Advertisement

Virology of SFTSV

  • Kumiko YoshimatsuEmail author
Chapter

Abstract

At first, the basic structures of the viral genomes of severe fever with thrombocytopenia syndrome virus (SFTSV) and related viruses are shown. Then the structures and functions of structural and nonstructural proteins of SFTSV are discussed. Finally, recent information relating to the basic property of SFTSV, cytopathic effect, plaque formation and low pH-dependent membrane fusion is described.

Keywords

Structural protein GP RdRp NsS 

References

  1. Adams MJ, Lefkowitz EJ, King AMQ, Harrach B, Harrison RL, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Mushegian AR, Nibert M, Sabanadzovic S, Sanfaçon H, Siddell SG, Simmonds PV, arsani A, Zerbini FM, Gorbalenya AE, Davison AJ (2017) Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses. Arch Virol 162:2505–2538PubMedCrossRefGoogle Scholar
  2. Billecocq A, Spiegel M, Vialat P, Kohl A, Weber F, Bouloy M, Haller O (2004) NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J Virol 78(18):9798–9806PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bouloy M, Janzen C, Vialat P, Khun H, Pavlovic J, Huerre M, Haller O (2001) Genetic evidence for an interferon-antagonistic function of Rift Valley fever virus nonstructural protein NSs. J Virol 75(3):1371–1377PubMedPubMedCentralCrossRefGoogle Scholar
  4. Brennan B, Li P, Zhang S, Li A, Liang M, Li D, Elliott RM (2015) Reverse genetics system for severe fever with thrombocytopenia syndrome virus. J Virol 89(6):3026–3037PubMedPubMedCentralCrossRefGoogle Scholar
  5. Brennan B, Rezelj VV, Elliott RM (2017) Mapping of transcription termination within the S segment of SFTS phlebovirus facilitated generation of NSs deletant viruses. J Virol 91(16):e00743-17Google Scholar
  6. Bridgen A, Weber F, Fazakerley JK, Elliott RM (2001) Bunyamwera bunyavirus nonstructural protein NSs is a nonessential gene product that contributes to viral pathogenesis. Proc Natl Acad Sci U S A 98(2):664–669CrossRefGoogle Scholar
  7. Bruenn JA (2003) A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res 31(7):1821–1829PubMedPubMedCentralCrossRefGoogle Scholar
  8. Calvert AE, Brault AC (2015) Development and characterization of monoclonal antibodies directed against the nucleoprotein of heartland virus. Am J Trop Med Hyg 93(6):1338–1340PubMedPubMedCentralCrossRefGoogle Scholar
  9. Carnec X, Ermonval M, Kreher F, Flamand M, Bouloy M (2014) Role of the cytosolic tails of Rift Valley fever virus envelope glycoproteins in viral morphogenesis. Virology 448:1–14PubMedCrossRefGoogle Scholar
  10. Chaudhary V, Zhang S, Yuen KS, Li C, Lui PY, Fung SY, Wang PH, Chan CP, Li D, Kok KH, Liang M, Jin DY (2015) Suppression of type I and type III IFN signalling by NSs protein of severe fever with thrombocytopenia syndrome virus through inhibition of STAT1 phosphorylation and activation. J Gen Virol 96(11):3204–3211PubMedCrossRefGoogle Scholar
  11. Chen X, Ye H, Li S, Jiao B, Wu J, Zeng P, Chen L (2017) Severe fever with thrombocytopenia syndrome virus inhibits exogenous Type I IFN signaling pathway through its NSs in vitro. PLoS One 12(2):e0172744PubMedPubMedCentralCrossRefGoogle Scholar
  12. Daubney R, Hudson JR, Garnham PC (1931) Enzootic hepatitis or Rift Valley fever. An undescribed virus disease of sheep, cattle and man from East Africa. J Path Bact 34(2):545–579CrossRefGoogle Scholar
  13. Fukuma A, Fukushi S, Yoshikawa T, Tani H, Taniguchi S, Kurosu T, Egawa K, Suda Y, Singh H, Nomachi T, Gokuden M, Ando K, Kida K, Kan M, Kato N, Yoshikawa A, Kitamoto H, Sato Y, Suzuki T, Hasegawa H, Morikawa S, Shimojima M, Saijo M (2016) Severe fever with thrombocytopenia syndrome virus antigen detection using monoclonal antibodies to the nucleocapsid protein. PLoS Negl Trop Dis 10(4):e0004595PubMedPubMedCentralCrossRefGoogle Scholar
