Advertisement

Are Ancient Remedies the New Answer to Fighting Infections?

  • Whitni K. Redman
  • Kendra P. RumbaughEmail author
Chapter

Abstract

Although modern medicine has made great strides over the past decades, there still exists a struggle in the fight against microbial infections. As microbes continue to develop antimicrobial resistance, it is imperative that new treatment options be developed to overcome this hurdle. Bacteria can develop resistance to current antimicrobial agents through several methods, some requiring cell-to-cell contact through conjugation and other mechanisms that require no contact at all. As current treatments become less toxic to microbes, the need for new treatments is intensified. Throughout the history of human existence, plant and animal products have been used for various infectious diseases. As these products have been further analyzed, the phytochemicals, or active molecules involved, have begun to be uncovered. Discovering the mechanisms of action of the active molecules in these ancient remedies may lead to the development of new drugs to help fight infection.

Keywords

Antibiotic resistance Alternative antibiotic Anti-infective Ancient remedy 

References

  1. Abrams, J. E. (2013). “Spitting is dangerous, indecent, and against the law!” legislating health behavior during the American tuberculosis crusade. Journal of the History of Medicine and Allied Sciences, 68(3), 416–450.PubMedCrossRefGoogle Scholar
  2. Agra, I. K., et al. (2013). Evaluation of wound healing and antimicrobial properties of aqueous extract from Bowdichia virgilioides stem barks in mice. Anais da Academia Brasileira de Ciências, 85(3), 945–954.PubMedCrossRefGoogle Scholar
  3. Ahmed, U., Mujaddad-Ur-Rehman, M., Khalid, N., Fawad, S. A., & Fatima, A. (2012). Antibacterial activity of the venom of Heterometrus xanthopus. Indian Journal of Pharmacology, 44(4), 509–511.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Akinpelu, D. A. (2000). Antimicrobial activity of Bryophyllum pinnatum leaves. Fitoterapia, 71(2), 193–194.PubMedCrossRefGoogle Scholar
  5. Akinpelu, D. A. (2001). Antimicrobial activity of Anacardium occidentale bark. Fitoterapia, 72(3), 286–287.PubMedCrossRefGoogle Scholar
  6. Alcalde-Rico, M., Hernando-Amado, S., Blanco, P., & Martinez, J. L. (2016). Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Frontiers in Microbiology, 7, 1483.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Almaaytah, A., et al. (2012). Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: biochemical and functional characterization of natural peptides and a single site-substituted analog. Peptides, 35(2), 291–299.PubMedCrossRefGoogle Scholar
  8. Antunes Viegas, D., Palmeira-de-Oliveira, A., Salgueiro, L., Martinez-de-Oliveira, J., & Palmeira-de-Oliveira, R. (2014). Helichrysum italicum: from traditional use to scientific data. Journal of Ethnopharmacology, 151(1), 54–65.PubMedCrossRefGoogle Scholar
  9. Apetrei, C. L., et al. (2011). Chemical, antioxidant and antimicrobial investigations of Pinus cembra L. bark and needles. Molecules, 16(9), 7773–7788.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Arabski, M., Wegierek-Ciuk, A., Czerwonka, G., Lankoff, A., & Kaca, W. (2012). Effects of saponins against clinical E. coli strains and eukaryotic cell line. Journal of Biomedicine & Biotechnology, 2012, 286216.CrossRefGoogle Scholar
  11. Baba, H., & Onanuga, A. (2011). Preliminary phytochemical screening and antimicrobial evaluation of three medicinal plants used in Nigeria. African Journal of Traditional, Complementary, and Alternative Medicines, 8(4), 387–390.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Balde, E. S., et al. (2010). In vitro antiprotozoal, antimicrobial and antitumor activity of Pavetta crassipes K. Schum leaf extracts. Journal of Ethnopharmacology, 130(3), 529–535.PubMedCrossRefGoogle Scholar
