Advertisement

Nanozymes: Biomedical Applications of Enzymatic Fe3O4 Nanoparticles from In Vitro to In Vivo

  • Lizeng Gao
  • Xiyun YanEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1174)

Abstract

Fe3O4, also called magnetite, is a naturally occurring mineral and has been widely used in biomedical applications. However, in the past, all the applications were based on its excellent magnetic properties and neglected its catalytic properties. In 2007, we found that Fe3O4 nanoparticles are able to perform intrinsic enzyme-like activities. A specific term, “nanozyme”, is used to describe the new property of intrinsic enzymatic activity of nanomaterials. Since then, Fe3O4 nanoparticles have been used as enzyme mimics, which broadens their applications beyond simply their magnetic properties, with applications in biomedical diagnosis and therapy, environmental monitoring and treatment, the food industry and chemical synthesis. In this chapter, we will summarize the basic features of Fe3O4 as an enzyme mimetic and its applications in biomedicine.

Keywords

Nanozymes Enzyme-like activity Enzyme mimetic Fe3O4 Biomedical application 

Abbreviations

ABTS

2, 2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid)

AD

Alzheimer’s disease

APTES

3-Aminopropyltriethoxysilane

CNT

Carbon nanotube

DAB

3, 3′-Diaminobenzidine

EBOV

Ebola virus

EPR

Enhanced permeability and retention

Fe3O4

Magnetite or iron oxide

GO

Graphene oxide

GOx

Glucose oxidase

H2O2

Hydrogen peroxide

HCG

Human chorionic gonadotropin

HFn

Human heavy-chain ferritin

HRP

Horseradish peroxidase

M-HFn

Magnetoferritin nanoparticles

MNPs

Magnetic nanoparticles

MRI

Magnetic resonance imaging

MRSA

Staphylococcus aureus

NPs

Nanoparticles

NTs

Nanotubes

NWs

Nanowires

OPD

o-phenylenediamine

PD

Parkinson’s disease

PEG

Polyethylene glycol

RES

Reticuloendothelial system

RGO

Reduced graphene oxide

ROS

Reactive oxygen species

TMB

3, 3′, 5, 5′-Tetramethylbenzidine

Notes

Acknowledgement

This work was supported in part by the Foundation of the Thousand Talents Plan for Young Professionals and Jiangsu Specially-Appointed Professor, the Interdisciplinary Funding at Yangzhou University, Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09030306), National Natural Science Foundation of China (Grant No. 31530026 and 81671810), Natural Science Foundation of Jiangsu (Grant No. BK20161333).

