Advertisement

Immunotherapy in Alzheimer’s Disease

  • Jyoti Gupta
  • Mehboob HoqueEmail author
Chapter

Abstract

Alzheimer’s disease (AD) is the most prevalent proteopathy characterized by dementia that appeals for major concern worldwide. The causative factor is the imbalance between production and clearance of the toxic Aβ peptide (40–43 amino acid long) from the brain. Among all the therapeutic approaches, the most prominent one is immunotherapy. Both active and passive immunotherapies have been worked upon. The majority of active immunization-based methods suffered risks of autoimmune toxic inflammation due to cross-reactivity with the nontoxic form. However, conventional monoclonal antibody (mAb)-based strategies have been designed to reduce Aβ level in brain and neutralize toxic effects. A multitude of clinical trials are being conducted using the passive therapeutic approach. Recently, alternative approaches including the recombinant fragments have emerged as a tool for safer and more effective therapy. Promising results have been observed in studies employing antibody fragments which include ScFv, BsAb, Fab, gammabodies, and intrabodies. Although there have been failures in some of these clinical trials, experiences gained from them can be used for designing better therapeutics. Currently, there is an urgent need of therapeutics which can target and clear off the senile plaques with limited side effects and toxicity.

References

  1. Abushouk AI, Elmaraezy A, Aglan A, Salama R, Fouda S, Fouda R, AlSafadi AM (2017) Bapineuzumab for mild to moderate Alzheimer’s disease: a meta-analysis of randomized controlled trials. BMC Neurol 17:66PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K, Lohmann S, Piorkowska K, Gafner V, Atwal JK (2012) An effector-reduced anti-β-amyloid (Aβ) antibody with unique aβ binding properties promotes neuroprotection and glial engulfment of Aβ. J Neurosci 32:9677–9689PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE, Smith SO (2010) Structural conversion of neurotoxic amyloid-β 1–42 oligomers to fibrils. Nat Struct Mol Biol 17:561PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alegre M-L, Peterson LJ, Xu D, Sattar HA, Jeyarajah DR, Kowalkowski K, Thistlethwaite JR, Zivin RA, Jolliffe L, Bluestone JA (1994) A non-activating “humanized” anti-CD3 monoclonal antibody retains immunosuppressive properties in vivo. Transplantation 57:1537–1543PubMedCrossRefPubMedCentralGoogle Scholar
  5. Amit AG, Mariuzza RA, Phillips SE, Poljak RJ (1986) Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution. Science 233:747–753PubMedCrossRefPubMedCentralGoogle Scholar
  6. Asuni A, Boutajangout A, Scholtzova H, Knudsen E, Li Y, Quartermain D, Frangione B, Wisniewski T, Sigurdsson EM (2006) Aβ derivative vaccination in alum adjuvant prevents amyloid deposition and does not cause brain microhemorrhages in Alzheimer’s model mice. Eur J Neurosci 24:2530–2542PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bard F, Cannon C, Barbour R, Burke R-L, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K (2000) Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, Millais SB, Donoghue S (2005) Evaluation of the safety and immunogenicity of synthetic Aβ42 (AN1792) in patients with AD. Neurology 64:94–101PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bhat TN, Bentley GA, Fischmann TO, Boulot G, Poljak RJ (1990) Small rearrangements in structures of Fv and Fab fragments of antibody D 1.3 on antigen binding. Nature 347:483PubMedCrossRefPubMedCentralGoogle Scholar
  10. Blond S, Goldberg M (1987) Partly native epitopes are already present on early intermediates in the folding of tryptophan synthase. Proc Natl Acad Sci 84:1147–1151PubMedCrossRefGoogle Scholar
