Advertisement

New-Generation Vectors for Plant Transgenics: Methods and Applications

  • Venkidasamy Baskar
  • Sree Preethy Kuppuraj
  • Ramkumar Samynathan
  • Ramalingam Sathishkumar
Chapter

Abstract

Transgenic development is the establishment of novel traits into the plants to enhance its quality. Foreign gene introduction into the nuclear or chloroplast genomes in plants is achieved through the DNA-carrying elements known as plasmids or vectors. Plant genetic engineering will be productive only if we develop small, easy-to-handle, and simple to use Agrobacterium binary vectors. Most of the new-generation vectors were derived from conventional vectors, such as pBIN and pCAMBIA series. Conventional vectors are larger in size making it difficult for cloning as it decreases the ability of gene integration. For the functional characterization of genes, it requires comprehensive genetic analysis, which includes overexpression, downregulation (antisense/RNAi), promoter analysis, subcellular localization studies, and gene complementation analysis. These high-throughput functional genetic approaches rely on efficient cloning strategies and new-generation vectors. Ancient cloning procedures based on the restriction and digestion are cumbersome and require large time. Modern cloning approaches were established with the newly arrived next-generation vector systems that will be helpful to reduce the cloning difficulty and to increase cloning efficiency methods. The major purpose of the expression vectors is to achieve high protein expression, which is normally driven by strong promoters. Modern, stable, and transient expression vector systems were established to enhance the expression of the foreign gene and to reduce the complexity of gene construct preparation. This chapter describes the various new-generation vectors and their potential application in the field of plant genetic engineering.

Keywords

Plasmids Vectors Cloning Promoters Gene expression Genetic engineering 

Notes

Acknowledgments

This study was supported by a grant (Sanction No. PDF/2016/000750) from the Department of Science and Technology, Science and Engineering Research Board, Government of India, and (Sanction No. No.F.4-2/2006 (BSR)/BL/16-170541) from the D. S. Kothari Postdoctoral Fellowship and was also supported by UGC-SAP, DST-FIST, and DST-PURSE schemes.

