaz, L. E., Romeo, J., & Marcos, A. (2007). Immunomodulatory effects of probiotics in different stages of life. British Journal of Nutrition, 98(S1), S90–S95.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Oelschlaeger, T. A. (2010). Mechanisms of probiotic actions–a review. International Journal of Medical Microbiology, 300(1), 57–62.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Olano-Martin, E., Mountzouris, K. C., Gibson, G. R., & Rastall, R. A. (2001). Continuous production of pectic oligosaccharides in an enzyme membrane reactor. Journal of Food Science, 66(7), 966–971.CrossRefGoogle Scholar
  75. Olveira, G., & González-Molero, I. (2016). An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinología y Nutrición (English Edition), 63(9), 482–494.Google Scholar
  76. Ouwehand, A. C., Kirjavainen, P. V., Shortt, C., & Salminen, S. (1999). Probiotics: Mechanisms and established effects. International Dairy Journal, 9(1), 43–52.CrossRefGoogle Scholar
  77. Pandey, K. R., Naik, S. R., & Vakil, B. V. (2015). Probiotics, prebiotics and synbiotics-a review. Journal of Food Science and Technology, 52(12), 7577–7587.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Patel, S., & Goyal, A. (2012). The current trends and future perspectives of prebiotics research: A review. 3 Biotech, 2(2), 115–125.PubMedCentralCrossRefGoogle Scholar
  79. Peña, A. S. (2007). Intestinal flora, probiotics, prebiotics, synbiotics and novel foods. Revista Española de Enfermedades Digestivas, 99(11), 653.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Peng, X., Li, S., Luo, J., Wu, X., & Liu, L. (2013). Effects of dietary fibres and their mixtures on short chain fatty acids and microbiota in mice guts. Food & Function, 4(6), 932–938.CrossRefGoogle Scholar
  81. Pokusaeva, K., Fitzgerald, G. F., & Sinderen, D. (2011). Carbohydrate metabolism in bifidobacteria. Genes & Nutrition, 6(3), 285.CrossRefGoogle Scholar
  82. Pompei, A., Cordisco, L., Amaretti, A., Zanoni, S., Matteuzzi, D., & Rossi, M. (2007). Folate production by bifidobacteria as a potential probiotic property. Applied and Environmental Microbiology, 73(1), 179–185.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Raja, B. R., & Arunachalam, K. D. (2011). Market potential for probiotic nutritional supplements in India. African Journal of Business Management, 5(14), 5418.Google Scholar
  84. Reid, G., Jass, J., Sebulsky, M. T., & McCormick, J. K. (2003). Potential uses of probiotics in clinical practice. Clinical Microbiology Reviews, 16(4), 658–672.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929–967.CrossRefGoogle Scholar
  86. Saavedra, J. M., & Tschernia, A. (2002). Human studies with probiotics and prebiotics: Clinical implications. British Journal of Nutrition, 87(S2), S241–S246.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Sáez-Lara, M. J., Robles-Sanchez, C., Ruiz-Ojeda, F. J., Plaza-Diaz, J., & Gil, A. (2016). Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: A review of human clinical trials. International Journal of Molecular Sciences, 17(6), 928.PubMedCentralCrossRefGoogle Scholar
  88. Saint-Cyr, M. J., Haddad, N., Taminiau, B., Poezevara, T., Quesne, S., Amelot, M., et al. (2017). Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. International Journal of Food Microbiology, 247, 9–17.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Samanta, A. K., Jayapal, N., Jayaram, C., Roy, S., Kolte, A. P., Senani, S., & Sridhar, M. (2015). Xylooligosaccharides as prebiotics from agricultural by-products: Production and applications. Bioactive Carbohydrates and Dietary Fibre, 5(1), 62–71.CrossRefGoogle Scholar
  90. Sanders, M. E., Gibson, G. R., Gill, H. S., & Guarner, F. (2007). Probiotics: Their potential to impact human health. Council for Agricultural Science and Technology Issue Paper, 36, 1–20.Google Scholar