  11. Boado RJ, Zhang Y, Zhang Y, Xia C-F, Pardridge WM (2007) Fusion antibody for Alzheimer’s disease with bidirectional transport across the blood- brain barrier and Aβ fibril disaggregation. Bioconjug Chem 18:447–455PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boche D, Nicoll JA (2008) SYMPOSIUM: clearance of Aβ from the brain in Alzheimer’Disease: the role of the immune system in clearance of Aβ from the brain. Brain Pathol 18:267–278PubMedCrossRefPubMedCentralGoogle Scholar
  13. Boddapati S, Levites Y, Sierks MR (2011) Inhibiting β-secretase activity in Alzheimer’s disease cell models with single-chain antibodies specifically targeting APP. J Mol Biol 405:436–447PubMedCrossRefPubMedCentralGoogle Scholar
  14. Boddapati S, Levites Y, Suryadi V, Kasturirangan S, Sierks MR (2012) Bispecific tandem single chain antibody simultaneously inhibits β-secretase and promotes α-secretase processing of AβPP. J Alzheimers Dis 28:961–969PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bohrmann B, Baumann K, Benz J, Gerber F, Huber W, Knoflach F, Messer J, Oroszlan K, Rauchenberger R, Richter WF (2012) Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J Alzheimers Dis 28:49–69PubMedCrossRefPubMedCentralGoogle Scholar
  16. Campana V, Zentilin L, Mirabile I, Kranjc A, Casanova P, Giacca M, Prusiner SB, Legname G, Zurzolo C (2009) Development of antibody fragments for immunotherapy of prion diseases. Biochem J 418:507–515PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cardinale A, Biocca S (2008) The potential of intracellular antibodies for therapeutic targeting of protein-misfolding diseases. Trends Mol Med 14:373–380PubMedCrossRefPubMedCentralGoogle Scholar
  18. Carlson JD, Yarmush ML (1992) Antibody assisted protein refolding. Nat Biotechnol 10:86CrossRefGoogle Scholar
  19. Chandler RJ, LaFave MC, Varshney GK, Trivedi NS, Carrillo-Carrasco N, Senac JS, Wu W, Hoffmann V, Elkahloun AG, Burgess SM (2015) Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Invest 125:870–880PubMedPubMedCentralCrossRefGoogle Scholar
  20. D’andrea MR, Nagele RG, Wang H-Y, Peterson PA, Lee DHS (2001) Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 38:120–134PubMedCrossRefGoogle Scholar
  21. Davies DR, Cohen GH (1996) Interactions of protein antigens with antibodies. Proc Natl Acad Sci 93:7–12PubMedCrossRefGoogle Scholar
  22. Deane R, Bell RD, Sagare A, Zlokovic BV (2009) Clearance of amyloid-β peptide across the blood-brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol Disord 8:16–30CrossRefGoogle Scholar
  23. Deane R, Sagare A, Hamm K, Parisi M, LaRue B, Guo H, Wu Z, Holtzman DM, Zlokovic BV (2005) IgG-assisted age-dependent clearance of Alzheimer’s amyloid β peptide by the blood–brain barrier neonatal Fc receptor. J Neurosci 25:11495–11503PubMedPubMedCentralCrossRefGoogle Scholar
  24. DeMattos RB, Bales KR, Cummins DJ, Dodart J-C, Paul SM, Holtzman DM (2001) Peripheral anti-Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 98:8850–8855PubMedCrossRefGoogle Scholar
  25. DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM (2002) Brain to plasma amyloid-β efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 295:2264–2267PubMedCrossRefGoogle Scholar
  26. Dodel RC, Hampel H, Du Y (2003) Immunotherapy for Alzheimer’s disease. Lancet Neurol 2:215–220PubMedCrossRefGoogle Scholar
  27. Donofrio G, Heppner FL, Polymenidou M, Musahl C, Aguzzi A (2005) Paracrine inhibition of prion propagation by anti-PrP single-chain Fv miniantibodies. J Virol 79:8330–8338PubMedPubMedCentralCrossRefGoogle Scholar
  28. Donsante A, Miller DG, Li Y, Vogler C, Brunt EM, Russell DW, Sands MS (2007) AAV vector integration sites in mouse hepatocellular carcinoma. Science 317:477–477PubMedCrossRefGoogle Scholar
