Advertisement

Development and Innovation of Ganoderma Industry and Products in China

  • Zhenhao Li
  • Jianlong Zhou
  • Zhibin Lin
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1181)

Abstract

Ganoderma (Lingzhi) has been used as a medicinal mushroom to promote health in China for more than 2000 years. The modern research and development of Ganoderma industry started from the 1950s, in which the successful cultivation of Ganoderma fruiting body and submerged fermentation of Ganoderma mycelium lay the critical foundation for the industry development. Recent decades have witnessed the rapid development of Ganoderma industry, which is boosted through various efforts made by the government, the academia, and the industry. In this chapter, the development of Ganoderma industry in China is reviewed in terms of gross output, standards, scientific articles, patents, and associations. In addition, development of Ganoderma products and manufacturing technologies are also overviewed and summarized. In the last section, several innovation trends are suggested for the further development of Ganoderma industry.

Keywords

Ganoderma Industry Product Development direction 

References

  1. 1.
    Lin ZB (2015) Chapter 1: historical data of Chinese Ganoderma (Lingzhi) research. In: Lin ZB (ed) Modern research on Ganoderma (Lingzhi), 4th edn. Peking University Medical Press, Beijing, pp 1–7Google Scholar
  2. 2.
    He BW, Xu DL, Ma L, Chen HJ (2016) Development and safety manufacturing of Ganoderma industry in Zhejiang. Edible Med Mushroom 24(6):353–357Google Scholar
  3. 3.
    Lin ZB (1979) Current situation of Ganoderma research in China. Acta Pharm Sin 14(3):183–192Google Scholar
  4. 4.
    Liu XM, Liu FP, Lin YH, Xu WJ (1991) Application of Ganoderma in drugs and supplements. Sub Trop Plant Sci 20(02):48–50Google Scholar
  5. 5.
    Lin ZB (2015) Chapter 4: cut-log cultivation of Ganoderma (Lingzhi). In: Lin ZB (ed) Modern research on Ganoderma (Lingzhi), 4th edn. Peking University Medical Press, Beijing, pp 56–73Google Scholar
  6. 6.
    Li MY (2015) Research and development of quality standard and specifications of Ganoderma lucidum from an industry chain perspective. Edible Med Mushroom 23(5):276–279Google Scholar
  7. 7.
    ISO 21315 (2018) Traditional Chinese medicine—Ganoderma lucidum fruiting body. International Organization for StandardizationGoogle Scholar
  8. 8.
    Sanodiya BS, Thakur GS, Baghel RK, Prasad GBKS, Bisen PS (2009) Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharm Biotechnol 10(8):717–742PubMedCrossRefGoogle Scholar
  9. 9.
    Paterson RRM (2006) Ganoderma–a therapeutic fungal biofactory. Phytochemistry 67(18):1985–2001PubMedCrossRefGoogle Scholar
  10. 10.
    Bishop KS, Kao CH, Xu Y, Glucina MP, Paterson RRM, Ferguson LR (2015) From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry 114:56–65PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hsu KD, Cheng KC (2018) From nutraceutical to clinical trial: frontiers in Ganoderma development. Appl Microbiol Biotechnol 102(21):9037–9051PubMedCrossRefGoogle Scholar
  12. 12.
    Chen ZQ, Huang WL, Jin X, Liu ZM, Huang YJ, Li P, Zheng LY (2016) Research progress on Ganoderma lucidum intensive processing in China. J Food Saf Qual 7(2):639–644Google Scholar
  13. 13.
    Lawrence XY, Ilgaz A, Barbara A, Gregory A, Tara GB, Ashley B, Margaret C, David D, Joseph F, Adam CF, Scott F, Brian H, Henry H, Stephen WH, Robert I, Bruce DJ, Robert J, Paula K, Emanuela L, Sau LL, Richard L, Grace M, Mehul M, Ganapathy M, Moheb N, Roger N, Mary O, Thomas OC, Jim P, Raju GK, Mahesh R, Giuseppe R, Susan R, Anna S, Arzu S, Paul S, Vinod S, Ramesh S, Michael PT, Tony T, Bernhardt LT, Katherine T, Siva V, Martin VT, Fionnuala W, Russell W, Janet W, Geoffrey W, Larisa W, Louis Y, Diane Z (2015) Advancing product quality: a summary of the inaugural FDA/PQRI conference. AAPS J 18(2):528–543Google Scholar