References

  1. Ali MA, Shah KH, Bohlmann H (2012) pMAA-Red: a new pPZP-derived vector for fast visual screening of transgenic Arabidopsis plants at the seed stage. BMC Biotech:12Google Scholar
  2. An H, Roussot C, Suárez-López P, Corbesier L, Vincent C, Piñeiro M, Coupland G (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131(15):3615–3626PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300(5620):764–764PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bogdanove AJ, Voytas D (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 1(3):394–401CrossRefGoogle Scholar
  6. Bonke M, Thitamadee S, Mähöonen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186PubMedCrossRefPubMedCentralGoogle Scholar
  7. Brady SM, Song S, Dhugga KS, Rafalski JA, Benfey PN (2007) Combining expression and comparative evolutionary analysis. COBRA Gene Fam Plant Physiol 143(1):172–187CrossRefGoogle Scholar
  8. Brand L, Hörler M, Nüesch E, Vassalli S, Barrell P, Yang W (2006) A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. Plant Physiol 141:1194–1204PubMedPubMedCentralCrossRefGoogle Scholar
  9. Britt AB, May GD (2003) Re-engineering plant gene targeting. Trends Plant Sci 8:90–95PubMedCrossRefPubMedCentralGoogle Scholar
  10. Canizares MC, Nicholson L, Lomonossoff GP (2005) Use of viral vectors for vaccine production in plants. Immunol Cell Biol 83:263–270PubMedCrossRefPubMedCentralGoogle Scholar
  11. Carbonell A, Takeda A, Fahlgren N, Johnson SC, Cuperus JT, Carrington JC (2014) New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol 165(1):15–29PubMedPubMedCentralCrossRefGoogle Scholar
  12. Carroll D (2008) Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther 15:1463–1468PubMedPubMedCentralCrossRefGoogle Scholar
  13. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chakrabarty R, Banerjee R, Chung SM, Farman M, Citovsky V (2007) pSITE vectors for stable integration or transient expression of autofluorescent protein fusions in plants: probing Nicotiana benthamiana-virus interactions. Mol Plant-Microbe Interact 20:740–750PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chen QJ, Zhou HM, Chen J, Wang XC (2006) A Gateway-based platform for multigene plant transformation. Plant Mol Biol 62:927–936PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cheo DL, Titus SA, Byrd DRN, Hartley JL, Temple GF, Brasch MA (2004) Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination: functional analysis of multi-segment expression clones. Genome Res 14:2111–2120PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14(12):3237–3253PubMedPubMedCentralCrossRefGoogle Scholar
  19. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedPubMedCentralCrossRefGoogle Scholar
  21. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133(2):462–469PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dawson WO, Folimonova SY (2013) Virus-based transient expression vectors for woody crops: a new frontier for vector design and use. Annu Rev Phytopathol 51:321–337PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dawson WO, Lewandowski DJ, Hilf ME, Bubrick P, Raffo AJ, Shaw JJ, Grantham GL, Desjardins PR (1989) A tobacco mosaic virus-hybrid expresses and loses an added gene. Virology 172:285–292PubMedCrossRefPubMedCentralGoogle Scholar
  24. De Francesco L (2011) Move over ZFNs. Nat Biotechnol 29:681–684CrossRefGoogle Scholar
  25. Deveaux Y, Peaucelle A, Roberts GR, Coen E, Simon R (2003) Mizukami Y (2003) the ethanol switch: a tool for tissue-specific gene induction during plant development. Plant J 36:918–930PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dey N, Maiti IB (1999) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol Biol 40:771–782PubMedCrossRefPubMedCentralGoogle Scholar
  27. Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433PubMedCrossRefPubMedCentralGoogle Scholar
  28. Donson J, Kearney CM, Hilf ME, Dawson WO (1991) Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proc Natl Acad Sci U S A 88:7204–7208PubMedPubMedCentralCrossRefGoogle Scholar
  29. Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629PubMedCrossRefPubMedCentralGoogle Scholar
  30. Exposito-Rodriguez M, Laissue PP, López-Calcagno PE, Mullineaux PM, Raines CA, Simkin AJ (2017) Development of pGEMINI, a plant gateway destination vector allowing the simultaneous integration of two cDNA via a single LR-Clonase reaction. Plan Theory 6:55Google Scholar
  31. Gleba YY, Giritch A (2011) Plant viral vectors for protein expression. In: Caranta C, Aranda MA, Tepfer M, Lopez-Moya JJ (eds) Recent advances in plant virology. Caister Academic Press, Norfolk, pp 387, 412 pp–412Google Scholar
  32. Gleba Y, Marillonnet S, Klimyuk V (2004) Engineering viral expression vectors for plants: the “full virus” and the “deconstructed virus” strategies. Curr Opin Plant Biol 7:182–188PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection–a new platform for expressing recombinant vaccines in plants. Vaccine 23(17–18):2042–2048PubMedCrossRefPubMedCentralGoogle Scholar
  34. Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141PubMedCrossRefGoogle Scholar
  35. Goodin MM, Dietzgen RG, Schichnes D, Ruzin S, Jackson AO (2002) pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J 31:375–383PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gorlach J, Volrath S, Beiter GK, Hengym G, Beckhove U (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643PubMedPubMedCentralGoogle Scholar
