Transcriptional Engineering for Enhancing Valuable Components in Photosynthetic Microalgae

  • Srinivasan Balamurugan
  • Da-Wei Li
  • Xiang Wang
  • Wei-Dong Yang
  • Jie-Sheng Liu
  • Hong-Ye LiEmail author


Photosynthetic microalgae can accumulate a wide array of valuable components. However, higher titer of desired product usually occurs under sub-optimal conditions with the compromise of cellular biomass, which seriously hindered their commercial applications. Conventional metabolic engineering has been employed by targeted perturbation of selected genes in the metabolic pathway without compromising cellular growth. Nevertheless, previous studies have shown mixed and inconsistent success owing to the intricate nature of the target metabolic pathways. Transcriptional engineering represents a promising strategy to govern multiple metabolic pathways by regulation of critical transcription factors, thereby controlling the expression of target gene(s). It has exhibited potential significance and advancements in synthetic biology for microalgal strain improvement. In this chapter, we focus on the significance and status of transcriptional engineering strategies and also speculate on future development to enhance production of microalgal valuable components.


Transcription factors Transcriptional engineering Biofuel Polysaccharides Transgenic microalgae 


  1. Ahmad I, Sharma AK, Daniell H, Kumar S (2015) Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnol J 13:540–550PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aro E (2016) From first generation biofuels to advanced solar biofuels. Ambio 45:24–31CrossRefGoogle Scholar
  3. Bajhaiya AK, Ziehe Moreira J, Pittman JK (2017) Transcriptional engineering of microalgae: prospects for high-value chemicals. Trends Biotechnol 35:95–99PubMedCrossRefPubMedCentralGoogle Scholar
  4. Balamurugan S, Wang X, Wang H-L, An C-J, Li H, Li D-W, Yang W-D, Liu J-S, Li H-Y (2017) Occurrence of plastidial triacylglycerol synthesis and the potential regulatory role of AGPAT in the model diatom Phaeodactylum tricornutum. Bitechnol Biofuels 10:97CrossRefGoogle Scholar
  5. Bartley ML, Boeing WJ, Dungan BN, Holguin FO, Schaub TJJ (2014) pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms. J Appl Phycol 26:1431–1437CrossRefGoogle Scholar
  6. Bergthorson JM, Thomson MJ (2015) A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renew Sust Energ Rev 42:1393–1417CrossRefGoogle Scholar
  7. Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cárdenas PD, Sonawane PD, Pollier J, Vanden Bossche R, Dewangan V, Weithorn E, Tal L, Meir S, Rogachev I, Malitsky S, Giri AP, Goossens A, Burdman S, Aharoni A (2016) GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat Commun 7:10654PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen M, Zhao Y, Zhuo C, Lu S, Guo Z (2015) Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice. Plant Biotechnol J 13:482–491PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chen J-W, Liu W-J, Hu D-X, Wang X, Balamurugan S, Alimujiang A, Yang W-D, Liu J-S, Li H-Y (2017) Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica. Biotechnol Appl Biochem 64:620–626PubMedCrossRefPubMedCentralGoogle Scholar
  11. Dunahay TG, Jarvis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31:1004–1012CrossRefGoogle Scholar
  12. Fernandes B, Teixeira J, Dragone G, Vicente AA, Kawano S, Bišová K, Přibyl P, Zachleder V, Vítová M (2013) Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresour Technol 144:268–274PubMedCrossRefPubMedCentralGoogle Scholar
  13. Hajjari M, Tabatabaei M, Aghbashlo M, Ghanavati H (2017) A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste-oil biodiesel utilization. Renew Sust Energ Rev 72:445–464CrossRefGoogle Scholar
  14. He Q, Yang H, Wu L, Hu C (2015) Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol 191:219–228PubMedCrossRefPubMedCentralGoogle Scholar
