Advertisement

Managing Climate Risk in a Major Coffee-Growing Region of Indonesia

  • Rizaldi Boer
  • Syamsu Dwi Jadmiko
  • Purnama Hidayat
  • Ade Wachjar
  • Muhammad Ardiansyah
  • Dewi Sulistyowati
  • Anter Parulian Situmorang
Chapter

Abstract

Indonesia is currently one of the top four coffee exporting countries in the world. Climate change is projected to cause significant impacts on coffee. Without proper adaptation measures, this will significantly lower the productions. Changes in rainfall and increases in temperature will affect the phenological development that would eventually influence yield and quality of crop including the potential risks of pest and disease attacks. Assessment in Toba, a major coffee-growing region of Indonesia, indicated that in the middle of this century (the 2050s), under climate scenarios of RCP4.5 and RCP8.5, suitable areas for coffee production would decrease significantly. The average yield is projected to decrease between 25% and 75% of the current yield. However, the highlands that are currently not suitable for coffee (>1500 m above mean sea level) is projected to become suitable with a higher yield than the current. A significant increase in rainfall during the rainy season and prolonged dry season will also affect coffee phenological development. It will shift the peak of coffee flowering and harvesting seasons in Toba. The severity of the coffee berry borer Hypothenemus hampei (Ferrari) attack will also increase in the future. The current crop management farming practices should be adjusted and improved to adapt to such change.

Keywords

Climate change Climate scenarios Indonesia Toba region Coffee Climate change adaptation Coffee berry borer 

Notes

Acknowledgements

We thank for the financial support provided by Rainforest Alliance-UTZ. We also extend our gratitude for BITRA that provided support in conducting survey.