  14. Guo X, Zhang L, Zhang W, Chi Y, Zeng X, Li X, Qi X, Jin Q, Zhang X, Huang M, Wang H, Chen Y, Bao C, Hu J, Liang S, Bao L, Wu T, Zhou M, Jiao Y (2013) Human antibody neutralizes severe fever with thrombocytopenia syndrome virus, an emerging hemorrhagic fever virus. Clin Vaccine Immunol 20(9):1426–1432PubMedCrossRefGoogle Scholar
  15. Halldorsson S, Behrens AJ, Harlos K, Huiskonen JT, Elliott RM, Crispin M, Brennan B, Bowden TA (2016) Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion. Proc Natl Acad Sci U S A 113(26):7154–7159CrossRefGoogle Scholar
  16. Hobson-Peters J, Warrilow D (2016) Discovery and characterisation of a new insect-specific bunyavirus from Culex mosquitoes captured in northern Australia. Virology 489:269–281PubMedCrossRefGoogle Scholar
  17. Hofmann H, Li X, Zhang X, Liu W, Kuhl A, Kaup F, Soldan SS, Gonzalez-Scarano F, Weber F, He Y, Pohlmann S (2013) Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol 87(8):4384–4394PubMedPubMedCentralCrossRefGoogle Scholar
  18. Huang YT, Zhao L, Wen HL, Yang Y, Yu H, Yu XJ (2016) Neutralizing antibodies to severe fever with thrombocytopenia syndrome virus 4 years after hospitalization, China. Emerg Infect Dis 22(11):1985–1987PubMedPubMedCentralCrossRefGoogle Scholar
  19. Jantti J, Hilden P, Ronka H, Makiranta V, Keranen S, Kuismanen E (1997) Immunocytochemical analysis of Uukuniemi virus budding compartments: role of the intermediate compartment and the Golgi stack in virus maturation. J Virol 71(2):1162–1172PubMedPubMedCentralGoogle Scholar
  20. Jiao Y, Zeng X, Guo X, Qi X, Zhang X, Shi Z, Zhou M, Bao C, Zhang W, Xu Y, Wang H (2012) Preparation and evaluation of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for detection of total antibodies in human and animal sera by double-antigen sandwich enzyme-linked immunosorbent assay. J Clin Microbiol 50(2):372–377PubMedCrossRefGoogle Scholar
  21. Jiao L, Ouyang S, Liang M, Niu F, Shaw N, Wu W, Ding W, Jin C, Peng Y, Zhu Y, Zhang F, Wang T, Li C, Zuo X, Luan CH, Li D, Liu ZJ (2013) Structure of severe fever with thrombocytopenia syndrome virus nucleocapsid protein in complex with suramin reveals therapeutic potential. J Virol 87(12):6829–6839PubMedPubMedCentralCrossRefGoogle Scholar
  22. Lee H, Kim EJ, Song JY, Choi JS, Lee JY, Cho IS, Shin YK (2016) Development and evaluation of a competitive enzyme-linked immunosorbent assay using a monoclonal antibody for diagnosis of severe fever with thrombocytopenia syndrome virus in bovine sera. J Vet Sci 17(3):307–314PubMedPubMedCentralCrossRefGoogle Scholar
  23. Lundu T, Tsuda Y, Yoshimatsu K, Yoshii K, Arikawa J, Kariwa H (2018) Targeting of severe fever with thrombocytopenia syndrome virus structural proteins to the ERGIC (ER – Golgi intermediate compartment) and Golgi. Biomed Res 39(1):27-38Google Scholar
  24. Marklewitz M (2011) Gouleako virus isolated from west African mosquitoes constitutes a proposed novel genus in the family Bunyaviridae. J Virol 85(17):9227–9234PubMedPubMedCentralCrossRefGoogle Scholar
  25. Min X, Mengji C, Wenwen L, Ren Y, Xueping Z, Xifeng W (2017) Two negative-strand RNA viruses identified in watermelon represent a novel clade in the order bunyavirales. Front Microbiol 8:1514CrossRefGoogle Scholar
  26. Nishio S, Tsuda Y, Ito R, Shimizu K, Yoshimatsu K, Arikawa J (2017) Establishment of subclones of the severe fever with thrombocytopenia syndrome virus YG1 strain selected using low pH-dependent cell fusion activity. Jpn J Infect Dis 70(4):388–393PubMedCrossRefGoogle Scholar
  27. Novoa RR, Calderita G, Cabezas P, Elliott RM, Risco C (2005) Key Golgi factors for structural and functional maturation of bunyamwera virus. J Virol 79(17):10852–10863PubMedPubMedCentralCrossRefGoogle Scholar