References

  1. 1.
    Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem 46(8):1222–1244CrossRefGoogle Scholar
  2. 2.
    Polshettiwar V, Luque R, Fihri A, Zhu HB, Bouhrara M, Bassett JM (2011) Magnetically recoverable nanocatalysts. Chem Rev 111(5):3036–3075PubMedCrossRefGoogle Scholar
  3. 3.
    Unsoy G, Gunduz U, Oprea O, Ficai D, Sonmez M, Radulescu M, Alexie M, Ficai A (2015) Magnetite: from synthesis to applications. Curr Top Med Chem 15(16):1622–1640PubMedCrossRefGoogle Scholar
  4. 4.
    Xie J, Huang J, Li X, Sun S, Chen X (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16(10):1278–1294PubMedCrossRefGoogle Scholar
  5. 5.
    Pan Y, Du XW, Zhao F, Xu B (2012) Magnetic nanoparticles for the manipulation of proteins and cells. Chem Soc Rev 41(7):2912–2942PubMedCrossRefGoogle Scholar
  6. 6.
    Frimpong RA, Hilt JZ (2010) Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine-UK 5(9):1401–1414CrossRefGoogle Scholar
  7. 7.
    Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Bohm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41(11):4306–4334PubMedCrossRefGoogle Scholar
  8. 8.
    Ho D, Sun XL, Sun SH (2011) Monodisperse magnetic nanoparticles for theranostic applications. Accounts Chem Res 44(10):875–882CrossRefGoogle Scholar
  9. 9.
    Gao LZ, Fan KL, Yan XY (2017) Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics 7(13):3207–3227PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583PubMedCrossRefGoogle Scholar
  11. 11.
    Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093PubMedCrossRefGoogle Scholar
  12. 12.
    Gao L, Yan X (2016) Nanozymes: an emerging field bridging nanotechnology and biology. Sci China Life Sci 59(4):400–402PubMedCrossRefGoogle Scholar
  13. 13.
    Gao LZ, Yan XY (2013) Discovery and current application of nanozyme. Prog Biochem Biophys 40(10):892–902Google Scholar
  14. 14.
    Shin HY, Park TJ, Kim MI (2015) Recent research trends and future prospects in nanozymes. J NanomaterGoogle Scholar
  15. 15.
    Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105PubMedCrossRefGoogle Scholar
  16. 16.
    Chen Z, Yin JJ, Zhou YT, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5):4001–4012PubMedCrossRefGoogle Scholar
  17. 17.
    Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254PubMedCrossRefGoogle Scholar
  18. 18.
    Liu S, Lu F, Xing R, Zhu JJ (2011) Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chemistry 17(2):620–625PubMedCrossRefGoogle Scholar
  19. 19.
    Wang H, Jiang H, Wang S, Shi WB, He JC, Liu H, Huang YM (2014) Fe3O4-MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation. RSC Adv 4(86):45809–45815CrossRefGoogle Scholar
  20. 20.
    Wang LJ, Min Y, Xu DD, Yu FJ, Zhou WZ, Cuschieri A (2014) Membrane lipid peroxidation by the peroxidase-like activity of magnetite nanoparticles. Chem Commun 50(76):11147–11150CrossRefGoogle Scholar
  21. 21.
    Liu Y, Yuan M, Qiao LJ, Guo R (2014) An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens Bioelectron 52:391–396PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang SX, Zhao XL, Niu HY, Shi YL, Cai YQ, Jiang GB (2009) Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J Hazard Mater 167(1–3):560–566PubMedCrossRefGoogle Scholar
  23. 23.
    Wu XC, Zhang Y, Han T, Wu HX, Guo SW, Zhang JY (2014) Composite of graphene quantum dots and Fe3O4 nanoparticles: peroxidase activity and application in phenolic compound removal. RSC Adv 4(7):3299–3305CrossRefGoogle Scholar
  24. 24.
    Qian J, Yang XW, Jiang L, Zhu CD, Mao HP, Wang K (2014) Facile preparation of Fe3O4 nanospheres/reduced graphene oxide nanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine. Sens Actuat B-Chem 201:160–166CrossRefGoogle Scholar