References

  1. Abdoellah S (2016) Irrigation on coffee plantation. In: Wahyudi T, Pujiyanto M (eds) Coffee: history, botany, production process, processing, downstream products, and partnership systems. Gadjah Mada University Press, Yogyakarta, pp 253–258Google Scholar
  2. Amaria W, Harni R (2012) Leaf rust in the planting of coffee and its control. In: Technology innovation for community coffee plantation. Indonesian Spices and Industrial Plants Research Institute, Sukabumi, pp 115–120Google Scholar
  3. Bale J, Masters G, Hodkinson I, Awmack C, Bezemer T, Brown V, Butterfield J, Buse A, Coulson J, Farrar J, Good J, Harrington R, Hartley S, Jones T, Lindroth R, Press M, Symrnioudis I, Watt A, Whittaker J (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16.  https://doi.org/10.1046/j.1365-2486.2002.00451.xCrossRefGoogle Scholar
  4. Birch L (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15.  https://doi.org/10.2307/1605CrossRefGoogle Scholar
  5. BPS (2016a) Statistics of Karo Regency, Karo. ISSN:2301-8852Google Scholar
  6. BPS (2016b) Statistics of Dairi Regency, Dairi. ISSN:2354-578XGoogle Scholar
  7. BPS (2016c) Statistics of Samosir Regency, Samosir. ISSN:2301-976XGoogle Scholar
  8. BPS (2016d) BPS-statistics of Simalungun Regency, Simalungun. ISSN:0215-2339Google Scholar
  9. Brown JS, Kenny MK, Whan JH, dan Merriman PR (1995) The effect of temperature on the development of epidemics of coffee leaf rust in Papua New Guinea. J Crop Prot 14(8):671–676CrossRefGoogle Scholar
  10. CABI (2000) Crop protection compendium. CAB International, WallingfordGoogle Scholar
  11. Cannel MGR (1985) Physiology of the coffee crop. In: Clifford MN, Wilson KC (eds) Coffee: botany, biochemistry, and production of beans and beverage. AVI Publishing Company, Connecticut, pp 108–134.  https://doi.org/10.1007/978-1-4615-6657-1CrossRefGoogle Scholar
  12. Center for Soil Research (1978) National land classification system. Soil Research Center, BogorGoogle Scholar
  13. Center for Soil Research (1982) National land classification system. Soil Research Center, BogorGoogle Scholar
  14. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O'Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an earth-system model- HadGEM2. Geosci Model Dev 4(4):1051–1075CrossRefGoogle Scholar
  15. Crowe TJ (2009) Coffee pests in Africa. In: Wintgnes JN (ed) Coffee: growing, processing, sustainable production, 2nd edn. Willey-VCH Verlag GmbH &Cp. KGaA, Weinheim, pp 425–462.  https://doi.org/10.1002/9783527619627CrossRefGoogle Scholar
  16. Damatta FM, Ramalho JDC (2006) Impacts of drought and temperature stress on coffe physiology and production: a review. Braz J Plant Physiol 18(1):55–81.  https://doi.org/10.1590/S1677-04202006000100006CrossRefGoogle Scholar
  17. Descroix F, Snoeck J (2012) Environmental factors suitable for coffee cultivation. In: Wintgens JN (ed) Coffee: growing, processing, sustainable production, 2nd Rev edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN:978-3-527-33253-3Google Scholar
  18. Dingemanse NJ, Kalkman V (2008) Changing temperature regimes have advanced the phenology of Odonata in the Netherlands. Ecol Entomol 33:394–402.  https://doi.org/10.1111/j.1365-2311.2007.00982.xCrossRefGoogle Scholar
  19. Erdiansyah NP, Soemarno D, Mawardi S (2016) Sidikalang coffee production in North Sumatra. Indonesian Coffee Cocoa Res Inst Newslett 25:10–14Google Scholar
  20. Faqih A, Hidayat R, Jadmiko SD, Radini (2016) Historical climate and future climate scenarios in Indonesia: climate modelling and analysis. United Nation Development Program (UNDP), Ministry of Environment and Forestry (KLHK)Google Scholar
  21. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Rowland J, Romero B, Husak G, Michaelsen J, Verdin A (2014) A quasi-global precipitation time series for drought monitoring. Data Ser (832):4.  https://doi.org/10.3133/ds832
  22. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci Data 2:150066.  https://doi.org/10.1038/sdata.2015.66CrossRefGoogle Scholar
