Advertisement

Assessing Collusion Risks in Public Construction Projects: A Case of China

  • Ming ShanEmail author
  • Yun Le
  • Albert P. C. Chan
  • Yi Hu
Chapter

Abstract

Collusion has been defined as a set of behaviours where competitors coordinate their market behaviour surreptitiously, which is contrary to the principles of free competition (Chotibhongs and Arditi 2012a, b; Zarkada-Fraser 2000).

References

  1. Al-Sobiei, O. S., Arditi, D., & Polat, G. (2005). Predicting the risk of contractor default in Saudi Arabia utilizing artificial neural network (ANN) and genetic algorithm (GA) techniques. Construction Management and Economics, 23(4), 423–430.  https://doi.org/10.1080/01446190500041578.CrossRefGoogle Scholar
  2. Alutu, O. (2007). Unethical practices in Nigerian construction industry: Prospective engineers’ viewpoint. Journal of Professional Issues in Engineering Education and Practice, 133(2), 84–88.CrossRefGoogle Scholar
  3. Alutu, O., & Udhawuve, M. (2009). Unethical practices in Nigerian engineering industries: Complications for project management. Journal of Management in Engineering, 25(1), 40–43.CrossRefGoogle Scholar
  4. Ameh, O. J., & Odusami, K. T. (2010). Professionals’ ambivalence toward ethics in the Nigerian construction industry. Journal of Professional Issues in Engineering Education and Practice, 136(1), 9–16.  https://doi.org/10.1061/(asce)1052-3928(2010)136:1(9).CrossRefGoogle Scholar
  5. Ameyaw, E. E., Hu, Y., Shan, M., Chan, A. P. C., & Le, Y. (2016). Application of Delphi method in construction engineering and management research: A quantitative perspective. Journal of Civil Engineering and Management, 22(8), 991–1000.  https://doi.org/10.3846/13923730.2014.945953.CrossRefGoogle Scholar
  6. Ballesteros-Perez, P., Carmen Gonzalez-Cruz, M., Canavate-Grimal, A., & Pellicer, E. (2013). Detecting abnormal and collusive bids in capped tendering. Automation in Construction, 31, 215–229.  https://doi.org/10.1016/j.autcon.2012.11.036.CrossRefGoogle Scholar
  7. Berry, M. J. A., & Linoff, G. (1997). Data mining techniques. New York: Wiley.Google Scholar
  8. Boussabaine, A. H. (1996). The use of artificial neural networks in construction management: A review. Construction Management and Economics, 14(5), 427–436.  https://doi.org/10.1080/014461996373296.CrossRefGoogle Scholar
  9. Bowen, P., Akintoye, A., Pearl, R., & Edwards, P. J. (2007a). Ethical behaviour in the South African construction industry. Construction Management and Economics, 25(6), 631–648.CrossRefGoogle Scholar
  10. Bowen, P., Pearl, R., & Akintoye, A. (2007b). Professional ethics in the South African construction industry. Building Research and Information, 35(2), 189–205.CrossRefGoogle Scholar
  11. Bowen, P. A., Edwards, P. J., & Cattell, K. (2012). Corruption in the South African construction industry: A thematic analysis of verbatim comments from survey participants. Construction Management and Economics, 30(10), 885–901.CrossRefGoogle Scholar
  12. Brown, J., & Loosemore, M. (2015). Behavioural factors influencing corrupt action in the Australian construction industry. Engineering, Construction and Architectural Management, 22(4), 372–389.Google Scholar
  13. Carr, R. I., & Maloney, W. F. (1983). Basic research needs in construction engineering. Journal of Construction Engineering and Management, 109(2), 181–189.  https://doi.org/10.1061/(ASCE)0733-9364(1983)109:2(181).CrossRefGoogle Scholar
  14. Cheng, M. Y., Tsai, H. C., & Sudjono, E. (2011). Evaluating subcontractor performance using evolutionary fuzzy hybrid neural network. International Journal of Project Management, 29(3), 349–356.  https://doi.org/10.1016/j.ijproman.2010.03.005.CrossRefGoogle Scholar
  15. Cheng, M. Y., Tsai, H. C., & Sudjono, E. (2012). Evolutionary fuzzy hybrid neural network for dynamic project success assessment in construction industry. Automation in Construction, 21(1), 46–51.  https://doi.org/10.1016/j.autcon.2011.05.011.CrossRefGoogle Scholar
  16. Cheng, M. Y., Wu, Y. W., & Wu, C. F. (2010). Project success prediction using an evolutionary support vector machine inference model. Automation in Construction, 19(3), 302–307.  https://doi.org/10.1016/j.autcon.2009.12.003.CrossRefGoogle Scholar