  25. 25.
    Qi CC, Zheng JB (2015) Novel nonenzymatic hydrogen peroxide sensor based on Fe3O4/PPy/Ag nanocomposites. J Electroanal Chem 747:53–58CrossRefGoogle Scholar
  26. 26.
    Yang X, Wang LN, Zhou GZ, Sui N, Gu YX, Wan J (2015) Electrochemical detection of H2O2 based on Fe3O4 nanoparticles with graphene oxide and polyamidoamine dendrimer. J Clust Sci 26(3):789–798CrossRefGoogle Scholar
  27. 27.
    Wang N, Zhu LH, Wang DL, Wang MQ, Lin ZF, Tang HQ (2010) Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason Sonochem 17(3):526–533PubMedCrossRefGoogle Scholar
  28. 28.
    Peng FF, Zhang Y, Gu N (2008) Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chin Chem Lett 19(6):730–733CrossRefGoogle Scholar
  29. 29.
    Cheng XL, Jiang JS, Jiang DM, Zhao ZJ (2014) Synthesis of rhombic dodecahedral Fe3O4 nanocrystals with exposed high-energy {110} facets and their peroxidase-like activity and Lithium storage properties. J Phys Chem C 118(24):12588–12598CrossRefGoogle Scholar
  30. 30.
    Zhang K, Zuo W, Wang ZY, Liu J, Li TR, Wang BD, Yang ZY (2015) A simple route to CoFe2O4 nanoparticles with shape and size control and their tunable peroxidase-like activity. RSC Adv 5(14):10632–10640CrossRefGoogle Scholar
  31. 31.
    Ma M, Xie J, Zhang Y, Chen ZP, Gu N (2013) Fe3O4@Pt nanoparticles with enhanced peroxidase-like catalytic activity. Mater Lett 105:36–39CrossRefGoogle Scholar
  32. 32.
    Wang CQ, Qian J, Wang K, Yang XW, Liu Q, Hao N, Wang CK, Dong XY, Huang XY (2016) Colorimetric aptasensing of ochratoxin A using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator. Biosens Bioelectron 77:1183–1191PubMedCrossRefGoogle Scholar
  33. 33.
    Lee Y, Garcia MA, Frey Huls NA, Sun S (2010) Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angew Chem 49(7):1271–1274CrossRefGoogle Scholar
  34. 34.
    Sun HY, Jiao XL, Han YY, Jiang Z, Chen DR (2013) Synthesis of Fe3O4-Au Nanocomposites with enhanced peroxidase-like activity. Eur J Inorg Chem 1:109–114CrossRefGoogle Scholar
  35. 35.
    Fan KL, Wang H, Xi JQ, Liu Q, Meng XQ, Duan DM, Gao LZ, Yan XY (2017) Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem Commun 53(2):424–427CrossRefGoogle Scholar
  36. 36.
    Zhang XQ, Gong SW, Zhang Y, Yang T, Wang CY, Gu N (2010) Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem 20(24):5110–5116CrossRefGoogle Scholar
  37. 37.
    Hu SL, Zhang XQ, Zang FC, Zhang Y, Zhang W, Wu YH, Song MJ, Wang YH, Gu N (2016) Surface modified Iron oxide nanoparticles as Fe source precursor to induce the formation of Prussian blue nanocubes. J Nanosci Nanotechnol 16(2):1967–1974PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang Z, Zhang X, Liu B, Liu J (2017) Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J Am Chem Soc 139(15):5412–5419PubMedCrossRefGoogle Scholar
  39. 39.
    Lee JW, Jeon HJ, Shin HJ, Kang JK (2012) Superparamagnetic Fe3O4 nanoparticles-carbon nitride nanotube hybrids for highly efficient peroxidase mimetic catalysts. Chem Commun 48(3):422–424CrossRefGoogle Scholar
  40. 40.
    An Q, Sun C, Li D, Xu K, Guo J, Wang C (2013) Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl Mater Interfaces 5(24):13248–13257PubMedCrossRefGoogle Scholar
  41. 41.
    Li Q, Tang GG, Xiong XW, Cao YL, Chen LL, Xu FG, Tan HL (2015) Carbon coated magnetite nanoparticles with improved water-dispersion and peroxidase-like activity for colorimetric sensing of glucose. Sens Actuat B-Chem 215:86–92CrossRefGoogle Scholar
  42. 42.