  15. Hu J, Wang D, Li J, Jing G, Ning K, Xu J (2014) Genome-wide identification of transcription factors and transcription-factor binding sites in oleaginous microalgae Nannochloropsis. Sci Rep 4:5454PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ibáñez-Salazar A, Rosales-Mendoza S, Rocha-Uribe A, Ramírez-Alonso JI, Lara-Hernández I, Hernández-Torres A, Paz-Maldonado LMT, Silva-Ramírez AS, Bañuelos-Hernández B, Martínez-Salgado JL, Soria-Guerra RE (2014) Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. J Biotechnol 184:27–38PubMedCrossRefPubMedCentralGoogle Scholar
  17. Iskandarov U, Sitnik S, Shtaida N, Didi-Cohen S, Leu S, Khozin-Goldberg I, Cohen Z, Boussiba S (2016) Cloning and characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): overexpression in Chlamydomonas reinhardtii enhances TAG production. J Appl Phycol 28:907–919CrossRefGoogle Scholar
  18. Jeong JS, Kim YS, Baek KH, Jung H, Ha S-H, Do Choi Y, Kim M, Reuzeau C, Kim J-K (2010) Root-specific expression of Osnac10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197PubMedPubMedCentralCrossRefGoogle Scholar
  19. Jiang P-L, Pasaribu B, Chen C-S, Witt SN (2014) Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses. PLoS One 9:e87416PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kang NK, Jeon S, Kwon S, Koh HG, Shin S-E, Lee B, Choi G-G, Yang J-W, Jeong B-r, Chang YKJ (2015) Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol Biofuels 8:200PubMedPubMedCentralCrossRefGoogle Scholar
  21. Kang NK, Kim EK, Kim YU, Lee B, Jeong W-J, Jeong B-r, Chang YKJ (2017) Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. Biotechnol Biofuels 10:231PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kang NK, Kim EK, Sung MG, Kim YU, Jeong BR, Chang YKJB (2018) Increased biomass and lipid production by continuous cultivation of Nannochloropsis salina transformant overexpressing a bHLH transcription factor. Biotechnol Bioeng 116:555–568PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kwon S, Kang NK, Koh HG, Shin S-E, Lee B, Jeong B-r, Chang YK (2018) Enhancement of biomass and lipid productivity by overexpression of a bZIP transcription factor in Nannochloropsis salina. Biotechnol Bioeng 115:331–340PubMedCrossRefPubMedCentralGoogle Scholar
  24. Li D-W, Cen S-Y, Liu Y-H, Balamurugan S, Zheng X-Y, Alimujiang A, Yang W-D, Liu J-S, Li H-Y (2016) A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. J Biotechnol 229:65–71PubMedCrossRefPubMedCentralGoogle Scholar
  25. Li D-W, Xie W-H, Hao T-B, Cai J-X, Zhou T-B, Balamurugan S, Yang W-D, Liu J-S, Li H-Y (2018a) Constitutive and chloroplast targeted expression of acetyl-CoA carboxylase in oleaginous microalgae elevates fatty acid biosynthesis. Mar Biotechnol 20:566–572PubMedCrossRefPubMedCentralGoogle Scholar
  26. Li C, Yue Y, Chen H, Qi W, Song R (2018b) The ZmbZIP22 transcription factor regulates 27-kD γ-Zein gene transcription during maize endosperm development. Plant Cell 30:2402–2424PubMedPubMedCentralCrossRefGoogle Scholar
  27. Li DW, Balamurugan S, Yang YF, Zheng JW, Huang D, Zou LG, Yang WD, Liu JS, Guang Y, Li HY (2019) Transcriptional regulation of microalgae for concurrent lipid overproduction and secretion. Sci Adv 5:eaau3795PubMedPubMedCentralCrossRefGoogle Scholar
  28. Liang K, Zhang Q, Gu M, Cong WJ (2013) Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol 25:311–318CrossRefGoogle Scholar
  29. Lu Y, Wang X, Balamurugan S, Yang W-D, Liu J-S, Dong H-P, Li H-Y (2017) Identification of a putative seipin ortholog involved in lipid accumulation in marine microalga Phaeodactylum tricornutum. J Appl Phycol 29:2821–2829CrossRefGoogle Scholar
  30. Ma Y-H, Wang X, Niu Y-F, Yang Z-K, Zhang M-H, Wang Z-M, Yang W-D, Liu J-S, Li H-Y (2014) Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. Microb Cell Factories 13:100Google Scholar