  29. Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. In: MAbs. Taylor & Francis, pp 9–14Google Scholar
  30. Farlow M, Arnold SE, Van Dyck CH, Aisen PS, Snider BJ, Porsteinsson AP, Friedrich S, Dean RA, Gonzales C, Sethuraman G (2012) Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement 8:261–271PubMedCrossRefPubMedCentralGoogle Scholar
  31. Federoff HJ (2009) Development of vaccination approaches for the treatment of neurological diseases. J Comp Neurol 515:4–14PubMedCrossRefPubMedCentralGoogle Scholar
  32. Filesi I, Cardinale A, Mattei S, Biocca S (2007) Selective re-routing of prion protein to proteasomes and alteration of its vesicular secretion prevent PrPSc formation. J Neurochem 101:1516–1526PubMedCrossRefPubMedCentralGoogle Scholar
  33. Flingai S, Plummer EM, Patel A, Shresta S, Mendoza JM, Broderick KE, Sardesai NY, Muthumani K, Weiner DB (2015) Protection against dengue disease by synthetic nucleic acid antibody prophylaxis/immunotherapy. Sci Rep 5:12616PubMedPubMedCentralCrossRefGoogle Scholar
  34. Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280:558PubMedCrossRefPubMedCentralGoogle Scholar
  35. Frenkel D, Solomon B, Benhar I (2000) Modulation of Alzheimer’s β-amyloid neurotoxicity by site-directed single-chain antibody. J Neuroimmunol 106:23–31PubMedCrossRefPubMedCentralGoogle Scholar
  36. Galimberti D, Ghezzi L, Scarpini E (2013) Immunotherapy against amyloid pathology in Alzheimer’s disease. J Neurol Sci 333:50–54PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gelinas DS, DaSilva K, Fenili D, George-Hyslop PS, McLaurin J (2004) Immunotherapy for Alzheimer’s disease. Proc Natl Acad Sci 101:14657–14662PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gerson JE, Castillo-Carranza DL, Kayed R (2014) Advances in therapeutics for neurodegenerative tauopathies: moving toward the specific targeting of the most toxic tau species. ACS Chem Neurosci 5:752–769PubMedCrossRefPubMedCentralGoogle Scholar
  39. Gil-Farina I, Fronza R, Kaeppel C, Lopez-Franco E, Ferreira V, D’avola D, Benito A, Prieto J, Petry H, Gonzalez-Aseguinolaza G (2016) Recombinant AAV integration is not associated with hepatic genotoxicity in nonhuman primates and patients. Mol Ther 24:1100–1105PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, Eisner L, Kirby L, Rovira MB, Forette F (2005) Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gitter BD, Gannon KS, Cummins DJ, Brown-Augsburger PL, Bales KR, Bailey DL, Ballard DW, Brazelton AD, Czilli DL, Greene SJ (2002) Reduction in brain amyloid beta burden and reversal of memory impairment in APP V717F transgenic mice following chronic administration of the anti-amyloid beta antibody M266. 2. In: Neurobiology of aging. Elsevier Science Inc, New York, pp S105–S105Google Scholar
  42. Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De Bona P, Bruno V, Molinaro G, Pappalardo G, Messina A, Palmigiano A (2009) β-amyloid monomers are neuroprotective. J Neurosci 29:10582–10587PubMedPubMedCentralCrossRefGoogle Scholar
  43. Gray AJ, Sakaguchi G, Shiratori C, Becker AG, LaFrancois J, Aisen PS, Duff K, Matsuoka Y (2007) Antibody against C-terminal Abeta selectively elevates plasma Abeta. Neuroreport 18:293–296PubMedCrossRefPubMedCentralGoogle Scholar
  44. Greeneld JP, Haroutunian V, Buxbaum JD, Xu H, Greengard P, Relkin NR (2000) Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 156:1520Google Scholar