  91. Sarao, L. K., & Arora, M. (2017). Probiotics, prebiotics, and microencapsulation: A review. Critical Reviews in Food Science and Nutrition, 57(2), 344–371.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Scavuzzi, B. M., Henrique, F. C., Miglioranza, L. H. S., Simão, A. N. C., & Dichi, I. (2014). Impact of prebiotics, probiotics and synbiotics on components of the metabolic syndrome. Annals of Nutritional Disorders and Therapy, 1, 1009.Google Scholar
  93. Schiffrin, E. J., Thomas, D. R., Kumar, V. B., Brown, C., Hager, C., Van’t Hof, M. A., et al. (2007). Systemic inflammatory markers in older persons: The effect of oral nutritional supplementation with prebiotics. The Journal of Nutrition, Health & Aging, 11(6), 475.Google Scholar
  94. Schley, P. D., & Field, C. J. (2002). The immune-enhancing effects of dietary fibres and prebiotics. British Journal of Nutrition, 87(S2), S221–S230.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Scholtens, P. A., Alles, M. S., Bindels, J. G., van der Linde, E. G., Tolboom, J. J., & Knol, J. (2006). Bifidogenic effects of solid weaning foods with added prebiotic oligosaccharides: A randomised controlled clinical trial. Journal of Pediatric Gastroenterology and Nutrition, 42(5), 553–559.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Schoster, A., Kokotovic, B., Permin, A., Pedersen, P. D., Dal Bello, F., & Guardabassi, L. (2013). In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains. Anaerobe, 20, 36–41.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Schrezenmeir, J., & de Vrese, M. (2001). Probiotics, prebiotics, and synbiotics—approaching a definition. The American Journal of Clinical Nutrition, 73(2), 361s–364s.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Sekhon, B. S., & Jairath, S. (2010). Prebiotics, probiotics and synbiotics: An overview. Journal of Pharmaceutical Education and Research, 1(2), 13.Google Scholar
  99. Sharon, N., & Ofek, I. (2000). Safe as mother’s milk: Carbohydrates as future anti-adhesion drugs for bacterial diseases. Glycoconjugate Journal, 17(7-9), 659–664.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Sikorska, H., & Smoragiewicz, W. (2013). Role of probiotics in the prevention and treatment of methicillin-resistant Staphylococcus aureus infections. International Journal of Antimicrobial Agents, 42(6), 475–481.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Silva, O. N. O., Mulder, K. C., Barbosa, A. A., Otero-Gonzalez, A. J., Lopez-Abarrategui, C., Dias, S. C., et al. (2011). Exploring the pharmacological potential of promiscuous host-defense peptides: From natural screenings to biotechnological applications. Frontiers in Microbiology, 2, 232.PubMedPubMedCentralGoogle Scholar
  102. Singdevsachan, K., Kumar, S., Auroshree, P., Mishra, J., Baliyarsingh, B., & Tayung, K. H. (2016). Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioactive Carbohydrates and Dietary Fibre, 7(1), 1–14.CrossRefGoogle Scholar
  103. Singh, R. D., Banerjee, J., & Arora, A. (2015). Prebiotic potential of oligosaccharides: A focus on xylan derived oligosaccharides. Bioactive Carbohydrates and Dietary Fibre, 5(1), 19–30.CrossRefGoogle Scholar
  104. Slavin, J. (2013). Fibre and prebiotics: Mechanisms and health benefits. Nutrients, 5(4), 1417–1435.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sohail, M. U., Ijaz, A., Yousaf, M. S., Ashraf, K., Zaneb, H., Aleem, M., & Rehman, H. (2010). Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: Dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poultry Science, 89(9), 1934–1938.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Srivastava, P. K., & Kapoor, M. (2017). Production, properties, and applications of endo-β-mannanases. Biotechnology Advances, 35(1), 1–19.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Thomas, D. W., & Greer, F. R. (2010). Probiotics and prebiotics in pediatrics. Pediatrics, 126(6), 1217–1231.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Thomas, C. M., & Versalovic, J. (2010). Probiotics-host communication: Modulation of signaling pathways in the intestine. Gut Microbes, 1(3), 148–163.Google Scholar