  13. Baquero, F., Alvarez-Ortega, C., & Martinez, J. L. (2009). Ecology and evolution of antibiotic resistance. Environmental Microbiology Reports, 1(6), 469–476.PubMedCrossRefGoogle Scholar
  14. Bisignano, G., et al. (2000). Antimicrobial activity of Mitracarpus scaber extract and isolated constituents. Letters in Applied Microbiology, 30(2), 105–108.PubMedCrossRefGoogle Scholar
  15. Blanco, P., et al. (2016). Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms, 4(1).PubMedCentralCrossRefPubMedGoogle Scholar
  16. Bolivar, P., et al. (2011). Antimicrobial, anti-inflammatory, antiparasitic, and cytotoxic activities of Galium mexicanum. Journal of Ethnopharmacology, 137(1), 141–147.PubMedCrossRefGoogle Scholar
  17. Bouyahyaoui, A., et al. (2016). Antimicrobial activity and chemical analysis of the essential oil of Algerian Juniperus phoenicea. Natural Product Communications, 11(4), 519–522.PubMedCrossRefGoogle Scholar
  18. Brown-Jaque, M., Calero-Caceres, W., & Muniesa, M. (2015). Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid, 79, 1–7.PubMedCrossRefGoogle Scholar
  19. Brusotti, G., et al. (2011). Antimicrobial properties of stem bark extracts from Phyllanthus muellerianus (Kuntze) Excell. Journal of Ethnopharmacology, 135(3), 797–800.PubMedCrossRefGoogle Scholar
  20. Chah, K. F., Muko, K. N., & Oboegbulem, S. I. (2000). Antimicrobial activity of methanolic extract of Solanum torvum fruit. Fitoterapia, 71(2), 187–189.PubMedCrossRefGoogle Scholar
  21. Chen, Y. C. (2001). Chinese values, health and nursing. Journal of Advanced Nursing, 36(2), 270–273.PubMedCrossRefGoogle Scholar
  22. Chen, X., et al. (2015). Ethanol extract of Sanguisorba officinalis L. inhibits biofilm formation of methicillin-resistant Staphylococcus aureus in an ica-dependent manner. Journal of Dairy Science, 98(12), 8486–8491.PubMedCrossRefGoogle Scholar
  23. Cho, H., Uehara, T., & Bernhardt, T. G. (2014). Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell, 159(6), 1300–1311.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chowdhury, M., Kubra, K., & Ahmed, S. (2015). Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Annals of Clinical Microbiology and Antimicrobials, 14, 8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Conlon, B. P., Rowe, S. E., & Lewis, K. (2015). Persister cells in biofilm associated infections. Advances in Experimental Medicine and Biology, 831, 1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Contreras Cardenas, A. V., Hernandez, L. R., Juarez, Z. N., Sanchez-Arreola, E., & Bach, H. (2016). Antimicrobial, cytotoxic, and anti-inflammatory activities of Pleopeltis polylepis. Journal of Ethnopharmacology, 194, 981–986.PubMedCrossRefGoogle Scholar
  27. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745.PubMedCrossRefGoogle Scholar
  28. Cruz Paredes, C., et al. (2013). Antimicrobial, antiparasitic, anti-inflammatory, and cytotoxic activities of Lopezia racemosa. Scientific World Journal, 2013, 237438.PubMedCrossRefGoogle Scholar
  29. Cushnie, T. P., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356.PubMedCrossRefGoogle Scholar
  30. Cushnie, T. P., Cushnie, B., & Lamb, A. J. (2014). Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. International Journal of Antimicrobial Agents, 44(5), 377–386.PubMedCrossRefGoogle Scholar
  31. Davidson, J. R., & Ortiz de Montellano, B. R. (1983). The antibacterial properties of an Aztec wound remedy. Journal of Ethnopharmacology, 8(2), 149–161.PubMedCrossRefGoogle Scholar
  32. Davies, J. E. (1997). Origins, acquisition and dissemination of antibiotic resistance determinants. Ciba Foundation Symposium, 207, 15–27; discussion 27–35.PubMedGoogle Scholar