  45. Hashimoto M, Rockenstein E, Crews L, Masliah E (2003) Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. NeuroMolecular Med 4:21–35PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hernandez F, Avila J (2007) Tauopathies. Cell Mol Life Sci 64:2219–2233PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hickman DT, López-Deber MP, Ndao DM, Silva AB, Nand D, Pihlgren M, Giriens V, Madani R, Pierre AS, Karastaneva H (2011) Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J Biol Chem 286:13966–13976PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hillen H, Barghorn S, Striebinger A, Labkovsky B, Müller R, Nimmrich V, Nolte MW, Perez-Cruz C, van der Auwera I, van Leuven F (2010) Generation and therapeutic efficacy of highly oligomer-specific β-amyloid antibodies. J Neurosci 30:10369–10379PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hooper NM (2005) Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Portland Press Limited, LondonPubMedCrossRefPubMedCentralGoogle Scholar
  50. Ida N, Hartmann T, Pantel J, Schröder J, Zerfass R, Förstl H, Sandbrink R, Masters CL, Beyreuther K (1996) Analysis of heterogeneous βA4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J Biol Chem 271:22908–22914PubMedCrossRefPubMedCentralGoogle Scholar
  51. Iqbal K, Gong C-X, Liu F (2014) Microtubule-associated protein tau as a therapeutic target in Alzheimer’s disease. Expert Opin Ther Targets 18:307–318PubMedCrossRefPubMedCentralGoogle Scholar
  52. Iqbal K, Liu F, Gong C-X (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12:15PubMedCrossRefPubMedCentralGoogle Scholar
  53. Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J (2000) Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979PubMedCrossRefPubMedCentralGoogle Scholar
  54. Karlnoski RA, Rosenthal A, Alamed J, Ronan V, Gordon MN, Gottschall PE, Grimm J, Pons J, Morgan D (2008) Deglycosylated anti-Aβ antibody dose–response effects on pathology and memory in APP transgenic mice. J Neuroimmune Pharmacol 3:187–197PubMedPubMedCentralCrossRefGoogle Scholar
  55. Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature 347:631PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kasturirangan S, Boddapati S, Sierks MR (2010) Engineered proteolytic nanobodies reduce Aβ burden and ameliorate Aβ-induced cytotoxicity. Biochemistry 49:4501–4508PubMedCrossRefPubMedCentralGoogle Scholar
  57. Katzav-Gozansky T, Hanan E, Solomon B (1996) Effect of monoclonal antibodies in preventing carboxypeptidase A aggregation. Biotechnol Appl Biochem 23:227–230PubMedPubMedCentralGoogle Scholar
  58. La Porte SL, Bollini SS, Lanz TA, Abdiche YN, Rusnak AS, Ho W-H, Kobayashi D, Harrabi O, Pappas D, Mina EW (2012) Structural basis of C-terminal β-amyloid peptide binding by the antibody ponezumab for the treatment of Alzheimer’s disease. J Mol Biol 421:525–536PubMedCrossRefPubMedCentralGoogle Scholar
  59. LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G (1995) The Alzheimer’s Aβ peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 9:21PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci 95:6448–6453PubMedCrossRefPubMedCentralGoogle Scholar
  61. Landen JW, Zhao Q, Cohen S, Borrie M, Woodward M, Billing CB Jr, Bales K, Alvey C, McCush F, Yang J (2013) Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate Alzheimer disease: a phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clin Neuropharmacol 36:14–23PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lannfelt L, Möller C, Basun H, Osswald G, Sehlin D, Satlin A, Logovinsky V, Gellerfors P (2014) Perspectives on future Alzheimer therapies: amyloid-β protofibrils-a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res Ther 6:16PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lemere CA (2013) Immunotherapy for Alzheimer’s disease: hoops and hurdles. Mol Neurodegener 8:36PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lemere CA, Maron R, Selkoe DJ, Weiner HL (2001) Nasal vaccination with β-amyloid peptide for the treatment of Alzheimer’s disease. DNA Cell Biol 20:705–711PubMedCrossRefPubMedCentralGoogle Scholar
