Advertisement

Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials

  • Victor Lo
  • Jennifer I-Chun Lai
  • Margaret SundeEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1174)

Abstract

In recent years, much attention has focused on incorporating biological and bio-inspired nanomaterials into various applications that range from functionalising surfaces and enhancing biomolecule binding properties, to coating drugs for improved bioavailability and delivery. Hydrophobin proteins, which can spontaneously assemble into amphipathic layers at hydrophobic:hydrophilic interfaces, are exciting candidates for use as nanomaterials. These unique proteins, which are only expressed by filamentous fungi, have been the focus of increasing interest from the biotechnology industry, as evidenced by the sharply growing number of hydrophobin-associated publications and patents. Here, we explore the contribution of different hydrophobins to supporting fungal growth and development. We describe the key structural elements of hydrophobins and the molecular characteristics that underlie self-assembly of these proteins at interfaces. We outline the multiple roles that hydrophobins can play in supporting aerial growth of filamentous structures, facilitating spore dispersal and preventing an immune response in the infected host. The growing understanding of the hydrophobin protein structure and self-assembly process highlights the potential for hydrophobin proteins to be engineered for use in a variety of novel applications that require biocompatible coatings.

Keywords

Hydrophobin Self-assembly Functional amyloid Amphipathic Surface active Biomaterial 

Notes

Acknowledgements

The authors gratefully acknowledge the support of the Australian Research Council in the form of Discovery Grants DP120100756 and DP150104227 to MS, which have supported research into the structure and properties of hydrophobin proteins. VL and JL are supported by Australian Postgraduate Awards. We also thank Dr. Ann Kwan for her contributions to this work.

References

  1. 1.
    Wösten HAB, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JGH (1999) How a fungus escapes the water to grow into the air. Curr Biol 9:85–88.  https://doi.org/10.1016/S0960-9822(99)80019-0 CrossRefPubMedGoogle Scholar
  2. 2.
    Beever RE, Dempsey GP (1978) Function of rodlets on the surface of fungal spores. Nature 272:608–610CrossRefGoogle Scholar
  3. 3.
    Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV, Romani L, Latgé JP (2009) Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:1117–1121.  https://doi.org/10.1038/nature08264 CrossRefPubMedGoogle Scholar
  4. 4.
    Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590.  https://doi.org/10.1105/tpc.5.11.1575 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wösten HAB, Schuren FH, Wessels JGH (1994) Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J 13:5848–5854CrossRefGoogle Scholar
  6. 6.
    Hess WM, Sassen MMA, Remsen CC (1966) Surface structures of frozen-etched Penicillium conidiospores. Naturwissenschaften 53:708CrossRefGoogle Scholar
  7. 7.
    Hess WM, Sassen MMA, Remsen CC (1968) Surface characteristics of Penicillium conidia. Mycologia 60:290–303CrossRefGoogle Scholar
  8. 8.
    Dempsey GP, Beever RE (1979) Electron microscopy of the rodlet layer of Neurospora crassa conidia. J Bacteriol 140:1050–1062PubMedPubMedCentralGoogle Scholar
  9. 9.
    Beever RE, Redgwell RJ, Dempsey GP (1979) Purification and chemical characterization of the rodlet layer of Neurospora crassa conidia. J Bacteriol 140:1063–1070PubMedPubMedCentralGoogle Scholar
  10. 10.
    Templeton MD, Greenwood DR, Beever RE (1995) Solubilization of Neurospora crassa rodlet proteins and identification of the predominant protein as the proteolytically processed eas (ccg-2) gene product. Exp Mycol 19:166–169CrossRefGoogle Scholar
  11. 11.
    Wessels JGH (1993) Cell wall growth, protein excretion and morphogenesis in fungi. New Phytol 123:397–413CrossRefGoogle Scholar
  12. 12.
    Wessels JGH, de Vries OMH, Asgeirsdottir SA, Schuren FHJ (1991) Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 3:793–799CrossRefGoogle Scholar
  13. 13.
    Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896.  https://doi.org/10.1016/j.femsre.2005.01.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Yang K, Deng Y, Zhang C, Elasri M (2006) Identification of new members of hydrophobin family using primary structure analysis. BMC Bioinforma 7(Suppl 4):S16.  https://doi.org/10.1186/1471-2105-7-S4-S16 CrossRefGoogle Scholar
  15. 15.
