Advertisement

Newer Technologies in Vitreoretinal Disorders

  • Apoorva Ayachit
  • Jay Chhablani
Chapter
Part of the Current Practices in Ophthalmology book series (CUPROP)

Abstract

The field of vitreo-retina has grown in leaps and bounds in terms of imaging, surgical instrumentation, and viewing systems. From time domain optical coherence tomography (TD-OCT) and B scan ultrasonography being the only available non-invasive tools to assess the retina, there has been an unprecedented growth in terms of detail and resolution in the forms of swept-source OCT (SS-OCT) and OCT angiography (OCTA). Similarly from the older cutters and viewing systems, we have now graduated to advanced high-efficiency cutters, 3D viewing systems, and intraoperative OCT. The newer advances in stem cell therapy have enabled gene therapy to arrive at the bedside, and offer a potential cure to hitherto incurable retinal disorders.

References

  1. 1.
  2. 2.
    de Oliveira P, Berger A, Chow D. Vitreoretinal instruments: vitrectomy cutters, endoillumination and wide-angle viewing systems. Int J Retin Vitreous. 2016;2(1):28.CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Stanga P, Pastor-Idoate S, Zambrano I, Carlin P, McLeod D. Performance analysis of a new hypersonic vitrector system. PLoS One. 2017;12(6):e0178462.CrossRefGoogle Scholar
  5. 5.
    Riviere CN, Gangloff J, De Mathelin M. Robotic compensation of biological motion to enhance surgical accuracy. Proc IEEE. 2006;94:1705.CrossRefGoogle Scholar
  6. 6.
    Fleming I, Balicki M, Koo J, et al. Cooperative robot assistant for retinal microsurgery. Medical image computing and computer-assisted intervention. Med Image Comput Comput Assist Interv. 2008;11:543–50.PubMedGoogle Scholar
  7. 7.
    Bourla DH, Hubschman JP, Culjat M, et al. Feasibility study of intraocular robotic surgery with the Da Vinci surgical system. Retina. 2008;28:154–8.CrossRefGoogle Scholar
  8. 8.
    Channa R, Iordachita I, Handa J. Robotic vitreoretinal surgery. Retina. 2017;37(7):1220–8.CrossRefGoogle Scholar
  9. 9.
    Cutler N, Balicki M, Finkelstein M, et al. Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery. Invest Ophthalmol Vis Sci. 2013;54:1316–24.CrossRefGoogle Scholar
  10. 10.
    Maclachlan RA, Becker BC, Tabares JC, et al. Micron: an actively stabilized handheld tool for microsurgery. IEEE Trans Robot. 2012;28:195–212.CrossRefGoogle Scholar
  11. 11.
    Hubschman JP, Son J, Allen B, et al. Evaluation of the motion of surgical instruments during intraocular surgery. Eye. 2011;25:947–53.CrossRefGoogle Scholar
  12. 12.
    Lu CD, Kraus MF, Potsaid B, Liu JJ, Choi W, Jayaraman V, et al. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed Opt Express. 2014;5(1):293–311.CrossRefGoogle Scholar
  13. 13.
    Song C, Park DY, Gehlbach PL, Park SJ, Kang JU. Fiber-optic OCT sensor guided ‘SMART’ micro-forceps for microsurgery. Biomed Opt Express. 2013;4(7):1045–50.CrossRefGoogle Scholar
  14. 14.
    Runkle A, Srivastava S, Ehlers J. Microscope-integrated OCT feasibility and utility with the EnFocus System in the DISCOVER Study. Ophthalmic Surg Lasers Imaging Retina. 2017;48(3):216–22.CrossRefGoogle Scholar
  15. 15.
    Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Seider MI, Izatt JA, Toth CA. Optical coherence tomography for retinal surgery: perioperative analysis to real-time four-dimensional image-guided surgery. Invest Ophthalmol Vis Sci. 2016;57(9):OCT37–50.CrossRefGoogle Scholar
  16. 16.
    Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Waterman LG, Todorich B, et al. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography. Sci Rep. 2016;6:31689.CrossRefGoogle Scholar
  17. 17.
    Shen L, Keller B, Carrasco-Zevallos OM, Viehland C, Bhullar P, Waterman G, et al. Oculus rift® as a head tracking, stereoscopic head-mounted display for intraoperative OCT in ophthalmic surgery. Invest Ophthalmol Vis Sci. 2016;57:1701.CrossRefGoogle Scholar
  18. 18.
    Lu CD, Witkin AJ, Waheed NK, Postsaid B, Liu JJ, Moult EM, Jayaraman V, Chan K, Duker JS, Fujimoto JG. Ultrahigh speed ophthalmic surgical OCT for intraoperative OCT angiography and widefield imaging. ARVO Meet Abstr. 2016;57(12)Google Scholar
  19. 19.