  17. Cheung, S. O., Tam, C. M., & Harris, F. C. (2000). Project Dispute Resolution Satisfaction classification through neural network. Journal of management in engineering, 16(1), 70–79.  https://doi.org/10.1061/(ASCE)0742-597X(2000)16:1(70).CrossRefGoogle Scholar
  18. Cheung, S. O., Wong, P. S. P., Fung, A. S. Y., & Coffey, W. V. (2006). Predicting project performance through neural networks. International Journal of Project Management, 24(3), 207–215.  https://doi.org/10.1016/j.ijproman.2005.08.001.CrossRefGoogle Scholar
  19. Chotibhongs, R., & Arditi, D. (2012a). Analysis of collusive bidding behaviour. Construction Management and Economics, 30(3), 221–231.Google Scholar
  20. Chotibhongs, R., & Arditi, D. (2012b). Detection of collusive behavior. Journal of Construction Engineering and Management, 138(11), 1251–1258.Google Scholar
  21. De Jong, M., Henry, W. P., & Stansbury, N. (2009). Eliminating corruption in our engineering/construction industry. Leadership and Management in Engineering, 9(3), 105–111.  https://doi.org/10.1061/(ASCE)1532-6748(2009)9:3(105).CrossRefGoogle Scholar
  22. Demuth, D., & Beale, M. (2000). Neural network toolbox for use with MATLAB. Natick, Massachusetts: Math Works.Google Scholar
  23. Dikmen, I., Birgonul, M. T., & Kiziltas, S. (2005). Prediction of organizational effectiveness in construction companies. Journal of Construction Engineering and Management, 131(2), 252–261.  https://doi.org/10.1061/(ASCE)0733-9364(2005)131:2(252).CrossRefGoogle Scholar
  24. Dorée, A. G. (2004). Collusion in the Dutch construction industry: an industrial organization perspective. Building Research & Information, 32(2), 146–156.CrossRefGoogle Scholar
  25. Georgy, M. E., Chang, L. M., & Zhang, L. (2005). Prediction of engineering performance: A neurofuzzy approach. Journal of Construction Engineering and Management-ASCE, 131(5), 548–557.  https://doi.org/10.1061/(asce)0733-9364(2005)131:5(548).CrossRefGoogle Scholar
  26. Goh, A. T. C. (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9(3), 143–151.  https://doi.org/10.1016/0954-1810(94)00011-S.CrossRefGoogle Scholar
  27. Goh, Y. M., & Binte Sa’Adon, N. F. (2015). Cognitive factors influencing safety behavior at height: A multimethod exploratory study. Journal of Construction Engineering and Management, 141(6).  https://doi.org/10.1061/(asce)co.1943-7862.0000972.CrossRefGoogle Scholar
  28. Goh, Y. M., & Chua, D. (2013). Neural network analysis of construction safety management systems: A case study in Singapore. Construction Management and Economics, 31(5), 460–470.  https://doi.org/10.1080/01446193.2013.797095.CrossRefGoogle Scholar
  29. Gunduz, M., & Onder, O. (2013). Corruption and internal fraud in the Turkish construction industry. Science and Engineering Ethics, 19(2), 505–528.  https://doi.org/10.1007/s11948-012-9356-9.CrossRefGoogle Scholar
  30. Gunduz, M., & Yahya, A. M. A. (2018). Analysis of project success factors in construction industry. Technological and Economic Development of Economy, 24(1), 67–80.  https://doi.org/10.3846/20294913.2015.1074129.CrossRefGoogle Scholar
  31. Hallowell, M. R., & Gambatese, J. A. (2010). Qualitative research: Application of the Delphi method to CEM research. Journal of Construction Engineering and Management, 136(1), 99–107.  https://doi.org/10.1061/(asce)co.1943-7862.0000137.CrossRefGoogle Scholar
  32. Hartley, R. (2009). Fighting corruption in the Australian construction industry: The national code of practice. Leadership and Management in Engineering, 9(3), 131–135.CrossRefGoogle Scholar
  33. Hon, C. K. H., Chan, A. P. C., & Yam, M. C. H. (2012). Empirical study to investigate the difficulties of implementing safety practices in the repair and maintenance sector in Hong Kong. Journal of Construction Engineering and Management, 138(7), 877–884.  https://doi.org/10.1061/(asce)co.1943-7862.0000497.CrossRefGoogle Scholar
  34. Hu, Y., Chan, A. P., Le, Y., & Jin, R.-Z. (2013). From construction megaproject management to complex project management: Bibliographic analysis. Journal of Management in Engineering, 31(4), 04014052.CrossRefGoogle Scholar
  35. Hussain, M. A., Aroua, M. K., Yin, C. Y., Rahman, R. A., & Ramli, N. A. (2010). Hybrid neural network for prediction of CO2 solubility in monoethanolamine and diethanolamine solutions. Korean Journal of Chemical Engineering, 27(6), 1864–1867.  https://doi.org/10.1007/s11814-010-0270-z.CrossRefGoogle Scholar