  37. Gossele V, Fache I, Meulewaeter F, Cornelissen M, Metzlaff M (2002) SVISS – a novel transient gene silencing system for gene function discovery and validation in tobacco plants. Plant J 32:859–866PubMedCrossRefPubMedCentralGoogle Scholar
  38. Groß-Hardt R, Lenhard M, Laux T (2002) WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev 16:1129–1138PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ha SB, An G (1998) Identification of upstream regulatory elements involved in the developmental expression of the Arabidopsis thaliana cab1 gene. Proc Natl Acad Sci U S A 85:8017–8021CrossRefGoogle Scholar
  40. Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site specific recombination. Genome Res 10:1788–1795PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832PubMedCrossRefPubMedCentralGoogle Scholar
  42. Himmelbach A, Zierold U, Hensel G, Riechen J, Douchkov D, Schweizer P, Kumlehn J (2007) A set of modular binary vectors for transformation of cereals. Plant Physio 145:1192–1200CrossRefGoogle Scholar
  43. Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H (2009) A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol Bioeng 103:706–714PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jia H, Van Loock B, Liao M, Verbelen JP, Vissenberg K (2007) Combination of the ALCR/alcA ethanol switch and GAL4/VP16-UAS enhancer trap system enables spatial and temporal control of transgene expression in Arabidopsis. Plant Biotechnol J 5:477–482PubMedCrossRefPubMedCentralGoogle Scholar
  45. Karimi M, De Meyer B, Hilson P (2005) Modular cloning in plant cells. Trends Plant Sci 10:103–105PubMedCrossRefPubMedCentralGoogle Scholar
  46. Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant gateway vectors. Plant Physiol 145:1144–1154PubMedPubMedCentralCrossRefGoogle Scholar
  47. Katzen F (2007) Gateway recombinational cloning: a biological operating system. Expert Opin Drug Discov 2:571–589PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kim YG, Cha J, Chandrasegaran S (1996) Construction of a Z-DNA-specific restriction endonuclease. Proc Natl Acad Sci U S A 93:1156–1160PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kronbak R, Ingvardsen CR, Madsen CK, Per Langkjær Gregersen PL (2014) A novel approach to the generation of seamless constructs for plant transformation. Plant Meth 10:10CrossRefGoogle Scholar
  50. Kusano H, Onodera H, Kihira M, Aoki H, Matsuzaki H, Hiroaki Shimada H (2016) A simple gateway-assisted construction system of TALEN genes for plant genome editing. Sci Rep 6:30234PubMedPubMedCentralCrossRefGoogle Scholar
  51. Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lico C, Chen Q, Sant L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377PubMedCrossRefPubMedCentralGoogle Scholar
  53. Lindbo JA (2007) TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol 145(4):1232–1240PubMedPubMedCentralCrossRefGoogle Scholar
  54. Liou MR, Huang YW, Hu CC, Lin NS, Hsu YH (2014) A dual gene-silencing vector system for monocot and dicot plants. Plant Biotechnol J 12:330–343PubMedCrossRefPubMedCentralGoogle Scholar
  55. Liu Q, Segal DJ, Ghiara JB, Barbas CF (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A 94:5525–5530PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Gen 4:794–805CrossRefGoogle Scholar
  57. Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14(23):2938–2943PubMedPubMedCentralCrossRefGoogle Scholar
  58. Maizel A, Weigel D (2004) Temporally and spatially controlled induction of gene expression in Arabidopsis thaliana. Plant J 38:164–171PubMedCrossRefPubMedCentralGoogle Scholar
  59. Malamy JE, Benfey PN (1997) Analysis of SCARECROW expression using a rapid system for assessing transgene expression in Arabidopsis roots. Plant J 12:957–963PubMedCrossRefPubMedCentralGoogle Scholar
  60. Martínez de Alba AE, Elvira-Matelot E, Vaucheret H (2013) Gene silencing in plants: a diversity of pathways. Biochim Biophys Acta 1829:1300–1308PubMedCrossRefPubMedCentralGoogle Scholar
  61. Matheka JM, Anami S, Gethi J, Omer RA, Alakonya A, Machuka J, Runo S (2013) A new double right border binary vector for producing marker-free transgenic plants. BMC Res Not 6:448PubMedPubMedCentralCrossRefGoogle Scholar
  62. Michniewicz M, Frick EM, Lucia C, Strader LC (2015) Gateway-compatible tissue-specific vectors for plant transformation. BMC Res Not 8:63PubMedPubMedCentralCrossRefGoogle Scholar
  63. Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45:490–495PubMedCrossRefPubMedCentralGoogle Scholar
  64. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31:691–693CrossRefGoogle Scholar
  65. Pogue GP, Lindbo JA, Dawson WO, Turpen TH (1998) Tobamovirus transient expression vectors: tools for plant biology and high-level expression of foreign proteins in plants. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Springer, DordrechtGoogle Scholar
  66. Purkayastha A, Dasgupta I (2009) Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol Biochem 47:967–976PubMedCrossRefPubMedCentralGoogle Scholar
  67. Que Q, Chilton MM, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops. Challenges and opportunities. GM Crops 1:220–229PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sainsbury F, Lomonossoff GP (2008) Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol 148(3):1212–1218PubMedPubMedCentralCrossRefGoogle Scholar
  69. Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693PubMedCrossRefPubMedCentralGoogle Scholar
  70. Sanagala R, Moola AK, Diana RKB (2017) A review on advanced methods in plant gene targeting. J Genetic Eng Biotech 15:317–321CrossRefGoogle Scholar