  28. Overby AK, Pettersson RF, Neve EP (2007a) The glycoprotein cytoplasmic tail of Uukuniemi virus (Bunyaviridae) interacts with ribonucleoproteins and is critical for genome packaging. J Virol 81(7):3198–3205PubMedPubMedCentralCrossRefGoogle Scholar
  29. Overby AK, Popov VL, Pettersson RF, Neve EP (2007b) The cytoplasmic tails of Uukuniemi Virus (Bunyaviridae) G(N) and G(C) glycoproteins are important for intracellular targeting and the budding of virus-like particles. J Virol 81(20):11381–11391PubMedPubMedCentralCrossRefGoogle Scholar
  30. Palacios G, Savji N, Travassos da Rosa A, Guzman H, Yu X, Desai A, Rosen GE, Hutchison S, Lipkin WI, Tesh R (2013) Characterization of the Uukuniemi virus group (Phlebovirus: Bunyaviridae): evidence for seven distinct species. J Virol 87(6):3187–3195PubMedPubMedCentralCrossRefGoogle Scholar
  31. Piper ME, Sorenson DR, Gerrard SR (2011) Efficient cellular release of Rift Valley fever virus requires genomic RNA. PLoS One 6(3):e18070PubMedPubMedCentralCrossRefGoogle Scholar
  32. Plegge T, Hofmann-Winkler H, Spiegel M, Pohlmann S (2016) Evidence that processing of the severe fever with thrombocytopenia syndrome virus Gn/Gc polyprotein is critical for viral infectivity and requires an internal Gc signal peptide. PLoS One 11(11):e0166013PubMedPubMedCentralCrossRefGoogle Scholar
  33. Qu B, Qi X, Wu X, Liang M, Li C, Cardona CJ, Xu W, Tang F, Li Z, Wu B, Powell K, Wegner M, Li D, Xing Z (2012) Suppression of the interferon and NF-kappaB responses by severe fever with thrombocytopenia syndrome virus. J Virol 86(16):8388–8401Google Scholar
  34. Ramanathan HN, Chung DH, Plane SJ, Sztul E, Chu YK, Guttieri MC, McDowell M, Ali G, Jonsson CB (2007) Dynein-dependent transport of the hantaan virus nucleocapsid protein to the endoplasmic reticulum-Golgi intermediate compartment. J Virol 81(16):8634–8647PubMedPubMedCentralCrossRefGoogle Scholar
  35. Rezelj VV, Li P, Chaudhary V, Elliott RM, Jin DY, Brennan B (2017) Differential antagonism of human innate immune responses by tick-borne Phlebovirus nonstructural proteins. mSphere 2(3):e00234-17Google Scholar
  36. Rusu M, Bonneau R, Holbrook MR, Watowich SJ, Birmanns S, Wriggers W, Freiberg AN (2012) An assembly model of Rift Valley fever virus. Front Microbiol 3:254Google Scholar
  37. Salanueva IJ, Novoa RR, Cabezas P, Lopez-Iglesias C, Carrascosa JL, Elliott RM, Risco C (2003) Polymorphism and structural maturation of bunyamwera virus in Golgi and post-Golgi compartments. J Virol 77(2):1368–1381PubMedPubMedCentralCrossRefGoogle Scholar
  38. Sun Y, Qi Y, Liu C, Gao W, Chen P, Fu L, Peng B, Wang H, Jing Z, Zhong G, Li W (2014) Nonmuscle myosin heavy chain IIA is a critical factor contributing to the efficiency of early infection of severe fever with thrombocytopenia syndrome virus. J Virol 88(1):237–248PubMedCrossRefGoogle Scholar
  39. Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, Kamei T, Honda M, Ninomiya D, Sakai T, Senba T, Kaneyuki S, Sakaguchi S, Satoh A, Hosokawa T, Kawabe Y, Kurihara S, Izumikawa K, Kohno S, Azuma T, Suemori K, Yasukawa M, Mizutani T, Omatsu T, Katayama Y, Miyahara M, Ijuin M, Doi K, Okuda M, Umeki K, Saito T, Fukushima K, Nakajima K, Yoshikawa T, Tani H, Fukushi S, Fukuma A, Ogata M, Shimojima M, Nakajima N, Nagata N, Katano H, Fukumoto H, Sato Y, Hasegawa H, Yamagishi T, Oishi K, Kurane I, Morikawa S, Saijo M (2014) The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. J Infect Dis 209(6):816–827PubMedPubMedCentralCrossRefGoogle Scholar
  40. Tani H (2014) Analyses of entry mechanisms of novel emerging viruses using pseudotype VSV system. Trop Med Health 42(2):Suppl):71–Suppl):82CrossRefGoogle Scholar