  65. Levine H III (1993) Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lichtlen P, Mohajeri MH (2008) Antibody-based approaches in Alzheimer’s research: safety, pharmacokinetics, metabolism, and analytical tools. J Neurochem 104:859–874PubMedCrossRefPubMedCentralGoogle Scholar
  67. Liu R, Yuan B, Emadi S, Zameer A, Schulz P, McAllister C, Lyubchenko Y, Goud G, Sierks MR (2004) Single chain variable fragments against β-amyloid (Aβ) can inhibit Aβ aggregation and prevent Aβ-induced neurotoxicity. Biochemistry 43:6959–6967PubMedCrossRefPubMedCentralGoogle Scholar
  68. Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-β (1–42) fibrils. Proc Natl Acad Sci 102:17342–17347PubMedCrossRefPubMedCentralGoogle Scholar
  69. Malone J, Sullivan MA (1996) Analysis of antibody selection by phage display utilizing anti-phenobarbital antibodies. J Mol Recognit 9:738–745PubMedCrossRefPubMedCentralGoogle Scholar
  70. Manoutcharian K, Perez-Garmendia R, Gevorkian G (2017) Recombinant antibody fragments for neurodegenerative diseases. Curr Neuropharmacol 15:779–788PubMedPubMedCentralCrossRefGoogle Scholar
  71. Miller TW, Messer A (2005) Intrabody applications in neurological disorders: progress and future prospects. Mol Ther 12:394–401PubMedCrossRefPubMedCentralGoogle Scholar
  72. Morgan D (2011) Immunotherapy for Alzheimer’s disease. J Intern Med 269:54–63PubMedPubMedCentralCrossRefGoogle Scholar
  73. Muhs A, Hickman DT, Pihlgren M, Chuard N, Giriens V, Meerschman C, Van der Auwera I, van Leuven F, Sugawara M, Weingertner M-C (2007) Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. Proc Natl Acad Sci 104:9810–9815PubMedCrossRefPubMedCentralGoogle Scholar
  74. Muthumani K, Block P, Flingai S, Muruganantham N, Chaaithanya IK, Tingey C, Wise M, Reuschel EL, Chung C, Muthumani A (2016) Rapid and long-term immunity elicited by DNA-encoded antibody prophylaxis and DNA vaccination against chikungunya virus. J Infect Dis 214:369–378PubMedPubMedCentralCrossRefGoogle Scholar
  75. Muthumani K, Flingai S, Wise M, Tingey C, Ugen KE, Weiner DB (2013) Optimized and enhanced DNA plasmid vector based in vivo construction of a neutralizing anti-HIV-1 envelope glycoprotein Fab. Hum Vaccines Immunother 9:2253–2262CrossRefGoogle Scholar
  76. Nisbet RM, Polanco J-C, Ittner LM, Götz J (2015) Tau aggregation and its interplay with amyloid-β. Acta Neuropathol (Berl) 129:207–220CrossRefGoogle Scholar
  77. Ohnishi S, Takano K (2004) Amyloid fibrils from the viewpoint of protein folding. Cell Mol Life Sci 61:511–524PubMedCrossRefPubMedCentralGoogle Scholar
  78. Paganetti P, Calanca V, Galli C, Stefani M, Molinari M (2005) β-site specific intrabodies to decrease and prevent generation of Alzheimer’s Aβ peptide. J Cell Biol 168:863–868PubMedPubMedCentralCrossRefGoogle Scholar
  79. Pardridge WM (2008) Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjug Chem 19:1327–1338PubMedCrossRefPubMedCentralGoogle Scholar
  80. Perchiacca JM, Ladiwala AR, Bhattacharya M, Tessier PM (2012) Structure-based design of conformation- and sequence-specific antibodies against amyloid β. Proc Natl Acad Sci U S A 109:84–89PubMedCrossRefPubMedCentralGoogle Scholar
  81. Pfeifer M, Boncristiano S, Bondolfi L, Stalder A, Deller T, Staufenbiel M, Mathews PM, Jucker M (2002) Cerebral hemorrhage after passive anti-Aβ immunotherapy. Science 298:1379–1379PubMedCrossRefPubMedCentralGoogle Scholar
  82. Planque SA, Nishiyama Y, Sonoda S, Lin Y, Taguchi H, Hara M, Kolodziej S, Mitsuda Y, Gonzalez V, Sait HB (2015) Specific amyloid β clearance by a catalytic antibody construct. J Biol Chem 290:10229–10241PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pride M, Seubert P, Grundman M, Hagen M, Eldridge J, Black RS (2008) Progress in the active immunotherapeutic approach to Alzheimer’s disease: clinical investigations into AN1792-associated meningoencephalitis. Neurodegener Dis 5:194–196PubMedCrossRefPubMedCentralGoogle Scholar