  31. Ma Y, Balamurugan S, Yuan W, Yang F, Tang C, Hu H, Zhang H, Shu X, Li M, Huang S, Li H, Wu L (2018) Quercetin potentiates the concurrent hyper-accumulation of cellular biomass and lipids in Chlorella vulgaris. Bioresour Technol 269:434–442PubMedCrossRefPubMedCentralGoogle Scholar
  32. Mach J (2018) Corn ChIPs and RNA-seq: researchers dip into advanced tools and resources to examine bZIP transcription factor function in the maize endosperm. Plant Cell 30:2641–2642PubMedPubMedCentralGoogle Scholar
  33. Mujtaba G, Choi W, Lee C-G, Lee K (2012) Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresour Technol 123:279–283PubMedCrossRefPubMedCentralGoogle Scholar
  34. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170PubMedPubMedCentralCrossRefGoogle Scholar
  35. Negi S, Barry AN, Friedland N, Sudasinghe N, Subramanian S, Pieris S, Holguin FO, Dungan B, Schaub T, Sayre RJ (2016) Impact of nitrogen limitation on biomass, photosynthesis, and lipid accumulation in Chlorella sorokiniana. J Appl Phycol 28:803–812CrossRefGoogle Scholar
  36. Niu Y-F, Zhang M-H, Li D-W, Yang W-D, Liu J-S, Bai W-B, Li H-Y (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558PubMedPubMedCentralCrossRefGoogle Scholar
  37. Niu Y-F, Wang X, Hu D-X, Balamurugan S, Li D-W, Yang W-D, Liu J-S, Li H-Y (2016) Molecular characterization of a glycerol-3-phosphate acyltransferase reveals key features essential for triacylglycerol production in Phaeodactylum tricornutum. Biotechnol Biofuels 9:60PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ra CH, Kang C-H, Jung J-H, Jeong G-T, Kim S-K (2016) Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs). Bioresour Technol 218:1279–1283PubMedCrossRefPubMedCentralGoogle Scholar
  39. Rios LF, Klein BC, Luz LF, Maciel Filho R, Wolf Maciel MR (2015) Nitrogen starvation for lipid accumulation in the microalga species Desmodesmus sp. Appl Biochem Biotechnol 175:469–476PubMedCrossRefGoogle Scholar
  40. Saladini F, Patrizi N, Pulselli FM, Marchettini N, Bastianoni S (2016) Guidelines for emergy evaluation of first, second and third generation biofuels. Renew Sust Energ Rev 66:221–227CrossRefGoogle Scholar
  41. Salas-Montantes CJ, González-Ortega O, Ochoa-Alfaro AE, Camarena-Rangel R, Paz-Maldonado LMT, Rosales-Mendoza S, Rocha-Uribe A, Soria-Guerra RE (2018) Lipid accumulation during nitrogen and sulfur starvation in Chlamydomonas reinhardtii overexpressing a transcription factor. J Appl Phycol 30:1–13CrossRefGoogle Scholar
  42. Singh P, Guldhe A, Kumari S, Rawat I, Bux F (2015) Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochem Eng J 94:22–29CrossRefGoogle Scholar
  43. Wang X, Liu Y-H, Hu D-X, Balamurugan S, Lu Y, Yang W-D, Liu J-S, Li H-Y (2015) Identification of a putative patatin-like phospholipase domain-containing protein 3 (PNPLA3) ortholog involved in lipid metabolism in microalga Phaeodactylum tricornutum. Algal Res 12:274–279CrossRefGoogle Scholar
  44. Wang Y, He B, Sun Z, Chen Y-F (2016) Chemically enhanced lipid production from microalgae under low sub-optimal temperature. Algal Res 16:20–27CrossRefGoogle Scholar
  45. Wang X, Hao T-B, Balamurugan S, Yang W-D, Liu J-S, Dong H-P, Li H-Y (2017) A lipid droplet-associated protein involved in lipid droplet biogenesis and triacylglycerol accumulation in the oleaginous microalga Phaeodactylum tricornutum. Algal Res 26:215–224CrossRefGoogle Scholar
  46. Wang X, Dong H-P, Wei W, Balamurugan S, Yang W-D, Liu J-S, Li H-Y (2018a) Dual expression of plastidial GPAT1 and LPAT1 regulates triacylglycerol production and the fatty acid profile in Phaeodactylum tricornutum. Biotechnol Biofuels 11:318PubMedPubMedCentralCrossRefGoogle Scholar
  47. Wang X, Wei W, Li N-J, Yuan W, Ding Y, Yang W-D, Liu J-S, Balamurugan S, Li H-Y (2018b) Heterogeneous expression of human PNPLA3 triggers algal lipid accumulation and lipid droplet enlargement. Algal Res 31:276–281CrossRefGoogle Scholar