  23. Gomi T, Nagasaka M, Fukuda T, Higahara H (2007) Shifting of the life cycle and life history traits of the fall webworm in relation to climate change. Entomol Exp Appl 125:179–184.  https://doi.org/10.1111/j.1570-7458.2007.00616.xCrossRefGoogle Scholar
  24. Haggar J, Barrios M, Bolaños M, Merlo M, Moraga P, Munguia R, Ponce A, Romero S, Soto G, Staver C, de M. F. Virginio E (2011) Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agrofor Syst 82:285–301.  https://doi.org/10.1007/s10457-011-9392-5CrossRefGoogle Scholar
  25. Harni R, Samsudin WA, Indriati G, Soesanthy F, Khaerati ET, Hasibuan AM, Hapsari AD (2015) Technology of pest and disease control on coffee plantation. IAARD Press, JakartaGoogle Scholar
  26. ICC (2009) Climate change and coffee. International Coffee Council, 103rd session, 23–25 September 2009. http://www.ico.org/documents/icc-103-6-r1e-climate-change.pdf. Accessed 8 Jan 2016
  27. Indonesian Coffee and Cocoa Research Center (Puslitkoka) (2013) Practical guidelines for cultivation and maintenance of coffee plants. Indonesian Coffee and Cocoa Research Center, JemberGoogle Scholar
  28. IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Meyer LA (eds)]. IPCC, Geneva, 151 ppGoogle Scholar
  29. Jadmiko SD, Murdiyarso D, Faqih A (2017) Bias correction of regional climate model outputs for drought analysis. Indonesian Soil Clim J 41(1):25–36.  https://doi.org/10.2017/jti.v41i1.5983CrossRefGoogle Scholar
  30. Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A, Vega F, Poehling H, Borgemeister C (2009) Thermal tolerance of the coffee berry borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest. PLoS One 4:e6487.  https://doi.org/10.1371/journal.pone.0006487CrossRefGoogle Scholar
  31. Kiritani K (2006) Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Popul Ecol 48:5–12.  https://doi.org/10.1007/s10144-005-0225-0CrossRefGoogle Scholar
  32. Kiritani K (2007) Pest status of rice and fruit bugs (Heteroptera) in Japan. Glob Chang Biol 13:1586–1595CrossRefGoogle Scholar
  33. Kiritani K (2013) Different effects of climate change on the population dynamics of insects. Appl Entomol Zool 48:97–104.  https://doi.org/10.1007/s13355-012-0158-yCrossRefGoogle Scholar
  34. Lan CC, Wintgens JN (2009) Major pests of coffee in the Asia-Pacific region. In: Wintgnes JN (ed) Coffee: growing, processing, sustainable production, 2nd edn. Wiley-VCH Verlag GmbH &Cp. KGaA, Weinheim, pp 463–477Google Scholar
  35. Lenderink G, Buishand A, Van Deusen W (2007) Estimate of future discharges of the river Rhine using two scenarios methodologies: direct versus delta approach. Hydrol Earth Syst Sci 11:1145–1159.  https://doi.org/10.5194/hess-11-1145-2007CrossRefGoogle Scholar
  36. Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4(3):723–757CrossRefGoogle Scholar
  37. Ministry of Agriculture (2017) Agricultural statistics 2017. Center for Agricultural Data and Information System: Ministry of Agriculture, JakartaGoogle Scholar
  38. Ministry of Environment (2014) Rescue movement of Lake Toba (GERMADANI). Ministry of Environment of the Republic of Indonesia, JakartaGoogle Scholar
  39. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren SP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchel JFB, Nakicennovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756.  https://doi.org/10.1038/nature08823CrossRefGoogle Scholar
  40. Nur AM (2000) Impact of La Nina on Robusta coffee production. Indonesian Coffee Cocoa Res Inst Newslett 16(1):50–58Google Scholar
  41. Prastowo B, Karmawati E, Rubijo S, Indrawanto C, Munaro SJ (2010) Coffee cultivation and post-harvest. Indonesian Center for Estate Crops Research and Development, BogorGoogle Scholar
  42. Pratama SW, Aini FN (2016) Main diseases of coffee plants. In: Coffee. Gadjah Mada University Press, Yogyakarta, p 15Google Scholar
  43. PT Perkebunan Nusantara XII (Persero) (2013) Guidelines for managing Arabica coffee plants. PT Perkebunan Nusantara XII (Persero), SurabayaGoogle Scholar
  44. Pujiyanto (2016) Water stress on coffee plant. In: Wahyudi T, Pujiyanto M (eds) Coffee; history, botany, production process, processing, downstream products, and partnership systems. Gadjah Mada University Press, Yogyakarta, pp 382–401Google Scholar