  71. Sasaki Y, Sone T, Yoshida S, Yahata K, Hotta J, Chesnut JD, Honda T, Imamoto F (2004) Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the Multisite Gateway system. J Biotechnol 107:233–243PubMedCrossRefPubMedCentralGoogle Scholar
  72. Schlücking K, Edel KH, Köster P, Drerup MM, Eckert C, Steinhorst L, Waadt R, Batistic O, Kudla J (2013) A new β-estradiol-inducible vector set that facilitates easy construction and efficient expression of transgenes reveals CBL3-dependent cytoplasm to tonoplast translocation of CIPK5. Mol Plant 6(6):1814–1829PubMedCrossRefPubMedCentralGoogle Scholar
  73. Scholthof HB, Scholthof KB, Jackson AO (1996) Plant virus gene vectors for transient expression of foreign proteins in plants. Annu Rev Phytopathol 34:299–323PubMedCrossRefPubMedCentralGoogle Scholar
  74. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133PubMedPubMedCentralCrossRefGoogle Scholar
  75. Shah KH, Almaghrabi B, Bohlmann H (2013) Comparison of expression vectors for transient expression of recombinant proteins in plants. Plant Mol Biol Reporter 31:1529–1538CrossRefGoogle Scholar
  76. Shah SH, Jan SA, Ahmad N, Khan SU (2015) Use of different promoters in transgenic plant development: current challenges and future perspectives. American-Eurasian J Agric Environ Sci 15(4):664–675Google Scholar
  77. Shuai B, Reynaga-Pena CG, Springer PS (2002) The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol 129:747–761PubMedPubMedCentralCrossRefGoogle Scholar
  78. Simpson J, Schell J, Van Montagu M, Herrera-Estrella L (1986a) Light-inducible and tissue-specific pea lhcp gene expression involves an upstream element combining enhancer- and silencer-like properties. Nature 323:551–554CrossRefGoogle Scholar
  79. Simpson J, Vanm M, Herrera Estrella L (1986b) Photosynthesis-associated gene families: differences in response to tissue-specific and environmental factors. Science 233:34–38PubMedCrossRefPubMedCentralGoogle Scholar
  80. Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320PubMedPubMedCentralCrossRefGoogle Scholar
  81. Sorek R, Awrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266PubMedCrossRefPubMedCentralGoogle Scholar
  82. Takken FLW, van Wijk R, Michielse CB, Houterman PM, Ram AFJ (2004) A one-step method to convert vectors into binary vectors suited for agrobacterium-mediated transformation. Curr Genet 45:242–248PubMedCrossRefPubMedCentralGoogle Scholar
  83. Thole V, Worland B, Snape JW, Vain P (2007) The pCLEAN dual binary vector system for agrobacterium-mediated plant transformation. Plant Physiol 145:1211–1219PubMedPubMedCentralCrossRefGoogle Scholar
  84. Thole JM, Beisner ER, Liu J, Venkova SV, Strader LC (2014) Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana. G3: Genes, Genomes, Genetics 4(7):1259–1274Google Scholar
  85. Tsutsui H, Higashiyama T (2017) pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol 58(1):46–56PubMedPubMedCentralGoogle Scholar
  86. Tzfira T, Tian GW, Lacroix B, Vyas S, Li J, Leitner-Dagan Y, Krichevsky A, Taylor T, Vainstein A, Citovsky V (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57:503–516PubMedCrossRefPubMedCentralGoogle Scholar
  87. Untergasser A, Bijl GJ, Liu W, Bisseling T, Schaart JG (2012) One-step agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system pHUGE. PLoS One 7:e47885PubMedPubMedCentralCrossRefGoogle Scholar
  88. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646PubMedPubMedCentralCrossRefGoogle Scholar
  89. Varagona MJ, Schmidt RJ, Raikhel NV (1992) Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 10:1213–1227Google Scholar
  90. Veylder LD, Van MM, Inze D (1997) Herbicide safener inducible gene expression in Arabidopsis thaliana. Plant Cell Physiol 38:568–577PubMedCrossRefPubMedCentralGoogle Scholar
  91. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) Retracted: an enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant J 33(5):949–956PubMedCrossRefPubMedCentralGoogle Scholar
  92. Wang CT, Yin XL, Kong XX, Li WS, Ma L (2013) A series of TA-based and zero-background vectors for plant functional genomics. Plos One:8, e59576PubMedPubMedCentralCrossRefGoogle Scholar
  93. Warnasooriya SN, Montgomery BL (2009) Detection of spatial-specific phytochrome responses using targeted expression of biliverdin reductase in Arabidopsis. Plant Physiol 149:424–433PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590PubMedCrossRefPubMedCentralGoogle Scholar
  95. Zhang H, Wang L, Hunter D, Voogd C, Joyce N, Davies K (2013) A Narcissus mosaic viral vector system for protein expression and flavonoid production. Plant Methods 9:28PubMedPubMedCentralCrossRefGoogle Scholar
  96. Zhao F, Hwang US, Lim S, Yoo RH, Igori D, Lee SH, Lim HS, Moon JS (2015) Complete genome sequence and construction of infectious full-length cDNA clones of tobacco ringspot Nepovirus, a viral pathogen causing bud blight in soybean. Virus Genes 51:163–166PubMedCrossRefPubMedCentralGoogle Scholar
  97. Zhou X, Huang C (2012) Virus-induced gene silencing using begomovirus satellite molecules. Methods Mol Biol 894:57–67PubMedCrossRefPubMedCentralGoogle Scholar
  98. Zuo J, Niu QW, Chau NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in plants. Plant J 24:265–273PubMedCrossRefPubMedCentralGoogle Scholar
  99. Zuo J, Niu QW, Frugis G, Chau NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Venkidasamy Baskar
    • 1
  • Sree Preethy Kuppuraj
    • 1
  • Ramkumar Samynathan
    • 1
  • Ramalingam Sathishkumar
    • 1
  1. 1.Plant Genetic Engineering Laboratory, Department of BiotechnologyBharathiar UniversityCoimbatoreIndia

Personalised recommendations