  48. Wasylenko TM, Ahn WS, Stephanopoulos G (2015) The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng 30:27–39PubMedCrossRefPubMedCentralGoogle Scholar
  49. Wei H, Shi Y, Ma X, Pan Y, Hu H, Li Y, Luo M, Gerken H, Liu J (2017) A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica. Biotechnol Biofuels 10:174PubMedPubMedCentralCrossRefGoogle Scholar
  50. Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500PubMedCrossRefPubMedCentralGoogle Scholar
  51. Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9:e92913PubMedPubMedCentralCrossRefGoogle Scholar
  52. Xu HF, Luo J, Zhao WS, Yang YC, Tian HB, Shi HB, Bionaz M (2016) Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells. J Dairy Sci 99:783–795PubMedCrossRefPubMedCentralGoogle Scholar
  53. Xue J, Niu Y-F, Huang T, Yang W-D, Liu J-S, Li H-Y (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  54. Xue J, Wang L, Zhang L, Balamurugan S, Li D-W, Zeng H, Yang W-D, Liu J-S, Li H-Y (2016) The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa. Microb Cell Factories 15:120CrossRefGoogle Scholar
  55. Xue J, Balamurugan S, Li D-W, Liu Y-H, Zeng H, Wang L, Yang W-D, Liu J-S, Li H-Y (2017) Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply. Metab Eng 41:212–221PubMedCrossRefPubMedCentralGoogle Scholar
  56. Xue J, Chen T-T, Zheng J-W, Balamurugan S, Cai J-X, Liu Y-H, Yang W-D, Liu J-S, Li H-Y (2018) The role of diatom glucose-6-phosphate dehydrogenase on lipogenic NADPH supply in green microalgae through plastidial oxidative pentose phosphate pathway. Appl Microbiol Biotechnol 102:10803–10815PubMedCrossRefPubMedCentralGoogle Scholar
  57. Yamaoka Y, Achard D, Jang S, Legéret B, Kamisuki S, Ko D, Schulz-Raffelt M, Kim Y, Song W-Y, Nishida I, Li-Beisson Y, Lee Y (2016) Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. Plant Biotechnol J 14:2158–2167PubMedPubMedCentralCrossRefGoogle Scholar
  58. Yang Z-K, Niu Y-F, Ma Y-H, Xue J, Zhang M-H, Yang W-D, Liu J-S, Lu S-H, Guan Y, Li H-Y (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels 6:67PubMedPubMedCentralCrossRefGoogle Scholar
  59. Yang J, Pan Y, Bowler C, Zhang L, Hu H (2016) Knockdown of phosphoenolpyruvate carboxykinase increases carbon flux to lipid synthesis in Phaeodactylum tricornutum. Algal Res 15:50–58CrossRefGoogle Scholar
  60. Zhan J, Li G, Ryu C-H, Ma C, Zhang S, Lloyd A, Hunter BG, Larkins BA, Drews GN, Wang X, Yadegari R (2018) Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm. Plant Cell 30:2425–2446PubMedPubMedCentralCrossRefGoogle Scholar
  61. Zhang J, Hao Q, Bai L, Xu J, Yin W, Song L, Xu L, Guo X, Fan C, Chen Y, Ruan J, Hao S, Li Y, Wang RR-C, Hu Z (2014a) Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea. Biotechnol Biofuels 7:128PubMedPubMedCentralGoogle Scholar
  62. Zhang Z, Zhang X, Tan T (2014b) Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresour Technol 157:149–153PubMedCrossRefPubMedCentralGoogle Scholar
  63. Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014) Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol 152:292–298PubMedCrossRefPubMedCentralGoogle Scholar
  64. Zhu B-H, Shi H-P, Yang G-P, Lv N-N, Yang M, Pan K-H (2016) Silencing UDP-glucose pyrophosphorylase gene in Phaeodactylum tricornutum affects carbon allocation. New Biotechnol 33:237–244CrossRefGoogle Scholar
  65. Zulu NN, Popko J, Zienkiewicz K, Tarazona P, Herrfurth C, Feussner I (2017) Heterologous co-expression of a yeast diacylglycerol acyltransferase (ScDGA1) and a plant oleosin (AtOLEO3) as an efficient tool for enhancing triacylglycerol accumulation in the marine diatom Phaeodactylum tricornutum. Biotechnol Biofuels 10:187PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Srinivasan Balamurugan
    • 1
  • Da-Wei Li
    • 1
  • Xiang Wang
    • 1
  • Wei-Dong Yang
    • 1
  • Jie-Sheng Liu
    • 1
  • Hong-Ye Li
    • 1
    Email author
  1. 1.Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and TechnologyJinan UniversityGuangzhouChina

Personalised recommendations