  33. Deeni, Y. Y., & Sadiq, N. M. (2002). Antimicrobial properties and phytochemical constituents of the leaves of African mistletoe (Tapinanthus dodoneifolius (DC) Danser) (Loranthaceae): an ethnomedicinal plant of Hausaland, Northern Nigeria. Journal of Ethnopharmacology, 83(3), 235–240.PubMedCrossRefGoogle Scholar
  34. Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881–890.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Du, Q., et al. (2015). AaeAP1 and AaeAP2: novel antimicrobial peptides from the venom of the scorpion, Androctonus aeneas: structural characterisation, molecular cloning of biosynthetic precursor-encoding cDNAs and engineering of analogues with enhanced antimicrobial and anticancer activities. Toxins (Basel), 7(2), 219–237.CrossRefGoogle Scholar
  36. El-Haci, I. A., et al. (2014). Antimicrobial activity of Ammodaucus leucotrichus fruit oil from Algerian Sahara. Natural Product Communications, 9(5), 711–712.PubMedCrossRefGoogle Scholar
  37. Fahed, L., et al. (2017). Essential oils composition and antimicrobial activity of six conifers harvested in Lebanon. Chemistry & Biodiversity, 14(2).CrossRefGoogle Scholar
  38. Farzaei, M. H., et al. (2014). Chemical composition, antioxidant and antimicrobial activity of essential oil and extracts of Tragopogon graminifolius, a medicinal herb from Iran. Natural Product Communications, 9(1), 121–124.PubMedCrossRefGoogle Scholar
  39. Fiore, D. C., Fettic, L. P., Wright, S. D., & Ferrara, B. R. (2017). Antibiotic overprescribing: Still a major concern. The Journal of Family Practice, 66(12), 730–736.PubMedPubMedCentralGoogle Scholar
  40. Fratini, F., Cilia, G., Mancini, S., & Felicioli, A. (2016). Royal Jelly: An ancient remedy with remarkable antibacterial properties. Microbiological Research, 192, 130–141.PubMedCrossRefGoogle Scholar
  41. Grigoryan, L., et al. (2007). Is self-medication with antibiotics in Europe driven by prescribed use? The Journal of Antimicrobial Chemotherapy, 59(1), 152–156.PubMedCrossRefGoogle Scholar
  42. Guerra, F. (1966). Aztec medicine. Medical History, 10(4), 315–338.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gutierrez-Lugo, M. T., et al. (1996). Antimicrobial and cytotoxic activities of some crude drug extracts from Mexican medicinal plants. Phytomedicine, 2(4), 341–347.PubMedCrossRefGoogle Scholar
  44. Harrison, F., et al. (2015). A 1,000-year-old antimicrobial remedy with antistaphylococcal activity. MBio, 6(4), e01129.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Helvaci, S., et al. (2010). Antimicrobial activity of the extracts and physalin D from Physalis alkekengi and evaluation of antioxidant potential of physalin D. Pharmaceutical Biology, 48(2), 142–150.PubMedCrossRefGoogle Scholar
  46. Hernandez, T., et al. (2007). Antimicrobial activity of the essential oil and extracts of Cordia curassavica (Boraginaceae). Journal of Ethnopharmacology, 111(1), 137–141.PubMedCrossRefGoogle Scholar
  47. Hernandez-Hernandez, E., Regalado-Gonzalez, C., Vazquez-Landaverde, P., Guerrero-Legarreta, I., & Garcia-Almendarez, B. E. (2014). Microencapsulation, chemical characterization, and antimicrobial activity of Mexican (Lippia graveolens H.B.K.) and European (Origanum vulgare L.) oregano essential oils. Scientific World Journal, 2014, 641814.PubMedGoogle Scholar
  48. Hershman, M. J., & Campion, K. M. (1985). American Indian medicine. Journal of the Royal Society of Medicine, 78(6), 432–434.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hong, J., Hu, J. Y., Liu, J. H., Zhou, Z., & Zhao, A. F. (2014). In vitro antioxidant and antimicrobial activities of flavonoids from Panax notoginseng flowers. Natural Product Research, 28(16), 1260–1266.PubMedCrossRefGoogle Scholar