    Jensen BG, Andersen MR, Pedersen MH, Frisvad JC, Søndergaard I (2010) Hydrophobins from Aspergillus species cannot be clearly divided into two classes. BMC Res Notes 3:344.  https://doi.org/10.1186/1756-0500-3-344 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mackay JP, Matthews JM, Winefield RD, Mackay LG, Haverkamp RG, Templeton MD (2001) The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid-like structures. Structure 9:83–91.  https://doi.org/10.1016/S0969-2126(00)00559-1 CrossRefPubMedGoogle Scholar
  17. 17.
    Wessels JGH, Asgeirsdottir SA, Birkenkamp KU, de Vries OMH, Lugones LG, Scheer JMJ, Schuren FH, Schuurs TA, van Wetter M-A, Wösten HAB (1995) Genetic regulation of emergent growth in Schizophyllum commune. Can J Bot 73(Suppl. 1):S273–S281CrossRefGoogle Scholar
  18. 18.
    Grünbacher A, Throm T, Seidel C, Gutt B, Röhrig J, Strunk T, Vincze P, Walheim S, Schimmel T, Wenzel W, Fischer R (2014) Six hydrophobins are involved in hydrophobin rodlet formation in Aspergillus nidulans and contribute to hydrophobicity of the spore surface. PLoS One 9:e94546.  https://doi.org/10.1371/journal.pone.0094546 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lacroix H, Whiteford JR, Spanu PD (2008) Localization of Cladosporium fulvum hydrophobins reveals a role for HCf-6 in adhesion. FEMS Microbiol Lett 286:136–144CrossRefGoogle Scholar
  20. 20.
    Whiteford JR, Spanu PD (2001) The hydrophobin HCf-1 of Cladosporium fulvum is required for efficient water-mediated dispersal of conidia. Fungal Genet Biol 32:159–168.  https://doi.org/10.1006/fgbi.2001.1263 CrossRefPubMedGoogle Scholar
  21. 21.
    Lau G, Hamer JE (1996) Regulatory genes controlling MPG1 expression and pathogenicity in the rice blast fungus Magnaporthe grisea. Plant Cell 8:771–781.  https://doi.org/10.1105/tpc.8.5.771 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nakari-Setälä T, Aro N, Ilmén M, Muñoz G, Kalkkinen N, Penttilä M (1997) Differential expression of the vegetative and spore-bound hydrophobins of Trichoderma reesei--cloning and characterization of the hfb2 gene. Eur J Biochem 248:415–423CrossRefGoogle Scholar
  23. 23.
    Arpaia G, Loros JJ, Dunlap JC, Morelli G, Macino G (1993) The interplay of light and circadian clock: independent dual regulation of clock-controlled gene ccg-2 (eas). Plant Physiol 102:1299–1305CrossRefGoogle Scholar
  24. 24.
    Sokolovsky VY, Lauter FR, Muller-Rober B, Ricci M, Schmidhauser TJ, Russo VEA (1992) Nitrogen regulation of blue light-inducible genes in Neurospora crassa. J Gen Microbiol 138:2045–2049CrossRefGoogle Scholar
  25. 25.
    Ren Q, Kwan AHY, Sunde M (2013) Two forms and two faces, multiple states and multiple uses: properties and applications of the self-assembling fungal hydrophobins. Biopolymers 100:601–612.  https://doi.org/10.1002/bip.22259 CrossRefPubMedGoogle Scholar
  26. 26.
    Lo VC, Ren Q, Pham CLL, Morris VK, Kwan AHY, Sunde M (2014) Fungal hydrophobin proteins produce self-assembling protein films with diverse structure and chemical stability. Nano 4:827–843.  https://doi.org/10.3390/nano4030827 CrossRefGoogle Scholar
  27. 27.
    de Vocht ML, Reviakine I, Ulrich WP, Bergsma-Schutter W, Wösten HAB, Vogel H, Brisson A, Wessels JGH, Robillard GT (2002) Self-assembly of the hydrophobin Sc3 proceeds via two structural intermediates. Protein Sci 11:1199–1205CrossRefGoogle Scholar
  28. 28.
    de Vries OMH, Fekkes MP, Wösten HAB, Wessels JGH (1993) Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungi. Arch Microbiol 159:330–335CrossRefGoogle Scholar
  29. 29.