    Yazdanfar S, Kulkarni M, Izatt J. High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography. Opt Express. 1997;1(13):424.CrossRefGoogle Scholar
  20. 20.
    Press Release [Internet]. Truevisionsys.com. 2018 [cited 31 August 2018]. http://truevisionsys.com/announcement52.html.
  21. 21.
    Yonekawa Y. Seeing the world through 3-D glasses. Retina Today. 2016;11(7):54–60.Google Scholar
  22. 22.
    Ho AC, Friess DW, Hsu J, Rahimy E. The case for 3-D retina surgery. Retina Today. 2015;10(8):76–8.Google Scholar
  23. 23.
    Stem M, Thanos A, Elliot D, Drenser K, Hasan T, Ruby A. Heads-up 3-d visualization in complex vitreoretinal surgery. Retina Today. 2018;7:43–8.Google Scholar
  24. 24.
    Adam M, Thornton S, Regillo C, Park C, Ho A, Hsu J. Minimal endoillumination levels and display luminous emittance during three-dimensional heads-up vitreoretinal surgery. Retina. 2017;37(9):1746–9.CrossRefGoogle Scholar
  25. 25.
    Eckardt C, Pauo EB. Heads-up surgery for vitreoretinal procedures: an Experimental and Clinical Study. Retina. 2016;36:137–47.CrossRefGoogle Scholar
  26. 26.
    Romano M, Cennamo G, Comune C, Cennamo M, Ferrara M, Rombetto L, et al. Evaluation of 3D heads-up vitrectomy: outcomes of psychometric skills testing and surgeon satisfaction. Eye. 2018;32(6):1093–8.CrossRefGoogle Scholar
  27. 27.
    Figueroa MS. 3D vitrectomy. Is it really useful? Arch Soc Esp Oftalmol. 2017;92:249–50.CrossRefGoogle Scholar
  28. 28.
    Skinner CC, Riemann CD. “Heads up” digitally assisted surgical viewing for retinal detachment repair in a patient with severe kyphosis. Retin Cases Brief Rep. 2018;12(3):257–9.CrossRefGoogle Scholar
  29. 29.
    Weiland JD, Cho AK, Humayun MS. Retinal prostheses: current clinical results and future needs. Ophthalmology. 2011;118(11):2227–37.CrossRefGoogle Scholar
  30. 30.
    Vurro M, Crowell AM, Pezaris JS. Simulation of thalamic prosthetic vision: Reading accuracy, speed, and acuity in sighted humans. Front Hum Neurosci. 2014;8:816.CrossRefGoogle Scholar
  31. 31.
    Cheng DL, Greenberg PB, Borton DA. Advances in retinal prosthetic research: a systematic review of engineering and clinical characteristics of current prosthetic initiatives. Curr Eye Res. 2017;42(3):334–47.CrossRefGoogle Scholar
  32. 32.
    Humayun MS, Dorn JD, da Cruz L, et al. Interim results from the international trial of second Sight’s visual prosthesis. Ophthalmology. 2012;119(4):779–88.CrossRefGoogle Scholar
  33. 33.
    Kitiratschky VB, Stingl K, Wilhelm B, et al. Safety evaluation of “retina implant alpha IMS”—a prospective clinical trial. Graefes Arch Clin Exp Ophthalmol. 2015;253(3):381–7.CrossRefGoogle Scholar
  34. 34.
    Fujikado T, Kamei M, Sakaguchi H, et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011;52(7):4726–33.CrossRefGoogle Scholar
  35. 35.
    Ohta J, Tokuda T, Kagawa K, et al. Laboratory investigation of microelectronics-based stimulators for large-scale suprachoroidal transretinal stimulation. J Neural Eng. 2007;4(1):S85–91.CrossRefGoogle Scholar
  36. 36.
    Chow AY, Chow VY, Packo KH, et al. The artificial silicon retina chip for the treatment of vision loss. Arch Ophthalmol. 2004;122(4):460–9.CrossRefGoogle Scholar
  37. 37.
    Kelly SK, Shire DB, Chen J, et al. A hermetic wireless subretinal neurostimulator for vision prostheses. IEEE Trans Biomed Eng. 2011;58(11):3197–205.CrossRefGoogle Scholar
  38. 38.
    Lorach H, Goetz G, Smith R, et al. Photovoltaic restoration of sight with high visual acuity. Nat Med. 2015;21(5):476–82.CrossRefGoogle Scholar
  39. 39.
    Lee SW, Seo JM, Ha S, et al. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest Ophthalmol Vis Sci. 2009;50(12):5859–66.CrossRefGoogle Scholar
  40. 40.
    Spaide RF. Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol. 2016;170:58–67.CrossRefGoogle Scholar
  41. 41.
    Agrawal R, Gupta P, Tan KA, Cheung CM, Wong TY, Cheng CY. Choroidal vascularity index as a measure of vascular status of the choroid: measurements in healthy eyes from a population-based study. Sci Rep. 2016;6:21090.CrossRefGoogle Scholar
  42. 42.
    Ferrara D, Mohler K, Waheed N, Adhi M, Liu J, Grulkowski I, et al. En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. Ophthalmology. 2014;121(3):719–26.CrossRefGoogle Scholar
  43. 43.