  36. Hwang, B. G., & Ng, H. B. (2016). Project network management: Risks and contributors from the viewpoint of contractors and sub-contractors. Technological and Economic Development of Economy, 22(4), 631–648.  https://doi.org/10.3846/20294913.2015.1067847.CrossRefGoogle Scholar
  37. Hwang, B.-G., Zhao, X., & Goh, K. J. (2014). Investigating the client-related rework in building projects: The case of Singapore. International Journal of Project Management, 32(4), 698–708.  https://doi.org/10.1016/j.ijproman.2013.08.009.CrossRefGoogle Scholar
  38. Hwang, B. G., Zhao, X., & Ong, S. Y. (2015a). Value management in Singaporean building projects: Implementation status, critical success factors, and risk factors. Journal of management in engineering, 31(6).  https://doi.org/10.1061/(asce)me.1943-5479.0000342.CrossRefGoogle Scholar
  39. Hwang, B. G., Zhao, X., See, Y. L., & Zhong, Y. (2015b). Addressing risks in green retrofit projects: the case of Singapore. Project Management Journal, 46(4), 76–89.  https://doi.org/10.1002/pmj.21512.CrossRefGoogle Scholar
  40. Hwang, B.-G., Zhao, X., & Yu, G. S. (2016). Risk identification and allocation in underground rail construction joint ventures: Contractors’ perspective. Journal of Civil Engineering and Management, 22(6), 758–767.  https://doi.org/10.3846/13923730.2014.914095.CrossRefGoogle Scholar
  41. Ika, L. A. (2012). Project management for development in Africa: Why projects are failing and what can be done about it. Project Management Journal, 43(4), 27–41.  https://doi.org/10.1002/pmj.21281.CrossRefGoogle Scholar
  42. Jamieson, S. (2004). Likert scales: How to (ab)use them. Medical Education, 38(12), 1217–1218.  https://doi.org/10.1111/j.1365-2929.2004.02012.x.CrossRefGoogle Scholar
  43. Jha, K. N., & Chockalingam, C. T. (2011). Prediction of schedule performance of Indian construction projects using an artificial neural network. Construction Management and Economics, 29(9), 901–911.  https://doi.org/10.1080/01446193.2011.608691.CrossRefGoogle Scholar
  44. Jin, X. H., & Zhang, G. (2011). Modelling optimal risk allocation in PPP projects using artificial neural networks. International Journal of Project Management, 29(5), 591–603.  https://doi.org/10.1016/j.ijproman.2010.07.011.CrossRefGoogle Scholar
  45. Ke, Y., Wang, S., Chan, A. P. C., & Cheung, E. (2011). Understanding the risks in China’s PPP projects: Ranking of their probability and consequence. Engineering, Construction and Architectural Management, 18(5), 481–496.  https://doi.org/10.1108/09699981111165176.CrossRefGoogle Scholar
  46. Ko, C. H., & Cheng, M. Y. (2007). Dynamic prediction of project success using artificial intelligence. Journal of Construction Engineering and Management, 133(4), 316–324.  https://doi.org/10.1061/(ASCE)0733-9364(2007)133:4(316).CrossRefGoogle Scholar
  47. Le, Y., & Shan, M. (2014). Research trend of collusion in top construction journals. Paper presented at the Proceedings of the 17th International Symposium on Advancement of Construction Management and Real Estate.Google Scholar
  48. Le, Y., Shan, M., Chan, A. P., & Hu, Y. (2014). Investigating the causal relationships between causes of and vulnerabilities to corruption in the Chinese public construction sector. Journal of Construction Engineering and Management, 140(9), 05014007.Google Scholar
  49. Lo, W., Krizek, R. J., & Hadavi, A. (1999). Effects of high prequalification requirements. Construction Management and Economics, 17(5), 603–612.CrossRefGoogle Scholar
  50. Molenaar, K. R. (2005). Programmatic cost risk analysis for highway megaprojects. Journal of Construction Engineering and Management, 131(3), 343–353.  https://doi.org/10.1061/(ASCE)0733-9364(2005)131:3(343).CrossRefGoogle Scholar
  51. Moselhi, O., Hegazy, T., & Fazio, P. (1991). Neural networks as tools in construction. Journal of Construction Engineering and Management, 117(4), 606–625.  https://doi.org/10.1061/(ASCE)0733-9364(1991)117:4(606).CrossRefGoogle Scholar
  52. National Bureau of Corruption Prevention of China, N. (2011). Analysis on typical corruption cases in the construction sector and instructions for corruption prevention. Fangzheng Press of China, Beijing, China.Google Scholar
  53. OECD. (2009). Guidelines for fighting bid rigging in public procurement. Retrieved from http://www.oecd.org/daf/competition/cartels/42851044.pdf.