    Wösten HAB, de Vries OMH, Wessels JGH (1993) Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer. Plant Cell 5:1567–1574CrossRefGoogle Scholar
  30. 30.
    Butko P, Buford JP, Goodwin JS, Stroud PA, McCormick CL, Cannon CC (2001) Spectroscopic evidence for amyloid-like interfacial self-assembly of hydrophobin Sc3. Biochem Biophys Res Commun 280:212–215.  https://doi.org/10.1006/bbrc.2000.4098 CrossRefPubMedGoogle Scholar
  31. 31.
    Kwan AHY, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP (2006) Structural basis for rodlet assembly in fungal hydrophobins. Proc Natl Acad Sci USA 103:3621–3626.  https://doi.org/10.1073/pnas.0505704103 CrossRefPubMedGoogle Scholar
  32. 32.
    Kershaw MJ, Wakley G, Talbot NJ (1998) Complementation of the mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO J 17:3838–3849.  https://doi.org/10.1093/emboj/17.14.3838 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hektor HJ, Scholtmeijer K (2005) Hydrophobins: proteins with potential. Curr Opin Biotechnol 16:434–439.  https://doi.org/10.1016/j.copbio.2005.05.004 CrossRefPubMedGoogle Scholar
  34. 34.
    Ren Q, Kwan AHY, Sunde M (2014) Solution structure and interface-driven self-assembly of NC2, a new member of the class II hydrophobin proteins. Proteins 82:990–1003.  https://doi.org/10.1002/prot.24473 CrossRefPubMedGoogle Scholar
  35. 35.
    Szilvay GR, Paananen A, Laurikainen K, Vuorimaa E, Lemmetyinen H, Peltonen J, Linder MB (2007) Self-assembled hydrophobin protein films at the air-water interface: structural analysis and molecular engineering. Biochemistry 46:2345–2354.  https://doi.org/10.1021/bi602358h CrossRefPubMedGoogle Scholar
  36. 36.
    Hakanpää J, Paananen A, Askolin S, Nakari-Setälä T, Parkkinen T, Penttilä M, Linder M, Rouvinen J (2004) Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. J Bio Chem 279:534–539.  https://doi.org/10.1074/jbc.M309650200 CrossRefGoogle Scholar
  37. 37.
    Hakanpää J, Szilvay GR, Kaljunen H, Maksimainen M, Linder MB, Rouvinen J (2006) Two crystal structures of Trichoderma reesei hydrophobin HFBI—the structure of a protein amphiphile with and without detergent interaction. Protein Sci 15:2129–2140.  https://doi.org/10.1110/ps.062326706 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Morris VK, Kwan AHY, Sunde M (2013) Analysis of the structure and conformational states of DewA gives insight into the assembly of the fungal hydrophobins. J Mol Biol 425:244–256.  https://doi.org/10.1016/j.jmb.2012.10.021 CrossRefPubMedGoogle Scholar
  39. 39.
    Pham CLL, Rey A, Lo VC, Soulès M, Ren Q, Meisl G, Knowles TPJ, Kwan AHY, Sunde M (2016) Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism. Sci Rep 6:25288.  https://doi.org/10.1038/srep25288 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sunde M, Kwan AHY, Templeton MD, Beever RE, Mackay JP (2008) Structural analysis of hydrophobins. Micron 39:773–784.  https://doi.org/10.1016/j.micron.2007.08.003 CrossRefPubMedGoogle Scholar
  41. 41.
    Morris VK, Ren Q, Macindoe I, Kwan AHY, Byrne N, Sunde M (2011) Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation. J Biol Chem 286:15955–15963CrossRefGoogle Scholar
  42. 42.
    Askolin S, Linder MB, Scholtmeijer K, Tenkanen M, Penttilä M, de Vocht ML, Wösten HAB (2006) Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei. Biomacromolecules 7:1295–1301.  https://doi.org/10.1021/bm050676s CrossRefPubMedGoogle Scholar
  43. 43.
    van der Vegt W, van der Mei HC, Wösten HAB, Wessels JGH, Busscher HJ (1996) A comparison of the surface activity of the fungal hydrophobin Sc3p with those of other proteins. Biophys Chem 57:253–260CrossRefGoogle Scholar
  44. 44.