  50. Hosseini, A., Mirzaee, F., Davoodi, A., Bakhshi Jouybari, H., & Azadbakh, M. (2018). The traditional medicine aspects, biological activity and phytochemistry of Arnebia spp. Medicinski Glasnik (Zenica), 15(1), 1–9.Google Scholar
  51. Irobi, O. N., Moo-Young, M., Anderson, W. A., & Daramola, S. O. (1994). Antimicrobial activity of bark extracts of Bridelia ferruginea (Euphorbiaceae). Journal of Ethnopharmacology, 43(3), 185–190.PubMedCrossRefGoogle Scholar
  52. Jaiswal, Y., Liang, Z., & Zhao, Z. (2016). Botanical drugs in ayurveda and traditional Chinese medicine. Journal of Ethnopharmacology, 194, 245–259.PubMedCrossRefGoogle Scholar
  53. Jimenez-Arellanes, A., et al. (2013). Antiprotozoal and antimycobacterial activities of Persea americana seeds. BMC Complementary and Alternative Medicine, 13, 109.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Karuppiah, P., & Rajaram, S. (2012). Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens. Asian Pacific Journal of Tropical Biomedicine, 2(8), 597–601.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Katerere, D. R., Gray, A. I., Nash, R. J., & Waigh, R. D. (2012). Phytochemical and antimicrobial investigations of stilbenoids and flavonoids isolated from three species of Combretaceae. Fitoterapia, 83(5), 932–940.PubMedCrossRefGoogle Scholar
  56. Kilmarx, P. H. (2009). Global epidemiology of HIV. Current Opinion in HIV and AIDS, 4(4), 240–246.PubMedCrossRefGoogle Scholar
  57. Koffuor, G. A., et al. (2014). The immunostimulatory and antimicrobial property of two herbal decoctions used in the management of HIV/AIDS in Ghana. African Journal of Traditional, Complementary, and Alternative Medicines, 11(3), 166–172.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kuate Defo, B. (2014). Demographic, epidemiological, and health transitions: are they relevant to population health patterns in Africa? Global Health Action, 7, 22443.PubMedCrossRefGoogle Scholar
  59. Kuete, V., et al. (2011). Antioxidant, antitumor and antimicrobial activities of the crude extract and compounds of the root bark of Allanblackia floribunda. Pharmaceutical Biology, 49(1), 57–65.PubMedCrossRefGoogle Scholar
  60. Kylli, P., et al. (2011). Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium microcarpon) proanthocyanidins: Isolation, identification, and bioactivities. Journal of Agricultural and Food Chemistry, 59(7), 3373–3384.PubMedCrossRefGoogle Scholar
  61. Lacombe, A., Wu, V. C., Tyler, S., & Edwards, K. (2010). Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157:H7. International Journal of Food Microbiology, 139(1-2), 102–107.PubMedCrossRefGoogle Scholar
  62. Levine, M. M., Kotloff, K. L., Breiman, R. F., & Zaidi, A. K. (2013). Diarrheal disease constitutes one of the top two causes of mortality among young children in developing countries. Preface. The American Journal of Tropical Medicine and Hygiene, 89(1 Suppl), 1–2.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Li, J., Han, Q., Chen, W., & Ye, L. (2012). Antimicrobial activity of Chinese bayberry extract for the preservation of surimi. Journal of the Science of Food and Agriculture, 92(11), 2358–2365.PubMedCrossRefGoogle Scholar
  64. Li, Z. J., et al. (2013a). Chemical composition and antimicrobial activity of the essential oil from the edible aromatic plant Aristolochia delavayi. Chemistry & Biodiversity, 10(11), 2032–2041.CrossRefGoogle Scholar
  65. Li Y, Li J, Li Y, Wang XX, & Cao AC (2013b) Antimicrobial constituents of the leaves of Mikania micrantha H. B. K. PLoS One, 8(10), e76725.Google Scholar
  66. Li, R., et al. (2014). Chemical composition, antimicrobial and anti-inflammatory activities of the essential oil from Maqian (Zanthoxylum myriacanthum var. pubescens) in Xishuangbanna, SW China. Journal of Ethnopharmacology, 158(Pt A), 43–48.PubMedCrossRefGoogle Scholar