  41. Taniguchi S, Fukuma A, Tani H, Fukushi S, Saijo M, Shimojima M (2017) A neutralization assay with a severe fever with thrombocytopenia syndrome virus strain that makes plaques in inoculated cells. J Virol Methods 244:4–10PubMedCrossRefGoogle Scholar
  42. Terasaki K, Won S, Makino S (2013) The C-terminal region of Rift Valley fever virus NSm protein targets the protein to the mitochondrial outer membrane and exerts antiapoptotic function. J Virol 87(1):676–682PubMedCrossRefGoogle Scholar
  43. Tsuda Y, Igarashi M, Ito R, Nishio S, Shimizu K, Yoshimatsu K, Arikawa J (2017) The amino acid at position 624 in the glycoprotein of SFTSV (severe fever with thrombocytopenia virus) plays a critical role in low-pH-dependent cell fusion activity. Biomed Res 38(2):89–97Google Scholar
  44. Vialat P, Billecocq A, Kohl A, Bouloy M (2000) The S segment of Rift valley fever phlebovirus (Bunyaviridae) carries determinants for attenuation and virulence in mice. J Virol 74(3):1538–1543PubMedPubMedCentralCrossRefGoogle Scholar
  45. Wang X, Zhang Q, Hao F, Gao X, Wu W, Liang M, Liao Z, Luo S, Xu W, Li D, Wang S (2014) Development of a colloidal gold kit for the diagnosis of severe fever with thrombocytopenia syndrome virus infection. Biomed Res Int 2014:1–6Google Scholar
  46. Wu X, Qi X, Liang M, Li C, Cardona CJ, Li D, Xing Z (2014) Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus. FASEB J 28(6):2504–2516PubMedCrossRefGoogle Scholar
  47. Wu Y, Zhu Y, Gao F, Jiao Y, Oladejo BO, Chai Y, Bi Y, Lu S, Dong M, Zhang C, Huang G, Wong G, Li N, Zhang Y, Li Y, Feng WH, Shi Y, Liang M, Zhang R, Qi J, Gao GF (2017) Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope. Proc Natl Acad Sci U S A 114(36):E7564–E7573CrossRefGoogle Scholar
  48. Yoshikawa T, Shimojima M, Fukushi S, Tani H, Fukuma A, Taniguchi S, Singh H, Suda Y, Shirabe K, Toda S, Shimazu Y, Nomachi T, Gokuden M, Morimitsu T, Ando K, Yoshikawa A, Kan M, Uramoto M, Osako H, Kida K, Takimoto H, Kitamoto H, Terasoma F, Honda A, Maeda K, Takahashi T, Yamagishi T, Oishi K, Morikawa S, Saijo M (2015) Phylogenetic and geographic relationships of severe fever with thrombocytopenia syndrome virus in China, South Korea, and Japan. J Infect Dis 212(6):889–898PubMedCrossRefGoogle Scholar
  49. Yu L, Zhang L, Sun L, Lu J, Wu W, Li C, Zhang Q, Zhang F, Jin C, Wang X, Bi Z, Li D, Liang M (2012) Critical epitopes in the nucleocapsid protein of SFTS virus recognized by a panel of SFTS patients derived human monoclonal antibodies. PLoS One 7(6):e38291PubMedPubMedCentralCrossRefGoogle Scholar
  50. Yu F, Du Y, Huang X, Ma H, Xu B, Adungo F, Hayasaka D, Buerano CC, Morita K (2015) Application of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for the detection of SFTSV-specific human IgG and IgM antibodies by indirect ELISA. Virol J 12:117Google Scholar
  51. Zhang W, Zeng X, Zhang L, Peng H, Jiao Y, Zeng J, Treutlein HR (2013) Computational identification of epitopes in the glycoproteins of novel bunyavirus (SFTS virus) recognized by a human monoclonal antibody (MAb 4-5). J Comput Aided Mol Des 27(6):539–550PubMedCrossRefGoogle Scholar
  52. Zhang S, Zheng B, Wang T, Li A, Wan J, Qu J, Li CH, Li D, Liang M (2017) NSs protein of severe fever with thrombocytopenia syndrome virus suppresses interferon production through different mechanism than Rift Valley fever virus. Acta Virol 61(3):289–298PubMedCrossRefGoogle Scholar
  53. Zhou H, Sun Y, Wang Y, Liu M, Liu C, Wang W, Liu X, Li L, Deng F, Wang H, Guo Y, Lou Z (2013) The nucleoprotein of severe fever with thrombocytopenia syndrome virus processes a stable hexameric ring to facilitate RNA encapsidation. Protein Cell 4(6):445–455CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute for Genetic MedicineHokkaido UniversitySapporoJapan

Personalised recommendations