    Wang X, Graveland-Bikker JF, de Kruif CG, Robillard GT (2004) Oligomerization of hydrophobin Sc3 in solution: from soluble state to self-assembly. Protein Sci 13:810–821.  https://doi.org/10.1110/ps.03367304 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    de Vocht ML, Scholtmeijer K, van der Vegte EW, de Vries OMH, Sonveaux N, Wösten HAB, Ruysschaert JM, Hadziloannou G, Wessels JGH, Robillard GT (1998) Structural characterization of the hydrophobin Sc3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. Biophys J 74:2059–2068CrossRefGoogle Scholar
  46. 46.
    Zangi R, de Vocht ML, Robillard GT, Mark AE (2002) Molecular dynamics study of the folding of hydrophobin Sc3 at a hydrophilic/hydrophobic interface. Biophys J 83:112–124.  https://doi.org/10.1016/S0006-3495(02)75153-9 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kwan AHY, Macindoe I, Vukasin PV, Morris VK, Kass I, Gupte R, Mark A, Templeton MD, Mackay JP, Sunde M (2008) The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. J Mol Biol 382:708–720.  https://doi.org/10.1016/j.jmb.2008.07.034 CrossRefPubMedGoogle Scholar
  48. 48.
    Niu B, Gong T, Gao X, Xu H, Qiao M, Li W (2014) The functional role of Cys3-Cys4 loop in hydrophobin HGFI. Amino Acids 46:2615–2625.  https://doi.org/10.1007/s00726-014-1805-0 CrossRefPubMedGoogle Scholar
  49. 49.
    Simone A, Kitchen C, Kwan AHY, Sunde M, Dobson C, Frenkel D (2012) Intrinsic disorder modulates protein self-assembly and aggregation. Proc Natl Acad Sci USA 109:6951–6956CrossRefGoogle Scholar
  50. 50.
    Macindoe I, Kwan AHY, Ren Q, Morris VK, Yang W, Mackay JP, Sunde M (2012) Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proc Natl Acad Sci USA 109:E804–E811.  https://doi.org/10.1073/pnas.1114052109 CrossRefPubMedGoogle Scholar
  51. 51.
    Rambach G, Blum G, Latgé JP, Fontaine T, Heinekamp T, Hagleitner M, Jeckström H, Weigel G, Würtinger P, Pfaller K, Krappmann S, Löffler J, Lass-Flörl C, Speth C (2015) Identification of Aspergillus fumigatus surface components that mediate interaction of conidia and hyphae with human platelets. J Infect Dis 212:1140–1149.  https://doi.org/10.1093/infdis/jiv191 CrossRefPubMedGoogle Scholar
  52. 52.
    Rohde M, Schwienbacher M, Nikolaus T, Heesemann J, Ebel F (2002) Detection of early phase specific surface appendages during germination of Aspergillus fumigatus conidia. FEMS Microbiol Lett 206:99–105CrossRefGoogle Scholar
  53. 53.
    Dague E, Alsteens D, Latgé JP, Dufrêne YF (2008) High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys J 94:656–660.  https://doi.org/10.1529/biophysj.107.116491 CrossRefPubMedGoogle Scholar
  54. 54.
    Carrion SDJ, Leal SM, Ghannoum MA, Aimanianda V, Latgé JP, Pearlman E (2013) The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. J Immunol 191:2581–2588.  https://doi.org/10.4049/jimmunol.1300748 CrossRefGoogle Scholar
  55. 55.
    Loures FV, Röhm M, Lee CK, Santos E, Wang JP, Specht CA, Calich VLG, Urban CF, Levitz SM (2015) Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps. PLoS Pathog 11:e1004643.  https://doi.org/10.1371/journal.ppat.1004643 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Steele C, Rapaka RR, Metz A, Pop SM, Williams DL, Gordon S, Kolls JK, Brown GD (2005) The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog 1:e42.  https://doi.org/10.1371/journal.ppat.0010042 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Khan NS, Kasperkovitz PV, Timmons AK, Mansour MK, Tam JM, Seward MW, Reedy JL, Puranam S, Feliu M, Vyas JM (2016) Dectin-1 controls TLR9 trafficking to phagosomes containing β-1,3 glucan. J Immunol 196:2249–2261.  https://doi.org/10.4049/jimmunol.1401545 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Paris S, Debeaupuis JP, Crameri R, Carey M, Charlès F, Prévost MC, Schmitt C, Philippe B, Latgé JP (2003) Conidial hydrophobins of Aspergillus fumigatus. Appl Environ Microbiol 69:1581–1588CrossRefGoogle Scholar
  59. 59.