    Zubir NA, Yacou C, Motuzas J, Zhang X, Diniz da Costa JC (2014) Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Sci Rep 4:4594PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Dong YL, Zhang HG, Rahman ZU, Su L, Chen XJ, Hu J, Chen XG (2012) Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4(13):3969–3976PubMedCrossRefGoogle Scholar
  44. 44.
    Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210PubMedCrossRefGoogle Scholar
  45. 45.
    Gao LZ, Wu JM, Lyle S, Zehr K, Cao LL, Gao D (2008) Magnetite nanoparticle-linked immunosorbent assay. J Phys Chem C 112(44):17357–17361CrossRefGoogle Scholar
  46. 46.
    Wang X, Niessner R, Tang DP, Knopp D (2016) Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta 912:10–23PubMedCrossRefGoogle Scholar
  47. 47.
    Tang ZW, Wu H, Zhang YY, Li ZH, Lin YH (2011) Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications. Anal Chem 83(22):8611–8616PubMedCrossRefGoogle Scholar
  48. 48.
    Bhattacharya D, Baksi A, Banerjee I, Ananthakrishnan R, Maiti TK, Pramanik P (2011) Development of phosphonate modified Fe(1-x)MnxFe2O4 mixed ferrite nanoparticles: novel peroxidase mimetics in enzyme linked immunosorbent assay. Talanta 86:337–348PubMedCrossRefGoogle Scholar
  49. 49.
    Yang MZ, Guan YP, Yang Y, Xie L, Xia TT, Xiong WB, Guo C (2014) Immunological detection of hepatocellular carcinoma biomarker GP73 based on dissolved magnetic nanoparticles. Colloid Surf A 443:280–285CrossRefGoogle Scholar
  50. 50.
    Liu Y, Du JJ, Yan M, Lau MY, Hu J, Han H, Yang OO, Liang S, Wei W, Wang H, Li JM, Zhu XY, Shi LQ, Chen W, Ji C, Lu YF (2013) Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat Nanotechnol 8(3):187–192PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Yang MZ, Guan YP, Yang Y, Xia TT, Xiong WB, Guo C (2014) A sensitive and rapid immunoassay for mycoplasma pneumonia based on Fe3O4 nanoparticles. Mater Lett 137:113–116CrossRefGoogle Scholar
  52. 52.
    Woo MA, Kim MI, Jung JH, Park KS, Seo TS, Park HG (2013) A novel colorimetric immunoassay utilizing the peroxidase mimicking activity of magnetic nanoparticles. Int J Mol Sci 14(5):9999–10014PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Il Kim M, Kim MS, Woo MA, Ye Y, Kang KS, Lee J, Park HG (2014) Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide-magnetic-platinum nanohybrids. Nanoscale 6(3):1529–1536CrossRefGoogle Scholar
  54. 54.
    Perez JM (2007) Iron oxide nanoparticles – hidden talent. Nat Nanotechnol 2(9):535–536PubMedCrossRefGoogle Scholar
  55. 55.
    Duan DM, Fan KL, Zhang DX, Tan SG, Liang MF, Liu Y, Zhang JL, Zhang PH, Liu W, Qiu XG, Kobinger GP, Gao GF, Yan XY (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141PubMedCrossRefGoogle Scholar
  56. 56.
    Park KS, Kim MI, Cho DY, Park HG (2011) Label-free colorimetric detection of nucleic acids based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles. Small 7(11):1521–1525PubMedCrossRefGoogle Scholar
  57. 57.
    Thiramanas R, Jangpatarapongsa K, Tangboriboonrat P, Polpanich D (2013) Detection of Vibrio cholerae using the intrinsic catalytic activity of a magnetic polymeric nanoparticle. Anal Chem 85(12):5996–6002PubMedCrossRefGoogle Scholar
  58. 58.
    Liu QY, Zhang LY, Li H, Jia QY, Jiang YL, Yang YT, Zhu RR (2015) One-pot synthesis of porphyrin functionalized gamma-Fe2O3 nanocomposites as peroxidase mimics for H2O2 and glucose detection. Mater Sci Eng C-Mater 55:193–200CrossRefGoogle Scholar
  59. 59.
    Gao Y, Wang GN, Huang H, Hu JJ, Shah SM, Su XG (2011) Fluorometric method for the determination of hydrogen peroxide and glucose with Fe3O4 as catalyst. Talanta 85(2):1075–1080PubMedCrossRefGoogle Scholar