  67. Liang, H., et al. (2012). Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae). BMC Complementary and Alternative Medicine, 12, 238.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lohombo-Ekomba, M. L., et al. (2004). Antibacterial, antifungal, antiplasmodial, and cytotoxic activities of Albertisia villosa. Journal of Ethnopharmacology, 93(2–3), 331–335.PubMedCrossRefGoogle Scholar
  69. Lone, B. A., et al. (2013). Anthelmintic and antimicrobial activity of methanolic and aqueous extracts of Euphorbia helioscopia L. Tropical Animal Health and Production, 45(3), 743–749.PubMedCrossRefGoogle Scholar
  70. Lunga, P. K., et al. (2014). Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from Paullinia pinnata. BMC Complementary and Alternative Medicine, 14, 369.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lutkenhaus, J., & Addinall, S. G. (1997). Bacterial cell division and the Z ring. Annual Review of Biochemistry, 66, 93–116.PubMedCrossRefGoogle Scholar
  72. Ma, T., et al. (2015). Influence of technical processing units on chemical composition and antimicrobial activity of carrot (Daucus carota L.) juice essential oil. Food Chemistry, 170, 394–400.PubMedCrossRefGoogle Scholar
  73. Mahajan, G. B., & Balachandran, L. (2012). Antibacterial agents from actinomycetes – A review. Frontiers in Bioscience (Elite Edition), 4, 240–253.CrossRefGoogle Scholar
  74. Mak, S., Xu, Y., & Nodwell, J. R. (2014). The expression of antibiotic resistance genes in antibiotic-producing bacteria. Molecular Microbiology, 93(3), 391–402.PubMedCrossRefGoogle Scholar
  75. Maldonado, P. D., Rivero-Cruz, I., Mata, R., & Pedraza-Chaverri, J. (2005). Antioxidant activity of A-type proanthocyanidins from Geranium niveum (Geraniaceae). Journal of Agricultural and Food Chemistry, 53(6), 1996–2001.PubMedCrossRefGoogle Scholar
  76. Martinez, J. L., & Baquero, F. (2014). Emergence and spread of antibiotic resistance: Setting a parameter space. Upsala Journal of Medical Sciences, 119(2), 68–77.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Martinez Ruiz, M. G., et al. (2012). Antimicrobial, anti-inflammatory, antiparasitic, and cytotoxic activities of Laennecia confusa. ScientificWorldJournal, 2012, 263572.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mbosso Teinkela, J. E., et al. (2016). In vitro antimicrobial and anti-proliferative activities of plant extracts from Spathodea campanulata, Ficus bubu, and Carica papaya. Pharmaceutical Biology, 54(6), 1086–1095.PubMedCrossRefGoogle Scholar
  79. Michael, G. B., et al. (2015). Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiology, 10(3), 427–443.PubMedCrossRefGoogle Scholar
  80. Nemereshina, O. N., Tinkov, A. A., Gritsenko, V. A., & Nikonorov, A. A. (2015). Influence of Plantaginaceae species on E. coli K12 growth in vitro: Possible relation to phytochemical properties. Pharmaceutical Biology, 53(5), 715–724.PubMedCrossRefGoogle Scholar
  81. Ohiri, F. C., & Uzodinma, V. C. (2000). Antimicrobial properties of Thonningia sanguinea root extracts. Fitoterapia, 71(2), 176–178.PubMedCrossRefGoogle Scholar
  82. Ooi, L. S., et al. (2006). Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. The American Journal of Chinese Medicine, 34(3), 511–522.PubMedCrossRefGoogle Scholar
  83. Ozusaglam, M. A., Darilmaz, D. O., Erzengin, M., Teksen, M., & Erkul, S. K. (2013). Antimicrobial and antioxidant activities of two endemic plants from Aksaray in Turkey. African Journal of Traditional, Complementary, and Alternative Medicines, 10(3), 449–457.PubMedPubMedCentralGoogle Scholar
  84. Pan, S. Y., et al. (2014). Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evidence-based Complementary and Alternative Medicine, 2014, 525340.PubMedPubMedCentralGoogle Scholar