  54. OECD. (2012). Recommendation of the OECD council on fighting bid rigging in public procurement. Retrieved from http://www.oecd.org/daf/competition/RecommendationOnFightingBidRigging2012.pdf.
  55. Patel, D. A., & Jha, K. N. (2015a). Neural network approach for safety climate prediction. Journal of management in engineering, 31(6).  https://doi.org/10.1061/(asce)me.1943-5479.0000348.CrossRefGoogle Scholar
  56. Patel, D. A., & Jha, K. N. (2015b). Neural network model for the prediction of safe work behavior in construction projects. Journal of Construction Engineering and Management, 141(1).  https://doi.org/10.1061/(asce)co.1943-7862.0000922.CrossRefGoogle Scholar
  57. Priemus, H. (2004). Dutch contracting fraud and governance issues. Building Research and Information, 32(4), 306–312.  https://doi.org/10.1080/0961321042000221089.CrossRefGoogle Scholar
  58. Ray, R. S., Hornibrook, J., Skitmore, M., & Zarkada-Fraser, A. (1999). Ethics in tendering: A survey of Australian opinion and practice. Construction Management and Economics, 17(2), 139–153.  https://doi.org/10.1080/014461999371646.CrossRefGoogle Scholar
  59. Rumelhart, D. E., Widrow, B., & Lehr, M. A. (1994). The basic ideas in neural networks. Communications of the ACM, 37(3), 87–92.  https://doi.org/10.1145/175247.175256.CrossRefGoogle Scholar
  60. Samarasinghe, S. (2007). Neural networks for applied sciences and engineering. Boca Raton: Taylor & Francis.Google Scholar
  61. Shan, M., Chan, A. P. C., Le, Y., & Hu, Y. (2015a). Investigating the effectiveness of response strategies for vulnerabilities to corruption in the Chinese public construction sector. Science and Engineering Ethics, 21(3), 683–705.  https://doi.org/10.1007/s11948-014-9560-x.CrossRefGoogle Scholar
  62. Shan, M., Chan, A. P. C., Le, Y., Xia, B., & Hu, Y. (2015b). Measuring corruption in public construction projects in China. Journal of Professional Issues in Engineering Education and Practice, 141(4).  https://doi.org/10.1061/(asce)ei.1943-5541.0000241.CrossRefGoogle Scholar
  63. Shan, M., Chan, A. P. C., Le, Y., Hu, Y., & Xia, B. (2017). Understanding collusive practices in Chinese construction projects. Journal of Professional Issues in Engineering Education and Practice, 143(3).  https://doi.org/10.1061/(asce)ei.1943-5541.0000314.CrossRefGoogle Scholar
  64. Shen, L. Y., Wu, G. W. C., & Ng, C. S. K. (2001). Risk assessment for construction joint ventures in China. Journal of Construction Engineering and Management, 127(1), 76–81.  https://doi.org/10.1061/(ASCE)0733-9364(2001)127:1(76).CrossRefGoogle Scholar
  65. Sichombo, B., Muya, M., Shakantu, W., & Kaliba, C. (2009). The need for technical auditing in the Zambian construction industry. International Journal of Project Management, 27(8), 821–832.CrossRefGoogle Scholar
  66. Sohail, M., & Cavill, S. (2008). Accountability to prevent corruption in construction projects. Journal of Construction Engineering and Management, 134(9), 729–738.CrossRefGoogle Scholar
  67. Tabish, S., & Jha, K. N. (2011). Analyses and evaluation of irregularities in public procurement in India. Construction Management and Economics, 29(3), 261–274.CrossRefGoogle Scholar
  68. The National People’s Congress of People’s Republic of China, T. (1999). Bidding law of People’s Republic of China. Retrieved from http://www.npc.gov.cn/wxzl/gongbao/2000-12/05/content_5004749.htm.