    Beauvais A, Schmidt C, Guadagnini S, Roux P, Perret E, Henry C, Paris S, Mallet A, Prévost MC, Latgé JP (2007) An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol 9:1588–1600.  https://doi.org/10.1111/j.1462-5822.2007.00895.x CrossRefPubMedGoogle Scholar
  60. 60.
    Bruns S, Seidler M, Albrecht D, Salvenmoser S, Remme N, Hertweck C, Brakhage AA, Kniemeyer O, Müller FMC (2010) Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics 10:3097–3107.  https://doi.org/10.1002/pmic.201000129 CrossRefPubMedGoogle Scholar
  61. 61.
    Gibbons JG, Beauvais A, Beau R, McGary KL, Latgé JP, Rokas A (2012) Global transcriptome changes underlying colony growth in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot Cell 11:68–78.  https://doi.org/10.1128/EC.05102-11 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Skamnioti P, Gurr SJ (2007) Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Plant Cell 19:2674–2689.  https://doi.org/10.1105/tpc.107.051219 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R (2003) Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci USA 100:15718–15723.  https://doi.org/10.1073/pnas.2536670100 CrossRefPubMedGoogle Scholar
  64. 64.
    Talbot NJ, Kershaw MJ, Wakley GE, De Vries OMH, Wessels JGH, Hamer JE (1996) MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8:985–999.  https://doi.org/10.1105/tpc.8.6.985 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Inoue K, Kitaoka H, Park P, Ikeda K (2015) Novel aspects of hydrophobins in wheat isolate of Magnaporthe oryzae: Mpg1, but not Mhp1, is essential for adhesion and pathogenicity. J Gen Plant Pathol 82:18–28.  https://doi.org/10.1007/s10327-015-0632-9 CrossRefGoogle Scholar
  66. 66.
    Khalesi M, Deckers SM, Gebruers K, Vissers L, Verachtert H, Derdelinckx G (2012) Hydrophobins: exceptional proteins for many applicaitons in brewery environment and other bio-industries. Cerevisia 37:3–9CrossRefGoogle Scholar
  67. 67.
    Wösten HAB, Scholtmeijer K (2015) Applications of hydrophobins: current state and perspectives. Appl Microbiol Biotechnol 99:1587–1597.  https://doi.org/10.1007/s00253-014-6319-x CrossRefPubMedGoogle Scholar
  68. 68.
    Wang Z, Lienemann M, Qiau M, Linder MB (2010) Mechanisms of protein adhesion on surface films of hydrophobin. Langmuir 26:8491–8496.  https://doi.org/10.1021/la101240e CrossRefPubMedGoogle Scholar
  69. 69.
    Longobardi S, Gravagnuolo AM, Funari R, Della Ventura B, Pane F, Galano E, Amoresano A, Marino G, Giardina P (2015) A simple MALDI plate functionalization by Vmh2 hydrophobin for serial multi-enzymatic protein digestions. Anal Bioanal Chem 407:487–496.  https://doi.org/10.1007/s00216-014-8309-3 CrossRefPubMedGoogle Scholar
  70. 70.
    Gravagnuolo AM, Morales-Narváez E, Matos CRS, Longobardi S, Giardina P, Merkoçi A (2015) On-the-spot immobilization of quantum dots, graphene oxide, and proteins via Hydrophobins. Adv Funct Mater 25(38):6084–6092.  https://doi.org/10.1002/adfm.201502837 CrossRefGoogle Scholar
  71. 71.
    Sapsford KE, Medintz IL, Golden JP, Deschamps JR, Uyeda HT, Mattoussi H (2004) Surface-immobilized self-assembled protein-based quantum dot Nanoassemblies. Langmuir 20(18):7720–7728.  https://doi.org/10.1021/la049263n CrossRefPubMedGoogle Scholar
  72. 72.