  85. Paudel, B., et al. (2014). Estimation of antioxidant, antimicrobial activity and brine shrimp toxicity of plants collected from Oymyakon region of the Republic of Sakha (Yakutia), Russia. Biological Research, 47, 10.PubMedPubMedCentralGoogle Scholar
  86. Pavlovic, D. R., et al. (2017). Influence of different wild-garlic (Allium ursinum) extracts on the gastrointestinal system: spasmolytic, antimicrobial and antioxidant properties. The Journal of Pharmacy and Pharmacology, 69(9), 1208–1218.PubMedCrossRefGoogle Scholar
  87. Pena, J. C. (1999). Pre-Columbian medicine and the kidney. American Journal of Nephrology, 19(2), 148–154.PubMedCrossRefGoogle Scholar
  88. Penesyan, A., Gillings, M., & Paulsen, I. T. (2015). Antibiotic discovery: Combatting bacterial resistance in cells and in biofilm communities. Molecules, 20(4), 5286–5298.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Perez-Vasquez, A., et al. (2011). Antimicrobial activity and chemical composition of the essential oil of Hofmeisteria schaffneri. The Journal of Pharmacy and Pharmacology, 63(4), 579–586.PubMedCrossRefGoogle Scholar
  90. Pitt, S. J., Graham, M. A., Dedi, C. G., Taylor-Harris, P. M., & Gunn, A. (2015). Antimicrobial properties of mucus from the brown garden snail Helix aspersa. British Journal of Biomedical Science, 72(4), 174–181; quiz 208.PubMedCrossRefGoogle Scholar
  91. Quave, C. L., et al. (2015). Castanea sativa (European Chestnut) leaf extracts rich in ursene and oleanene derivatives block staphylococcus aureus virulence and pathogenesis without detectable resistance. PLoS One, 10(8), e0136486.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ramirez-Carreto, S., et al. (2015). Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity. Peptides, 73, 51–59.PubMedCrossRefGoogle Scholar
  93. Reiter, J., et al. (2017). Diallylthiosulfinate (Allicin), a volatile antimicrobial from garlic (Allium sativum), kills human lung pathogenic bacteria, including MDR strains, as a vapor. Molecules, 22(10).PubMedCentralCrossRefPubMedGoogle Scholar
  94. Rivero-Cruz, J. F. (2008). Antimicrobial compounds isolated from Haematoxylon brasiletto. Journal of Ethnopharmacology, 119(1), 99–103.PubMedCrossRefGoogle Scholar
  95. Rivero-Cruz, I., et al. (2011). Chemical composition and antimicrobial and spasmolytic properties of Poliomintha longiflora and Lippia graveolens essential oils. Journal of Food Science, 76(2), C309–C317.PubMedCrossRefGoogle Scholar
  96. Rodriguez-Garcia, A., et al. (2015). In vitro antimicrobial and antiproliferative activity of amphipterygium adstringens. Evidence-based Complementary and Alternative Medicine, 2015, 175497.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sanchez-Vasquez, L., et al. (2013). Enhanced antimicrobial activity of novel synthetic peptides derived from vejovine and hadrurin. Biochimica et Biophysica Acta, 1830(6), 3427–3436.PubMedCrossRefGoogle Scholar
  98. Selles, C., et al. (2013). Antimicrobial activity and evolution of the composition of essential oil from Algerian Anacyclus pyrethrum L. through the vegetative cycle. Natural Product Research, 27(23), 2231–2234.PubMedCrossRefGoogle Scholar
  99. Sharma, H., Chandola, H. M., Singh, G., & Basisht, G. (2007). Utilization of Ayurveda in health care: an approach for prevention, health promotion, and treatment of disease. Part 1–Ayurveda, the science of life. Journal of Alternative and Complementary Medicine, 13(9), 1011–1019.PubMedCrossRefGoogle Scholar
  100. Shay, L. E., & Freifeld, A. G. (1999). The current state of infectious disease: A clinical perspective on antimicrobial resistance. Lippincott’s Primary Care Practice, 3(1), 1–15; quiz 16–18.PubMedGoogle Scholar
  101. Shukla, R., et al. (2016). Antioxidant, Antimicrobial Activity and Medicinal Properties of Grewia asiatica L. Medicinal Chemistry, 12(3), 211–216.PubMedCrossRefGoogle Scholar