  60. 60.
    Kim MI, Shim J, Li T, Lee J, Park HG (2011) Fabrication of nanoporous nanocomposites entrapping Fe3O4 magnetic nanoparticles and oxidases for colorimetric biosensing. Chem-Eur J 17(38):10700–10707PubMedCrossRefGoogle Scholar
  61. 61.
    Liu CH, Tseng WL (2011) Oxidase-functionalized Fe3O4 nanoparticles for fluorescence sensing of specific substrate. Anal Chim Acta 703(1):87–93PubMedCrossRefGoogle Scholar
  62. 62.
    Ma YH, Zhang ZY, Ren CL, Liu GY, Chen XG (2012) A novel colorimetric determination of reduced glutathione in A549 cells based on Fe3O4 magnetic nanoparticles as peroxidase mimetics. Analyst 137(2):485–489PubMedCrossRefGoogle Scholar
  63. 63.
    Wang H, Li S, Si YM, Sun ZZ, Li SY, Lin YH (2014) Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis. J Mater Chem B 2(28):4442–4448CrossRefGoogle Scholar
  64. 64.
    Yang ZH, Chai YQ, Yuan R, Zhuo Y, Li Y, Han J, Liao N (2014) Hollow platinum decorated Fe3O4 nanoparticles as peroxidase mimetic couple with glucose oxidase for pseudobienzyme electrochemical immunosensor. Sens Actuat B-Chem 193:461–466CrossRefGoogle Scholar
  65. 65.
    Chang Q, Tang HQ (2014) Optical determination of glucose and hydrogen peroxide using a nanocomposite prepared from glucose oxidase and magnetite nanoparticles immobilized on graphene oxide. Microchim Acta 181(5–6):527–534CrossRefGoogle Scholar
  66. 66.
    Liu QY, Li H, Zhao QR, Zhu RR, Yang YT, Jia QY, Bian B, Zhuo LH (2014) Glucose-sensitive colorimetric sensor based on peroxidase mimics activity of porphyrin-Fe(3)o(4) nanocomposites. Mater Sci Eng C-Mater 41:142–151CrossRefGoogle Scholar
  67. 67.
    Shi Y, Su P, Wang YY, Yang Y (2014) Fe3O4 peroxidase mimetics as a general strategy for the fluorescent detection of H2O2-involved systems. Talanta 130:259–264PubMedCrossRefGoogle Scholar
  68. 68.
    Pan Y, Li N, Mu JS, Zhou RH, Xu Y, Cui DZ, Wang Y, Zhao M (2015) Biogenic magnetic nanoparticles from Burkholderia sp. YN01 exhibiting intrinsic peroxidase-like activity and their applications. Appl Microbiol Biotechnol 99(2):703–715PubMedCrossRefGoogle Scholar
  69. 69.
    Wang YH, Zhou B, Wu S, Wang KM, He XX (2015) Colorimetric detection of hydrogen peroxide and glucose using the magnetic mesoporous silica nanoparticles. Talanta 134:712–717PubMedCrossRefGoogle Scholar
  70. 70.
    Shi Y, Huang J, Wang JN, Su P, Yang Y (2015) A magnetic nanoscale Fe3O4/P beta-CD composite as an efficient peroxidase mimetic for glucose detection. Talanta 143:457–463PubMedCrossRefGoogle Scholar
  71. 71.
    Kim MI, Cho D, Park HG (2015) Colorimetric quantification of glucose and cholesterol in human blood using a nanocomposite entrapping magnetic nanoparticles and oxidases. J Nanosci Nanotechnol 15(10):7955–7961PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang J, Yang C, Chen CX, Yang XR (2013) Determination of nitrite and glucose in water and human urine with light-up chromogenic response based on the expeditious oxidation of 3,3′, 5,5′-tetramethylbenzidine by peroxynitrous acid. Analyst 138(8):2398–2404PubMedCrossRefGoogle Scholar
  73. 73.
    Liang MM, Fan KL, Pan Y, Jiang H, Wang F, Yang DL, Lu D, Feng J, Zhao JJ, Yang L, Yan XY (2013) Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem 85(1):308–312PubMedCrossRefGoogle Scholar
  74. 74.
    Kim MI, Shim J, Li T, Woo MA, Cho D, Lee J, Park HG (2012) Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. Analyst 137(5):1137–1143PubMedCrossRefGoogle Scholar
  75. 75.