  69. Vee, C., & Skitmore, C. (2003). Professional ethics in the construction industry. Engineering, Construction and Architectural Management, 10(2), 117–127.CrossRefGoogle Scholar
  70. Wang, Y. R., & Gibson, G. E., Jr. (2010). A study of preproject planning and project success using ANNs and regression models. Automation in Construction, 19(3), 341–346.  https://doi.org/10.1016/j.autcon.2009.12.007.CrossRefGoogle Scholar
  71. Wang, J., Liu, J., Liao, Z., & Tang, P. (2009). Identification of key liability risks of supervision engineers in China. Construction Management and Economics, 27(12), 1157–1173.  https://doi.org/10.1080/01446190903222395.CrossRefGoogle Scholar
  72. Xia, B., & Chan, A. P. C. (2012a). Identification of selection criteria for operational variations of the design-build system: A Delphi study in China. Journal of Civil Engineering and Management, 18(2), 173–183.  https://doi.org/10.3846/13923730.2012.657417.CrossRefGoogle Scholar
  73. Xia, B., & Chan, A. P. C. (2012b). Measuring complexity for building projects: A Delphi study. Engineering, Construction and Architectural Management, 19(1), 7–24.  https://doi.org/10.1108/09699981211192544.CrossRefGoogle Scholar
  74. Xinhua Net, X. (2014). Irregularities in biddings of three gorges project: Nepotism, and waste of public money. Retrieved from http://news.xinhuanet.com/finance/2014-02/19/c_126159860.htm.
  75. Xinhua Net, X. (2015). How many inside stories of bidding have been refracted by huge kickbacks in small projects? Retrieved from http://news.xinhuanet.com/fortune/2015-09/19/c_1116615043.htm.
  76. Yi, W., & Chan, A. P. C. (2014). Critical review of labor productivity research in construction journals. Journal of Management in Engineering, 30(2), 214–225.  https://doi.org/10.1061/(asce)me.1943-5479.0000194.CrossRefGoogle Scholar
  77. Zarkada-Fraser, A. (2000). A classification of factors influencing participating in collusive tendering agreements. Journal of Business Ethics, 23(3), 269–282.CrossRefGoogle Scholar
  78. Zarkada-Fraser, A., & Skitmore, M. (2000). Decisions with moral content: Collusion. Construction Management & Economics, 18(1), 101–111.CrossRefGoogle Scholar
  79. Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35-62.  https://doi.org/10.1016/s0169-2070(97)00044-7.CrossRefGoogle Scholar
  80. Zhang, B., Le, Y., Xia, B., & Skitmore, M. (2016). Causes of business-to-government corruption in the tendering process in China. Journal of management in engineering.Google Scholar
  81. Zhao, X., Hwang, B.-G., & Low, S. P. (2013a). Developing fuzzy enterprise risk management maturity model for construction firms. Journal of Construction Engineering and Management, 139(9), 1179–1189.  https://doi.org/10.1061/(asce)co.1943-7862.0000712.CrossRefGoogle Scholar
  82. Zhao, X., Hwang, B. G., & Low, S. P. (2013b). Critical success factors for enterprise risk management in Chinese construction companies. Construction Management and Economics, 31(12), 1199–1214.  https://doi.org/10.1080/01446193.2013.867521.CrossRefGoogle Scholar
  83. Zhao, X., & Singhaputtangkul, N. (2016). Effects of firm characteristics on enterprise risk management: Case study of Chinese construction firms operating in Singapore. Journal of Management in Engineering, 32(4).  https://doi.org/10.1061/(asce)me.1943-5479.0000434.CrossRefGoogle Scholar
  84. Zou, P. X. W. (2006). Strategies for minimizing corruption in the construction industry in China. Journal of Construction in Developing Countries, 11(2), 15–29.Google Scholar
  85. Zou, P. X. W., & Zhang, G. (2009). Comparative study on the perception of construction safety risks in China and Australia. Journal of Construction Engineering and Management, 135(7), 620–627.  https://doi.org/10.1061/(ASCE)CO.1943-7862.0000019.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Civil EngineeringCentral South UniversityChangshaChina
  2. 2.School of Economics and ManagementTongji UniversityShanghaiChina
  3. 3.Department of Building and Real EstateThe Hong Kong Polytechnic UniversityKowloonHong Kong
  4. 4.School of Economics and ManagementTongji UniversityShanghaiChina

Personalised recommendations