  102. Silva, S., et al. (2016). Antimicrobial, antiadhesive and antibiofilm activity of an ethanolic, anthocyanin-rich blueberry extract purified by solid phase extraction. Journal of Applied Microbiology, 121(3), 693–703.PubMedCrossRefGoogle Scholar
  103. Sipponen, A., & Laitinen, K. (2011). Antimicrobial properties of natural coniferous rosin in the European Pharmacopoeia challenge test. APMIS, 119(10), 720–724.PubMedCrossRefGoogle Scholar
  104. Solstad, R. G., et al. (2016). Novel antimicrobial peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the edible sea urchin echinus esculentus have 6-Br-Trp post-translational modifications. PLoS One, 11(3), e0151820.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sommer, M. O. A., Dantas, G., & Church, G. M. (2009). Functional characterization of the antibiotic resistance reservoir in the human microflora. Science, 325(5944), 1128–1131.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Song, C. W., et al. (2014). New antimicrobial pregnane glycosides from the stem of Ecdysanthera rosea. Fitoterapia, 99, 267–275.PubMedCrossRefGoogle Scholar
  107. Sonibare, M. A., Aremu, O. T., & Okorie, P. N. (2016). Antioxidant and antimicrobial activities of solvent fractions of Vernonia cinerea (L.) Less leaf extract. African Health Sciences, 16(2), 629–639.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Spellberg, B., & Taylor-Blake, B. (2013). On the exoneration of Dr. William H. Stewart: debunking an urban legend. Infectious Diseases of Poverty, 2(1), 3.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Springfield, E. P., Amabeoku, G., Weitz, F., Mabusela, W., & Johnson, Q. (2003). An assessment of two Carpobrotus species extracts as potential antimicrobial agents. Phytomedicine, 10(5), 434–439.PubMedCrossRefGoogle Scholar
  110. Su, B. L., et al. (2012). Antioxidant and antimicrobial properties of various solvent extracts from Impatiens balsamina L. stems. Journal of Food Science, 77(6), C614–C619.PubMedCrossRefGoogle Scholar
  111. Subramanian, S., Ross, N. W., & MacKinnon, S. L. (2008). Comparison of antimicrobial activity in the epidermal mucus extracts of fish. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 150(1), 85–92.CrossRefGoogle Scholar
  112. Suleman, T., van Vuuren, S., Sandasi, M., & Viljoen, A. M. (2015). Antimicrobial activity and chemometric modelling of South African propolis. Journal of Applied Microbiology, 119(4), 981–990.PubMedCrossRefGoogle Scholar
  113. Sun, J., Deng, Z., & Yan, A. (2014). Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications, 453(2), 254–267.PubMedCrossRefGoogle Scholar
  114. Sun, Y., et al. (2017). Biological characteristics of Edgeworthia tomentosa (Thunb.) Nakai flowers and antimicrobial properties of their essential oils. Natural Product Research, 1–4.Google Scholar
  115. Tadic, V. M., et al. (2008). Anti-inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract. Journal of Agricultural and Food Chemistry, 56(17), 7700–7709.PubMedCrossRefGoogle Scholar
  116. Tan, J. B., Yap, W. J., Tan, S. Y., Lim, Y. Y., & Lee, S. M. (2014). Antioxidant content, antioxidant activity, and antibacterial activity of five plants from the Commelinaceae family. Antioxidants (Basel), 3(4), 758–769.CrossRefGoogle Scholar
  117. Tan, J. B., Lim, Y. Y., & Lee, S. M. (2015). Antioxidant and antibacterial activity of Rhoeo spathacea (Swartz) Stearn leaves. Journal of Food Science and Technology, 52(4), 2394–2400.PubMedCrossRefGoogle Scholar
  118. Taviano, M. F., et al. (2011). Antioxidant and antimicrobial activities of branches extracts of five Juniperus species from Turkey. Pharmaceutical Biology, 49(10), 1014–1022.PubMedCrossRefGoogle Scholar