  14. 14.
    Gou JH, Li MY (2013) Research of the operational mode of the agriculture-related whole industrial chain based on food safety: take Zhejiang Longevity Valley as an example. J Zhejiang Int Stud Univ 2(2):86–92Google Scholar
  15. 15.
    Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRefGoogle Scholar
  16. 16.
    Hayes M, Carney B, Slater J, Brück W (2008) Mining marine shellfish wastes for bioactive molecules: chitin and chitosan–part B: applications. Biotechnol J 3(7):878–889PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Chen CC, Cheh LW, Yang JC, Tsai CM, Keh ES, Sheu MT, SU CH, Hong HH, Lin CT, Lee SY (2007) Non-shellfish chitosan from the fruiting body residue of Ganoderma tsugae for long-lasting antibacterial guided-tissue regeneration barriers. J Dent Sci 2(1):19–29Google Scholar
  18. 18.
    Su CH, Sun CS, Juan SW, Hu CH, Ke WT, Sheu MT (1997) Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes [J]. Biomaterials 18(17):1169–1174PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Cheng YY, Qu HB, Zhang BL (2016) Chinese medicine industry 4.0: advancing digital pharmaceutical manufacture toward intelligent pharmaceutical manufacture. Chin J Chin Mater Med 41(1):1–5Google Scholar
  20. 20.
    Ferreira IC, Heleno SA, Reis FS, Stojkovic D, Queiroz MJ, Vasconcelos MH, Sokovic M (2015) Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 114:38–55PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Cör D, Knez Ž, Knez Hrnčič M (2018) Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: a review. Molecules 23(3):649CrossRefGoogle Scholar
  22. 22.
    Ahmad MF (2018) Ganoderma lucidum: persuasive biologically active constituents and their health endorsement. Biomed Pharmacother 107:507–519PubMedCrossRefGoogle Scholar
  23. 23.
    Nie S, Zhang H, Li W, Xie M (2013) Current development of polysaccharides from Ganoderma: isolation, structure and bioactivities. Bioact Carbohydr Diet Fibre 1(1):10–17CrossRefGoogle Scholar
  24. 24.
    Zhang M, Cui SW, Cheung PCK, Wang Q (2007) Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol 18(1):4–19CrossRefGoogle Scholar
  25. 25.
    Li XL, Zhou AG, Li XM (2007) Inhibition of Lycium barbarum polysaccharides and Ganoderma lucidum polysaccharides against oxidative injury induced by radiation in rat liver mitochondria. Carbohydr Polym 69(1):172–178CrossRefGoogle Scholar
  26. 26.
    Jiang H, Sun P, He J, Shao P (2012) Rapid purification of polysaccharides using novel radial flow ion-exchange by response surface methodology from Ganoderma lucidum. Food Bioprod Process 90(1):1–8CrossRefGoogle Scholar
  27. 27.
    Xia Q, Zhang H, Sun X, Zhao H, Wu L, Zhu D, Yang G, Shao Y, Zhang X, Mao X, Zhang L, She G (2014) A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp. Molecules 19(11):17478–17535PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Li Y, Zhu ZM, Yao WX, Chen RY (2012) Study progress on triterpenoids from Ganoderma Lucidum. Chin J Chin Mater Med 37(2):165–171Google Scholar
  29. 29.
    Li L, Guo HJ, Zhu LY, Zheng L, Liu X (2016) A supercritical-CO2 extract of Ganoderma lucidum spores inhibits cholangiocarcinoma cell migration by reversing the epithelial–mesenchymal transition. Phytomedicine 23(5):491–497PubMedCrossRefGoogle Scholar
  30. 30.
    Cheng YY, Qian ZZ, Zhang BL (2017) A strategy of constructing the technological system for quality control of Chinese medicine based on process control and management. Chin J Chin Mater Med 42(1):1–5Google Scholar