    Pedinielli A, Souied E, Perrenoud F, Leveziel N, Caillaux V, Querques G. In vivo visualization of perforating vessels and focal scleral ectasia in pathological myopia. Invest Ophthalmol Vis Sci. 2013;54(12):7637.CrossRefGoogle Scholar
  44. 44.
    Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina. 2015;35(11):2163–80.CrossRefGoogle Scholar
  45. 45.
    Roy A, Conjeti S, Karri S, Sheet D, Katouzian A, Wachinger C, et al. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Opt Express. 2017;8(8):3627.CrossRefGoogle Scholar
  46. 46.
    Chiu SJ, Allingham MJ, Mettu PS, Cousins SW, Izatt JA, Farsiu S. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed Opt Express. 2015;6(4):1172–94.CrossRefGoogle Scholar
  47. 47.
    Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S. Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation. Opt Express. 2010;18(18):413–28.CrossRefGoogle Scholar
  48. 48.
    Rowe-Rendleman CL, Durazo SA, Kompella UB, Rittenhouse KD, Di Polo A, Weiner AL, et al. Drug and gene delivery to the back of the eye: from bench to bedside. Invest Ophthalmol Vis Sci. 2014;55:2714–30.CrossRefGoogle Scholar
  49. 49.
    Olsen TW, Feng X, Wabner K, Csaky K, Pambuccian S, Cameron JD. Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. Invest Ophthalmol Vis Sci. 2011;52:4749–56.CrossRefGoogle Scholar
  50. 50.
    Goldstein DA, Do D, Noronha G, Kissner JM, Srivastava SK, Nguyen QD. Suprachoroidal corticosteroid administration: a novel route for local treatment of noninfectious uveitis. Transl Vis Sci Technol. 2016;5:14.CrossRefGoogle Scholar
  51. 51.
    Chen M, Li X, Liu J, Han Y, Cheng L. Safety and pharmacodynamics of suprachoroidal injection of triamcinolone acetonide as a controlled ocular drug release model. J Control Release. 2015;203:109–17.CrossRefGoogle Scholar
  52. 52.
    Tetz M, Rizzo S, Augustin AJ. Safety of submacular suprachoroidal drug administration via a microcatheter: retrospective analysis of European treatment results. Ophthalmologica. 2012;227:183–9.CrossRefGoogle Scholar
  53. 53.
    Streckfuss-Bomeke K, Wolf F, Azizian A, Stauske M, Tiburcy M, Wagner S, et al. Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur Heart J. 2013;34:2618–29.CrossRefGoogle Scholar
  54. 54.
    Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85:348–62.CrossRefGoogle Scholar
  55. 55.
    Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2009;106:16698–703.CrossRefGoogle Scholar
  56. 56.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.CrossRefGoogle Scholar
  57. 57.
    Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5:4047.CrossRefGoogle Scholar
  58. 58.
    Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol. 2004;22:53–4.CrossRefGoogle Scholar
  59. 59.
    Martins-Taylor K, Xu RH. Concise review: genomic stability of human induced pluripotent stem cells. Stem Cells. 2012;30:22–7.CrossRefGoogle Scholar
  60. 60.
    Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372:1887e1897.CrossRefGoogle Scholar
  61. 61.
    Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819e823.CrossRefGoogle Scholar
  62. 62.
    Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429–33.CrossRefGoogle Scholar
  63. 63.
    Moore JK, Haber JE. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol. 1996;16:2164–73.CrossRefGoogle Scholar
  64. 64.
    Haber JE, Ira G, Malkova A, et al. Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday’s model. Philos Trans R Soc Lond Ser B Biol Sci. 2004;359:79–86.CrossRefGoogle Scholar
  65. 65.
    Yiu G, Tieu E, Nguyen AT, et al. Genomic disruption of VEGF-A expression in human retinal pigment epithelial cells using CRISPR-Cas9 endonuclease. Invest Ophthalmol Vis Sci. 2016;57:5490e5497.Google Scholar
  66. 66.
    Huang X, Zhou G, Wu W, et al. Editing VEGFR2 blocks VEGF-induced activation of Akt and tube formation. Invest Ophthalmol Vis Sci. 2017;58:1228e1236.Google Scholar
  67. 67.
    Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24:132e141.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Apoorva Ayachit
    • 1
  • Jay Chhablani
    • 2
  1. 1.Department of VitreoretinaM M Joshi Eye InstituteHubballiIndia
  2. 2.Smt. Kanuri Santhamma Centre for Vitreo-Retinal Diseases, L V Prasad Eye InstituteHyderabadIndia

Personalised recommendations