  109. Tomasik, P. J., & Tomasik, P. (2003). Probiotics and prebiotics. Cereal Chemistry, 80(2), 113–117.CrossRefGoogle Scholar
  110. Van Loo, J., Clune, Y., Bennett, M., & Collins, J. K. (2005). The SYNCAN project: Goals, set-up, first results and settings of the human intervention study. British Journal of Nutrition, 93(S1), S91–S98.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Vera, C., Córdova, A., Aburto, C., Guerrero, C., Suárez, S., & Illanes, A. (2016). Synthesis and purification of galacto-oligosaccharides: State of the art. World Journal of Microbiology and Biotechnology, 32(12), 197.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Vetvicka, V., Vashishta, A., Saraswat-Ohri, S., & Vetvickova, J. (2008). Immunological effects of yeast-and mushroom-derived β-glucans. Journal of Medicinal Food, 11(4), 615–622.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Vitali, B., Ndagijimana, M., Cruciani, F., Carnevali, P., Candela, M., Guerzoni, M. E., & Brigidi, P. (2010). Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. BMC Microbiology, 10(1), 4.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Vulevic, J., Drakoularakou, A., Yaqoob, P., Tzortzis, G., & Gibson, G. R. (2008). Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. The American Journal of Clinical Nutrition, 88(5), 1438–1446.PubMedPubMedCentralGoogle Scholar
  115. Wang, J., Sun, B., Cao, Y., Tian, Y., & Wang, C. (2009). Enzymatic preparation of wheat bran xylooligosaccharides and their stability during pasteurization and autoclave sterilization at low pH. Carbohydrate Polymers, 77(4), 816–821.CrossRefGoogle Scholar
  116. Weinberg, E. D. (1997). The Lactobacillus anomaly: Total iron abstinence. Perspectives in Biology and Medicine, 40(4), 578–583.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Wichienchot, S., Prasertsan, P., Hongpattarakere, T., & Rastall, R. A. (2009). Manufacture of gluco-oligosaccharide prebiotic by Gluconobacteroxydans NCIMB 4943. Songklanakarin Journal of Science and Technology, 31(6).Google Scholar
  118. Xue, J. L., Zhao, S., Liang, R. M., Yin, X., Jiang, S. X., Su, L. H., et al. (2016). A biotechnological process efficiently co-produces two high value-added products, glucose and xylooligosaccharides, from sugarcane bagasse. Bioresource Technology, 204, 130–138.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Yamabhai, M., Sak-Ubol, S., Srila, W., & Haltrich, D. (2016). Mannan biotechnology: From biofuels to health. Critical Reviews in Biotechnology, 36(1), 32–42.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Yanagida, F., Chen, Y., Onda, T., & Shinohara, T. (2005). Durancin L28-1A, a new bacteriocin from Enterococcus durans L28-1, isolated from soil. Letters in Applied Microbiology, 40(6), 430–435.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Yoo, H. D., Kim, D., & Paek, S. H. (2012). Plant cell wall polysaccharides as potential resources for the development of novel prebiotics. Biomolecules & Therapeutics, 20(4), 371.CrossRefGoogle Scholar
  122. Zhang, M. M., Cheng, J. Q., Lu, Y. R., Yi, Z. H., Yang, P., & Wu, X. T. (2010). Use of pre-, pro-and synbiotics in patients with acute pancreatitis: A meta-analysis. World journal of gastroenterology: WJG, 16(31), 3970.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Swati Sharma
    • 1
  • Ambreen Bano
    • 1
  • Anmol Gupta
    • 1
  • Preeti Bajpai
    • 1
  • Minaxi Lohani
    • 2
  • Neelam Pathak
    • 3
  1. 1.Department of BiosciencesIntegral UniversityLucknowIndia
  2. 2.Department of ChemistryIntegral UniversityLucknowIndia
  3. 3.Department of BiochemistryDr. Rammanohar Lohia Avadh UniversityAyodhyaIndia

Personalised recommendations