  31. 31.
    Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661PubMedCrossRefGoogle Scholar
  32. 32.
    Cao Y, Xu X, Liu S, Huang L, Gu J (2018) A cancer immunotherapy review. Front Pharmacol 9:1217PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lin TY, Hsu HY (2016) Ling Zhi-8 reduces lung cancer mobility and metastasis through disruption of focal adhesion and induction of MDM2-mediated Slug degradation. Cancer Lett 375(2):340–348PubMedCrossRefGoogle Scholar
  34. 34.
    Lin TY, Hsu HY, Sun WH, Wu TH, Tsao SM (2017) Induction of Cbl-dependent epidermal growth factor receptor degradation in Ling Zhi-8 suppressed lung cancer. Int J Cancer 140:2596–2607PubMedCrossRefGoogle Scholar
  35. 35.
    Wang K, Bao L, Ma K, Zhang J, Chen B, Han J, Ren JW, Luo HJ, Liu HW (2016) A novel class of α-glucosidase and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of ganomycin i in kk-ay mice. Eur J Med Chem 127:1035–1046PubMedCrossRefGoogle Scholar
  36. 36.
    Wang K, Bao L, Zhou N, Zhang J, Liao M, Zheng Z, Wang Y, Liu C, Wang J, Wang L, Wang W, Liu S, Liu H (2018) Structural modification of natural product ganomycin I leading to discovery of a α-glucosidase and HMG-CoA reductase dual inhibitor improving obesity and metabolic dysfunction in vivo. J Med Chem 61(8):3609–3625PubMedCrossRefGoogle Scholar
  37. 37.
    Su L, Liu L, Jia Y, Lei L, Liu J, Zhu S, Zhou H, Chen R, Lu HAJ, Yang B (2017) Ganoderma triterpenes retard renal cyst development by downregulating Ras/MAPK signaling and promoting cell differentiation. Kidney Int 92(6):1404–1418PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Li X, Zhang JA, Huang J, Ma AQ, Yang JF, Li WM, Wu Z, Yao C, Zhang Y, Yao W, Zhang B, Gao R, Efficacy and Safety of Qili Qiangxin Capsules for Chronic Heart Failure Study Group (2013) A multicenter, randomized, double-blind, parallel-group, placebo-controlled study of the effects of qili qiangxin capsules in patients with chronic heart failure. J Am Coll Cardiol 62(12):1065–1072PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Wang S, Hu Y, Tan W, Wu X, Chen R, Cao J, Chen M, Wang Y (2012) Compatibility art of traditional Chinese medicine: from the perspective of herb pairs. J Ethnopharmacol 143(2):412–423PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Wang Y, Fan X, Qu H, Gao X, Cheng Y (2012) Strategies and techniques for multi-component drug design from medicinal herbs and traditional Chinese medicine. Curr Top Med Chem 12(12):1356–1362PubMedCrossRefGoogle Scholar
  41. 41.
    Thomas DW, Burns J, Audette J, Carroll A, Dow-Hygelund C, Hay M (2016) Clinical development success rates 2006–2015. Biomedtracker/BIO/Bend/Amplion, San Diego/Washington, DCGoogle Scholar
  42. 42.
    Lee SL, Dou JH, Agarwal R, Temple R, Beitz J, Wu C, Mulberg A, Yu LX, Woodcock J (2015) Evolution of traditional medicines to botanical drugs. Science 347(6219):S32–S34Google Scholar
  43. 43.
    Wang RL (2018) Analysis of registration for new Chinese herbal drug from 2011-2017. Mod Chin Med 20(7):910–914Google Scholar
  44. 44.
    Schmuff NR, Lin DT (2008) Chemistry, manufacturing and controls (CMC). In: Wiley encyclopedia of clinical trials. Wiley, ManhattanGoogle Scholar
  45. 45.
    Zanella F, Lorens JB, Link W (2010) High content screening: seeing is believing. Trends Biotechnol 28(5):237–245PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zhenhao Li
    • 1
    • 2
  • Jianlong Zhou
    • 1
  • Zhibin Lin
    • 3
  1. 1.Zhejiang Shouxiangu Pharmaceutical Co., LtdWuyiChina
  2. 2.College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
  3. 3.Department of PharmacologySchool of Basic Medical Sciences, Peking UniversityBeijingChina

Personalised recommendations