    Haddada MB, Blanchard J, Casale S, Krafft J-M, Vallée A, Méthivier C, Boujday S (2013) Optimizing the immobilization of gold nanoparticles on functionalized silicon surfaces: amine- vs thiol-terminated silane. Gold Bull 46(4):335–341.  https://doi.org/10.1007/s13404-013-0120-y CrossRefGoogle Scholar
  73. 73.
    Alves NJ, Kiziltepe T, Bilgicer B (2012) Oriented surface immobilization of antibodies at the conserved nucleotide binding site for enhanced antigen detection. Langmuir 28(25):9640–9648.  https://doi.org/10.1021/la301887s CrossRefPubMedGoogle Scholar
  74. 74.
    Zhao ZX, Wang HC, Qin X, Wang XS, Qiao MQ, Anzai JI, Chen Q (2009) Self-assembled film of hydrophobins on gold surfaces and its application to electrochemical biosensing. Colloids Surf B Biointerfaces 71:102–106.  https://doi.org/10.1016/j.colsurfb.2009.01.011 CrossRefPubMedGoogle Scholar
  75. 75.
    Wang X, Wang H, Huang Y, Zhao Z, Qin X, Wang Y, Miao Z, Chen Q, Qiao M (2010) Noncovalently functionalized multi-wall carbon nanotubes in aqueous solution using the hydrophobin HFBI and their electroanalytical application. Biosens Bioelectron 26:1104–1108.  https://doi.org/10.1016/j.bios.2010.08.024 CrossRefPubMedGoogle Scholar
  76. 76.
    Rea I, Giardina P, Longobardi S, Porro F, Casuscelli V, Rendina I, De Stefano L (2012) Hydrophobin Vmh2-glucose complexes self-assemble in nanometric biofilms. J R Soc Interface 9:2450–2456.  https://doi.org/10.1098/rsif.2012.0217 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Politi J, De Stefano L, Rea I, Gravagnuolo A, Giardina P, Methivier C, Casale S, Spadavecchia J (2016) One-pot synthesis of a gold nanoparticle-Vmh2 hydrophobin nanobiocomplex for glucose monitoring. Nanotechnology 27:195701.  https://doi.org/10.1088/0957-4484/27/19/195701 CrossRefPubMedGoogle Scholar
  78. 78.
    Bilewicz R, Witomski J, Van der Heyden A, Tagu D, Palin B, Rogalska E (2001) Modification of electrodes with self-assembled Hydrophobin layers. J Phys Chem B 105(40):9772–9777.  https://doi.org/10.1021/jp0113782 CrossRefGoogle Scholar
  79. 79.
    Opwis K, Gutmann JS (2011) Surface modification of textile materials with hydrophobins. Text Res J 81:1594–1602CrossRefGoogle Scholar
  80. 80.
    Popescu AC, Stan GE, Duta L, Dorcioman G, Iordache O, Dumitrescu I, Pasuk I, Mihailescu IN (2013) Influence of a hydrophobin underlayer on the structuring and antimicrobial properties of ZnO films. J Mater Sci 48:8329–8336CrossRefGoogle Scholar
  81. 81.
    Lee JH, Khang G, Lee JW, Lee HB (1998) Interaction of different types of cells on polymer surfaces with wettability gradient. J Colloid Interf Sci 205:323–330.  https://doi.org/10.1006/jcis.1998.5688 CrossRefGoogle Scholar
  82. 82.
    Janssen MI, van Leeuwen MBM, Scholtmeijer K, van Kooten TG, Dijkhuizen L, Wösten HAB (2002) Coating with genetic engineered hydrophobin promotes growth of fibroblasts on a hydrophobic solid. Biomaterials 23:4847–4854CrossRefGoogle Scholar
  83. 83.
    Boeuf S, Throm T, Gutt B, Strunk T, Hoffmann M, Seebach E, Mühlberg L, Brocher J, Gotterbarm T, Wenzel W, Fischer R, Richter W (2012) Engineering hydrophobin DewA to generate surfaces that enhance adhesion of human but not bacterial cells. Acta Biomater 8:1037–1047.  https://doi.org/10.1016/j.actbio.2011.11.022 CrossRefPubMedGoogle Scholar
  84. 84.
    Weickert U, Wiesend F, Subkowski T, Eickhoff A, Reiss G (2011) Optimizing biliary stent patency by coating with hydrophobin alone or hydrophobin and antibiotics or heparin: an in vitro proof of principle study. Adv Med Sci 56:138–144.  https://doi.org/10.2478/v10039-011-0026-y CrossRefPubMedGoogle Scholar
  85. 85.