    Kim MI, Shim J, Parab HJ, Shin SC, Lee J, Park HG (2012) A convenient alcohol sensor using one-pot nanocomposite entrapping alcohol oxidase and magnetic nanoparticles as peroxidase mimetics. J Nanosci Nanotechnol 12(7):5914–5919CrossRefGoogle Scholar
  76. 76.
    Zhuang J, Fan KL, Gao LZ, Lu D, Feng J, Yang DL, Gu N, Zhang Y, Liang MM, Yan XY (2012) Ex vivo detection of Iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity. Mol Pharm 9(7):1983–1989PubMedCrossRefGoogle Scholar
  77. 77.
    Fan KL, Cao CQ, Pan YX, Lu D, Yang DL, Feng J, Song LN, Liang MM, Yan XY (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459–464PubMedCrossRefGoogle Scholar
  78. 78.
    Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, Ko BS, Hsu SC, Tai LA, Cheng HY, Wang SW, Yang CS, Chen YC (2009) The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 30(22):3645–3651PubMedCrossRefGoogle Scholar
  79. 79.
    Wang XQ, Tu Q, Zhao B, An YF, Wang JC, Liu WM, Yuan MS, Ahmed SM, Xu J, Liu R, Zhang YR, Wang JY (2013) Effects of poly(L-lysine)-modified Fe3O4 nanoparticles on endogenous reactive oxygen species in cancer stem cells. Biomaterials 34(4):1155–1169PubMedCrossRefGoogle Scholar
  80. 80.
    Zhang Y, Wang ZY, Li XJ, Wang L, Yin M, Wang LH, Chen N, Fan CH, Song HY (2016) Dietary Iron oxide nanoparticles delay aging and ameliorate neurodegeneration in Drosophila. Adv Mater 28(7):1387–1393PubMedCrossRefGoogle Scholar
  81. 81.
    Zhang D, Zhao YX, Gao YJ, Gao FP, Fan YS, Li XJ, Duan ZY, Wang H (2013) Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles. J Mater Chem B 1(38):5100–5107CrossRefGoogle Scholar
  82. 82.
    Pan WY, Huang CC, Lin TT, Hu HY, Lin WC, Li MJ, Sung HW (2016) Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomed-Nanotechnol 12(2):431–438CrossRefGoogle Scholar
  83. 83.
    Gao LZ, Liu Y, Kim D, Li Y, Hwang G, Naha PC, Cormode DP, Koo H (2016) Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 101:272–284PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Gao L, Giglio KM, Nelson JL, Sondermann H, Travis AJ (2014) Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6(5):2588–2593PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    You X, Kim J, Pak YK, Pak JJ (2013) Preparation and application of graphene-poly (diallyldimethylammoniumchloride)-Iron oxide nanoparticles buckypaper for hydrogen peroxide detection. J Nanosci Nanotechno 13(11):7349–7357CrossRefGoogle Scholar
  86. 86.
    Gao Y, Wei Z, Li F, Yang ZM, Chen YM, Zrinyi M, Osada Y (2014) Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection. Green Chem 16(3):1255–1261CrossRefGoogle Scholar
  87. 87.
    Ye YP, Kong T, Yu XF, Wu YK, Zhang K, Wang XP (2012) Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 89:417–421PubMedCrossRefGoogle Scholar
  88. 88.
    Jiang ZL, Kun L, Ouyang HX, Liang AH, Jiang HS (2011) A simple and sensitive fluorescence quenching method for the determination of H2O2 using Rhodamine B and Fe3O4 nanocatalyst. J Fluoresc 21(5):2015–2020PubMedCrossRefGoogle Scholar
  89. 89.
    Chang Q, Deng KJ, Zhu LH, Jiang GD, Yu C, Tang HQ (2009) Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim Acta 165(3–4):299–305CrossRefGoogle Scholar
  90. 90.
    Zhuang J, Zhang JB, Gao LZ, Zhang Y, Gu N, Feng J, Yang DL, Yan XY (2008) A novel application of iron oxide nanoparticles for detection of hydrogen peroxide in acid rain. Mater Lett 62(24):3972–3974CrossRefGoogle Scholar
  91. 91.
    Fang HT, Pan YL, Shan WQ, Guo ML, Nie Z, Huang Y, Yao SZ (2014) Enhanced nonenzymatic sensing of hydrogen peroxide released from living cells based on Fe3O4/self-reduced graphene nanocomposites. Anal Method-UK 6(15):6073–6081CrossRefGoogle Scholar