  84. Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26:7212–7221PubMedPubMedCentralCrossRefGoogle Scholar
  85. Puzzo D, Privitera L, Leznik E, Fà M, Staniszewski A, Palmeri A, Arancio O (2008) Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28:14537–14545PubMedPubMedCentralCrossRefGoogle Scholar
  86. Qu J, Yu S, Zheng Y, Zheng Y, Yang H, Zhang J (2017) Aptamer and its applications in neurodegenerative diseases. Cell Mol Life Sci 74:683–695PubMedCrossRefPubMedCentralGoogle Scholar
  87. Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK, Piroozi KS, Jordan WH, Brown DD, Hoffman WP (2005) Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid β. J Neurosci 25:629–636PubMedPubMedCentralCrossRefGoogle Scholar
  88. Robert R, Dolezal O, Waddington L, Hattarki MK, Cappai R, Masters CL, Hudson PJ, Wark KL (2008) Engineered antibody intervention strategies for Alzheimer’s disease and related dementias by targeting amyloid and toxic oligomers. Protein Eng Des Sel 22:199–208PubMedCrossRefPubMedCentralGoogle Scholar
  89. Robert R, Lefranc M-P, Ghochikyan A, Agadjanyan MG, Cribbs DH, Van Nostrand WE, Wark KL, Dolezal O (2010) Restricted V gene usage and VH/VL pairing of mouse humoral response against the N-terminal immunodominant epitope of the amyloid β peptide. Mol Immunol 48:59–72PubMedPubMedCentralCrossRefGoogle Scholar
  90. Robert R, Wark KL (2012) Engineered antibody approaches for Alzheimer’s disease immunotherapy. Arch Biochem Biophys 526:132–138PubMedCrossRefGoogle Scholar
  91. Ryan JM, Grundman M (2009) Anti-amyloid-β immunotherapy in Alzheimer’s disease: ACC-001 clinical trials are ongoing. J Alzheimers Dis 17:243–243PubMedCrossRefGoogle Scholar
  92. Salfeld JG (2007) Isotype selection in antibody engineering. Nat Biotechnol 25:1369PubMedCrossRefGoogle Scholar
  93. Salloway S, Sperling R, Gilman S, Fox NC, Blennow K, Raskind M, Sabbagh M, Honig LS, Doody R, Van Dyck CH (2009) A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73:2061–2070PubMedPubMedCentralCrossRefGoogle Scholar
  94. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K (1999) Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173PubMedCrossRefGoogle Scholar
  95. Schneeberger A, Mandler M, Otava O, Zauner W, Mattner F, Schmidt W (2009) Development of AFFITOPE vaccines for Alzheimer’s disease (AD)—from concept to clinical testing. J Nutr Health Aging 13:264–267PubMedCrossRefGoogle Scholar
  96. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537:50–56CrossRefGoogle Scholar
  97. Siemers ER, Sundell KL, Carlson C, Case M, Sethuraman G, Liu-Seifert H, Dowsett SA, Pontecorvo MJ, Dean RA, Demattos R (2016) Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients. Alzheimers Dement 12:110–120PubMedCrossRefGoogle Scholar
  98. Sigurdsson EM, Knudsen E, Asuni A, Fitzer-Attas C, Sage D, Quartermain D, Goni F, Frangione B, Wisniewski T (2004) An attenuated immune response is sufficient to enhance cognition in an Alzheimer’s disease mouse model immunized with amyloid-β derivatives. J Neurosci 24:6277–6282PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sigurdsson EM, Scholtzova H, Mehta PD, Frangione B, Wisniewski T (2001) Immunization with a nontoxic/nonfibrillar amyloid-β homologous peptide reduces Alzheimer’s disease-associated pathology in transgenic mice. Am J Pathol 159:439–447PubMedPubMedCentralCrossRefGoogle Scholar
  100. Solomon B, Koppel R, Frankel D, Hanan-Aharon E (1997) Disaggregation of Alzheimer β-amyloid by site-directed mAb. Proc Natl Acad Sci 94:4109–4112PubMedCrossRefGoogle Scholar
  101. Solomon B, Koppel R, Hanan E, Katzav T (1996) Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc Natl Acad Sci 93:452–455PubMedCrossRefGoogle Scholar