    Stanimirova RD, Gurkov TD, Kralchevsky PA, Balashev KT, Stoyanov SD, Pelan EG (2013) Surface pressure and elasticity of hydrophobin HFBII layers on the air-water interface: rheology versus structure detected by AFM imaging. Langmuir 29:6053–6067.  https://doi.org/10.1021/la4005104 CrossRefPubMedGoogle Scholar
  86. 86.
    Deckers SM, Venken T, Khalesi M, Gebruers K, Baggerman G, Lorgouilloux Y, Shokribousjein Z, Ilberg V, Schönberger C, Titze J, Verachtert H, Michiels C, Neven H, Delcour J, Martens J, Derdelinckx G, de Maeyer M (2012) Combined modeling and biophysical characterisation of CO2 interaction with class II hydrophobins: new insight into the mechanism underpinning primary gushing. J Am Soc Brew Chem 70:249–256Google Scholar
  87. 87.
    Cox AR, Aldred DL, Russell AB (2009) Exceptional stability of food foams using class II hydrophobin HFBII. Food Hydrocoll 23:366–376. https://doi.org/10.1016/j.foodhyd.2008 .03.001CrossRefGoogle Scholar
  88. 88.
    Tchuenbou-Magaia FL, Norton IT, Cox PW (2009) Hydrophobins stabilised air-filled emulsions for the food industry. Food Hydrocoll 23:1877–1885.  https://doi.org/10.1016/j.foodhyd.2009.03.005 CrossRefGoogle Scholar
  89. 89.
    Green A, Littlejohn K, Hooley P, Cox P (2013) Formation and stability of food foams and aerated emulsions: hydrophobins as novel functional ingredients. Curr Opin Colloid Interface Sci 18(4):292–301CrossRefGoogle Scholar
  90. 90.
    Loftsson T, Brewster ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62:1607–1621.  https://doi.org/10.1111/j.2042-7158.2010.01030.x CrossRefPubMedGoogle Scholar
  91. 91.
    Haas Jimoh Akanbi M, Post E, Meter-Arkema A, Rink R, Robillard GT, Wang X, Wösten HAB, Scholtmeijer K (2010) Use of hydrophobins in formulation of water insoluble drugs for oral administration. Colloids Surf B Biointerfaces 75:526–531.  https://doi.org/10.1016/j.colsurfb.2009.09.030 CrossRefPubMedGoogle Scholar
  92. 92.
    Fang G, Tang B, Liu Z, Gou J, Zhang Y, Xu H, Tang X (2014) Novel hydrophobin-coated docetaxel nanoparticles for intravenous delivery: in vitro characteristics and in vivo performance. Eur J Pharm Sci 60:1–9.  https://doi.org/10.1016/j.ejps.2014.04.016 CrossRefPubMedGoogle Scholar
  93. 93.
    Valo HK, Laaksonen PH, Peltonen LJ, Linder MB, Hirvonen JT, Laaksonen TJ (2010) Multifunctional hydrophobin: toward functional coatings for drug nanoparticles. ACS Nano 4:1750–1758.  https://doi.org/10.1021/nn9017558 CrossRefPubMedGoogle Scholar
  94. 94.
    Yang W, Ren Q, Wu YN, Morris VK, Rey AA, Braet F, Kwan AHY, Sunde M (2013) Surface functionalization of carbon nanomaterials by self-assembling hydrophobin proteins. Biopolymers 99:84–94.  https://doi.org/10.1002/bip.22146 CrossRefPubMedGoogle Scholar
  95. 95.
    Sarparanta M, Bimbo LM, Rytkönen J, Mäkilä E, Laaksonen TJ, Laaksonen P, Nyman M, Salonen J, Linder MB, Hirvonen J, Santos HA, Airaksinen AJ (2012) Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol Pharm 9:654–663.  https://doi.org/10.1021/mp200611d CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Victor Lo
    • 1
    • 2
  • Jennifer I-Chun Lai
    • 1
    • 2
  • Margaret Sunde
    • 1
    • 2
    Email author
  1. 1.Discipline of Pharmacology, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
  2. 2.Sydney NanoAustralia

Personalised recommendations