  92. 92.
    Guan GJ, Yang L, Mei QS, Zhang K, Zhang ZP, Han MY (2012) Chemiluminescence switching on peroxidase-like Fe3O4 nanoparticles for selective detection and simultaneous determination of various pesticides. Anal Chem 84(21):9492–9497PubMedCrossRefGoogle Scholar
  93. 93.
    Jia Y, Yu HM, Wu L, Hou XD, Yang L, Zheng CB (2015) Three birds with one Fe3O4 nanoparticle: integration of microwave digestion, solid phase extraction, and magnetic separation for sensitive determination of arsenic and antimony in fish. Anal Chem 87(12):5866–5871PubMedCrossRefGoogle Scholar
  94. 94.
    Nie DX, Shi GY, Yu YY (2016) Fe3O4 magnetic nanoparticles as peroxidase mimetics used in colorimetric determination of 2,4-Dinitrotoluene. Chin J Anal Chem 44(2):179–184CrossRefGoogle Scholar
  95. 95.
    Wei SL, Li JW, Liu Y (2015) Colourimetric assay for beta-estradiol based on the peroxidase-like activity of Fe3O4@mSiO(2)@HP-beta-CD nanoparticles. RSC Adv 5(130):107670–107679CrossRefGoogle Scholar
  96. 96.
    Wang W, Liu Y, Li TL, Zhou MH (2014) Heterogeneous Fenton catalytic degradation of phenol based on controlled release of magnetic nanoparticles. Chem Eng J 242:1–9CrossRefGoogle Scholar
  97. 97.
    Zhang JB, Zhuang J, Gao LZ, Zhang Y, Gu N, Feng J, Yang DL, Zhu JD, Yan XY (2008) Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 73(9):1524–1528PubMedCrossRefGoogle Scholar
  98. 98.
    Wang W, Mao Q, He HH, Zhou MH (2013) Fe3O4 nanoparticles as an efficient heterogeneous Fenton catalyst for phenol removal at relatively wide pH values. Water Sci Technol 68(11):2367–2373PubMedCrossRefGoogle Scholar
  99. 99.
    Huang RX, Fang ZQ, Fang XB, Tsang EP (2014) Ultrasonic Fenton-like catalytic degradation of bisphenol A by ferroferric oxide (Fe3O4) nanoparticles prepared from steel pickling waste liquor. J Colloid Interf Sci 436:258–266CrossRefGoogle Scholar
  100. 100.
    Huang RX, Fang ZQ, Yan XM, Cheng W (2012) Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chem Eng J 197:242–249CrossRefGoogle Scholar
  101. 101.
    Wang XS, Huang H, Li GQ, Liu Y, Huang JL, Yang DP (2014) Hydrothermal synthesis of 3D hollow porous Fe3O4 microspheres towards catalytic removal of organic pollutants. Nanoscale Res Lett 9:648PubMedCrossRefGoogle Scholar
  102. 102.
    Zhang XL, He ML, Liu JH, Liao R, Zhao LQ, Xie JR, Wang RJ, Yang ST, Wang HF, Liu YF (2014) Fe3O4@C nanoparticles as high-performance Fenton-like catalyst for dye decoloration. Chin Sci Bull 59(27):3406–3412CrossRefGoogle Scholar
  103. 103.
    Niu HY, Dizhang NH, Meng ZF, Cai YQ (2012) Fast defluorination and removal of norfloxacin by alginate/Fe@Fe3O4 core/shell structured nanoparticles. J Hazard Mater 227:195–203PubMedCrossRefGoogle Scholar
  104. 104.
    Zhu MY, Diao GW (2011) Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of Xylenol Orange. J Phys Chem C 115(39):18923–18934CrossRefGoogle Scholar
  105. 105.
    Niu HY, Zhang D, Zhang SX, Zhang XL, Meng ZF, Cai YQ (2011) Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole. J Hazard Mater 190(1–3):559–565PubMedCrossRefGoogle Scholar
  106. 106.
    Wang N, Zhu LH, Wang MQ, Wang DL, Tang HQ (2010) Sono-enhanced degradation of dye pollutants with the use of H2O2 activated by Fe3O4 magnetic nanoparticles as peroxidase mimetic. Ultrason Sonochem 17(1):78–83PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Translational Medicine, School of MedicineYangzhou UniversityYangzhouChina
  2. 2.Key Laboratory of Protein and Peptide PharmaceuticalInstitute of Biophysics, Chinese Academy of SciencesBeijingChina

Personalised recommendations