  102. Solomon B, Schwartz F (1995) Chaperone-like effect of monoclonal antibodies on refolding of heat-denatured carboxypeptidase A. J Mol Recognit 8:72–76PubMedCrossRefGoogle Scholar
  103. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE (2010) The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One 5:e9505PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sperling R, Salloway S, Brooks DJ, Tampieri D, Barakos J, Fox NC, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP (2012) Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol 11:241–249PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sudol KL, Mastrangelo MA, Narrow WC, Frazer ME, Levites YR, Golde TE, Federoff HJ, Bowers WJ (2009) Generating differentially targeted amyloid-β specific intrabodies as a passive vaccination strategy for Alzheimer’s disease. Mol Ther 17:2031–2040PubMedPubMedCentralCrossRefGoogle Scholar
  106. Tammer AH, Coia G, Cappai R, Fuller S, Masters CL, Hudson P, Underwood JR (2002) Generation of a recombinant Fab antibody reactive with the Alzheimer’s disease-related Aβ peptide. Clin Exp Immunol 129:453–463PubMedPubMedCentralCrossRefGoogle Scholar
  107. Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J (2004) The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62:1984–1989PubMedCrossRefGoogle Scholar
  108. Tucker S, Möller C, Tegerstedt K, Lord A, Laudon H, Sjödahl J, Söderberg L, Spens E, Sahlin C, Waara ER (2015) The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis 43:575–588PubMedCrossRefGoogle Scholar
  109. Turner PR, O’connor K, Tate WP, Abraham WC (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70:1–32PubMedCrossRefGoogle Scholar
  110. Ultsch M, Li B, Maurer T, Mathieu M, Adolfsson O, Muhs A, Pfeifer A, Pihlgren M, Bainbridge TW, Reichelt M (2016) Structure of crenezumab complex with Aβ shows loss of β-hairpin. Sci Rep 6:39374PubMedPubMedCentralCrossRefGoogle Scholar
  111. Verma R, Boleti E, George AJT (1998) Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. J Immunol Methods 216:165–181PubMedCrossRefPubMedCentralGoogle Scholar
  112. Walker MR, Lund J, Thompson K, Jefferis R (1989) Aglycosylation of human IgG1 and IgG3 monoclonal antibodies can eliminate recognition by human cells expressing FcγRI and/or FcγRII receptors. Biochem J 259:347–353PubMedPubMedCentralCrossRefGoogle Scholar
  113. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535CrossRefGoogle Scholar
  114. Wisniewski T, Frangione B (2005) Immunological and anti-chaperone therapeutic approaches for Alzheimer disease. Brain Pathol 15:72–77PubMedCrossRefPubMedCentralGoogle Scholar
  115. Wisniewski T, Goñi F (2015) Immunotherapeutic approaches for Alzheimer’s disease. Neuron 85:1162–1176PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wisniewski T, Goñi F (2014) Immunotherapy for Alzheimer’s disease. Biochem Pharmacol 88:499–507PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wisniewski T, Goñi F (2012) Could immunomodulation be used to prevent prion diseases? Expert Rev Anti-Infect Ther 10:307–317PubMedPubMedCentralCrossRefGoogle Scholar
  118. Yu L, Edalji R, Harlan JE, Holzman TF, Lopez AP, Labkovsky B, Hillen H, Barghorn S, Ebert U, Richardson PL (2009) Structural characterization of a soluble amyloid β-peptide oligomer. Biochemistry 48:1870–1877PubMedCrossRefPubMedCentralGoogle Scholar
  119. Zhang C, Gao C, Mu J, Qiu Z, Li L (2013) Spectroscopic studies on unfolding processes of apo-neuroglobin induced by guanidine hydrochloride and urea. BioMed Res Int 2013:349542PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Interdisciplinary Biotechnology UnitAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Biological SciencesAliah UniversityKolkataIndia

Personalised recommendations