  119. Thiem, B., & Goslinska, O. (2004). Antimicrobial activity of Rubus chamaemorus leaves. Fitoterapia, 75(1), 93–95.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Torres-Larios, A., Gurrola, G. B., Zamudio, F. Z., & Possani, L. D. (2000). Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. European Journal of Biochemistry, 267(16), 5023–5031.PubMedCrossRefGoogle Scholar
  121. Trentin, D. S., et al. (2013). Tannins possessing bacteriostatic effect impair Pseudomonas aeruginosa adhesion and biofilm formation. PLoS One, 8(6), e66257.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tsoutsos, D., Kakagia, D., & Tamparopoulos, K. (2009). The efficacy of Helix aspersa Muller extract in the healing of partial thickness burns: a novel treatment for open burn management protocols. The Journal of Dermatological Treatment, 20(4), 219–222.PubMedCrossRefGoogle Scholar
  123. van Wyk, B. E. (2008). A broad review of commercially important southern African medicinal plants. Journal of Ethnopharmacology, 119(3), 342–355.PubMedCrossRefGoogle Scholar
  124. Van Wyk, B. E. (2015). A review of commercially important African medicinal plants. Journal of Ethnopharmacology, 176, 118–134.PubMedCrossRefGoogle Scholar
  125. Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics, 40(4), 277–283.PubMedPubMedCentralGoogle Scholar
  126. Verma, R., Gangrade, T., Punasiya, R., & Ghulaxe, C. (2014). Rubus fruticosus (blackberry) use as an herbal medicine. Pharmacognosy Reviews, 8(16), 101–104.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Viljoen, A., et al. (2003). Osmitopsis asteriscoides (Asteraceae)-the antimicrobial activity and essential oil composition of a Cape-Dutch remedy. Journal of Ethnopharmacology, 88(2-3), 137–143.PubMedCrossRefGoogle Scholar
  128. Watkins, F., Pendry, B., Corcoran, O., & Sanchez-Medina, A. (2011). Anglo-Saxon pharmacopoeia revisited: A potential treasure in drug discovery. Drug Discovery Today, 16(23–24), 1069–1075.PubMedCrossRefGoogle Scholar
  129. Weckesser, S., et al. (2007). Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine, 14(7–8), 508–516.PubMedCrossRefGoogle Scholar
  130. Woguem, V., et al. (2014). Volatile oil from striped African pepper (Xylopia parviflora, Annonaceae) possesses notable chemopreventive, anti-inflammatory and antimicrobial potential. Food Chemistry, 149, 183–189.PubMedCrossRefGoogle Scholar
  131. Xia, X. L. (2013). History of Chinese medicinal wine. Chinese Journal of Integrative Medicine, 19(7), 549–555.PubMedCrossRefGoogle Scholar
  132. Yang, X., Tang, C., Zhao, P., Shu, G., & Mei, Z. (2012). Antimicrobial constituents from the tubers of Bletilla ochracea. Planta Medica, 78(6), 606–610.PubMedCrossRefGoogle Scholar
  133. Yazdankhah S, Lassen J, Midtvedt T, & Solberg CO (2013) [The history of antibiotics]. Tidsskr Nor Laegeforen, 133(23–24), 2502–2507.Google Scholar
  134. Yu, Y., Yi, Z. B., & Liang, Y. Z. (2007). Validate antibacterial mode and find main bioactive components of traditional Chinese medicine Aquilegia oxysepala. Bioorganic & Medicinal Chemistry Letters, 17(7), 1855–1859.CrossRefGoogle Scholar
  135. Zang, X., et al. (2013). A-type proanthocyanidins from the stems of Ephedra sinica (Ephedraceae) and their antimicrobial activities. Molecules, 18(5), 5172–5189.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Zeng, W. C., et al. (2011). Antibrowning and antimicrobial activities of the water-soluble extract from pine needles of Cedrus deodara. Journal of Food Science, 76(2), C318–C323.PubMedCrossRefGoogle Scholar
  137. Zhang, L., & Mah, T. F. (2008). Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. Journal of Bacteriology, 190(13), 4447–4452.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of MedicineTexas Tech University Health Sciences CenterLubbockUSA

Personalised recommendations