  45. Puslitkoka (2013) Practical guidelines for cultivation and maintenance of coffee plants. Indonesian Research Center for Coffee and Cacao, JemberGoogle Scholar
  46. Rahayu DS, Wiryadiputra S (2016) Main insect pest and it’s control. In: Coffee. Gadjah Mada University Press, YogyakartaGoogle Scholar
  47. Rayner RW (1961) Spore liberation and dispersal of coffee rust Hemileia vastatrix B.et Br. Nature 191:725CrossRefGoogle Scholar
  48. Samsudin, Soesanthy F (2012) Coffee berry borer and its control: technology innovation for community coffee plantation. Indonesian Spices and Industrial Plants Research Institute, Sukabumi, pp 121–130Google Scholar
  49. Semangun H (2000) Plantation plant diseases in Indonesia. Gadjah Mada University Press, 835ppGoogle Scholar
  50. Soenarjo (1975) Effect of climate anomaly on coffee production. Indonesian J Biotechnol Res Estate Crops 43(2):79–91Google Scholar
  51. Sulistyowati E, Mangoendihardjo S, Wagiman FX (1999) Functional response of parasitoid Cephalonomia stephanoderis Betr. against coffee berry borer (Hypothenemus hampei Ferr.). Coffee Cocoa Res J 15(2):101–108Google Scholar
  52. Susilo AW (2008) Resistance of coffee plants (Coffea spp.) from coffee berry borer (Hypothenemus hampei Ferr.). Rev Coffee Cocoa Res 24(1):1–15Google Scholar
  53. Syakir M, Surmaini E (2017) Climate change in the context of the coffee production and development system in Indonesia. Agric Res J 36(2):77–90Google Scholar
  54. Waller JM (1985) Control of coffee diseases. In: Clifford MN, Willson KC (eds) Coffee: botany, biochemistry and production of beans and beverage. AVI Publishing Company, Connecticut, pp 219–229CrossRefGoogle Scholar
  55. Waller JM, Bigger M, Hillocks RJ (2007) Coffee pests, diseases and their management. CAB International, Wallingford, p 400. ISBN-10: 1 84593 129 7 and ISBN-13: 978 1 84593 129 2CrossRefGoogle Scholar
  56. Wilson KC (1985) Climate and soil. In: Clifford MN, Wilson KC (eds) Coffee: botany, biochemistry, and production of beans and beverage. AVI Publishing Company, Connecticut, pp 97–107CrossRefGoogle Scholar
  57. Wintgens JN (2009) Coffee: growing, processing, sustainable production. 2. Wiley-VCH Verlag GmbH & Cp. KGaA, WeinheimGoogle Scholar
  58. Wiryadiputra (2012) Effectiveness of Cyantraniliprole insecticides on coffee berry borer (Hypothenemus hampei Ferr.) in Arabica coffee. Coffee Cocoa Res J 28:103–114Google Scholar
  59. Wiryadiputra S, Tran LK (2008) Indonesia and Vietnam. In: Souza RM (ed) Plant-parasitic nematodes of coffee. Springer, DordrechtGoogle Scholar
  60. Yahmadi M (1973) Effect of long drought on coffee plantation. Indonesian J Biotechnol Res Estate Crops 41:235–240Google Scholar
  61. Yuliasmara F, Suhartono, Hulupi R (2016) Pruning on coffee plants. In: Wahyudi T, Pujiyanto M (eds) Coffee: history, botany, production process, processing, downstream products, and partnership systems. Gadjah Mada University Press, Yogyakarta, pp 195–217Google Scholar
  62. Zeng F, Pederson G, Ellsbury M, Davis F (1993) Demographic statistics for the pea aphid (Homoptera: Aphididae) on resistant and susceptible red clovers. J Econ Entomol 86(6):1852–1856CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Rizaldi Boer
    • 1
    • 2
  • Syamsu Dwi Jadmiko
    • 1
  • Purnama Hidayat
    • 3
  • Ade Wachjar
    • 4
  • Muhammad Ardiansyah
    • 1
    • 5
  • Dewi Sulistyowati
    • 1
  • Anter Parulian Situmorang
    • 1
  1. 1.Center for Climate Risk and Opportunity Management in Southeast Asia and PacificBogor Agricultural UniversityBogorIndonesia
  2. 2.Department of Geophysics and Meteorology, Faculty of Mathematic and Natural SciencesBogor Agricultural UniversityBogorIndonesia
  3. 3.Department of Crop Protection, Faculty of AgricultureBogor Agricultural UniversityBogorIndonesia
  4. 4.Department of Agronomy and Horticulture, Faculty of AgricultureBogor Agricultural UniversityBogorIndonesia
  5. 5.Department of Soil Science and Land Resources, Faculty of AgricultureBogor Agricultural UniversityBogorIndonesia

Personalised recommendations