Advertisement

Measuring Corruption in Public Construction Project: A Case of China

  • Ming ShanEmail author
  • Yun Le
  • Albert P. C. Chan
  • Yi Hu
Chapter

Abstract

Compared with developed countries, those developing countries have more serious corruption problems as they are undergoing the transition of economy and lack mature legislative and administrative system (Ling and Hoang in J Prof Issues Eng Edu Practice 136(3):156–164, 2010; Ofori in Challenges of construction industries in developing countries: lessons from various countries. In: Proceedings of 2nd international conference of CIB task group 29: challenges facing the construction industry in developing countries, 2000)

References

  1. Alutu, O. (2007). Unethical practices in Nigerian construction industry: Prospective engineers’ viewpoint. Journal of Professional Issues in Engineering Education and Practice, 133(2), 84–88.CrossRefGoogle Scholar
  2. Ameh, O. J., & Odusami, K. T. (2010). Professionals’ ambivalence toward ethics in the Nigerian construction industry. Journal of Professional Issues in Engineering Education and Practice, 136(1), 9–16.  https://doi.org/10.1061/(asce)1052-3928(2010)136:1(9).CrossRefGoogle Scholar
  3. Andersson, S., & Heywood, P. M. (2009). The politics of perception: Use and abuse of transparency international’s approach to measuring corruption. Political Studies, 57(4), 746–767.  https://doi.org/10.1111/j.1467-9248.2008.00758.x.CrossRefGoogle Scholar
  4. Baloi, D., & Price, A. D. F. (2003). Modelling global risk factors affecting construction cost performance. International Journal of Project Management, 21(4), 261–269.  https://doi.org/10.1016/S0263-7863(02)00017-0.CrossRefGoogle Scholar
  5. Beijing Times, B. (2014). Qishan Wang: The phenomenon of ‘dare not graft’ is emerging. Retrieved from http://epaper.jinghua.cn/html/2014-09/08/content_124009.htm.
  6. Bowen, P. A., Edwards, P. J., & Cattell, K. (2012). Corruption in the South African construction industry: A thematic analysis of verbatim comments from survey participants. Construction Management and Economics, 30(10), 885–901.CrossRefGoogle Scholar
  7. Chan, A. P. C., Chan, D. W. M., & Yeung, J. F. Y. (2009). Overview of the application of “fuzzy techniques” in construction management research. Journal of Construction Engineering and Management, 135(11), 1241–1252.  https://doi.org/10.1061/(asce)co.1943-7862.0000099.CrossRefGoogle Scholar
  8. Chan, A. P. C., Lam, P. T. I., Chan, D. W. M., Cheung, E., & Ke, Y. (2010). Critical success factors for PPPs in infrastructure developments: Chinese perspective. Journal of Construction Engineering and Management, 136(5), 484–494.  https://doi.org/10.1061/(asce)co.1943-7862.0000152.CrossRefGoogle Scholar
  9. Chen, S. J., & Hwang, C. L. (1992). Fuzzy multiple attribute decision making methods. Berlin, Heidelberg, Germany: Springer.CrossRefGoogle Scholar
  10. Conway, J. M., & Huffcutt, A. I. (2003). A review and evaluation of exploratory factor analysis practices in organizational research. Organizational Research Methods, 6(2), 147–168.  https://doi.org/10.1177/1094428103251541.CrossRefGoogle Scholar
  11. Cox, E. (1999). The fuzzy systems handbook: A practitioner’s guide to building, using, and maintaining fuzzy systems (2nd ed.), Academic, New York.Google Scholar
  12. De Jong, M., Henry, W. P., & Stansbury, N. (2009). Eliminating corruption in our engineering/construction industry. Leadership and Management in Engineering, 9(3), 105–111.  https://doi.org/10.1061/(ASCE)1532-6748(2009)9:3(105).CrossRefGoogle Scholar
  13. Della Porta, D. (2001). A judges’ revolution? Political corruption and the judiciary in Italy. European Journal of Political Research, 39(1), 1–21.CrossRefGoogle Scholar
  14. Deng, X., Low, S. P., Li, Q., & Zhao, X. (2014). Developing competitive advantages in political risk management for international construction enterprises. Journal of Construction Engineering and Management, 140(9).  https://doi.org/10.1061/(asce)co.1943-7862.0000836.CrossRefGoogle Scholar
  15. Duncan, N. (2006). The non-perception based measurement of corruption: a review of issues and methods from a policy perspective. Measuring Corruption, pp. 131–161.Google Scholar
  16. Dziuban, C. D., & Shirkey, E. C. (1974). When is a correlation matrix appropriate for factor analysis? Some decision rules. Psychological Bulletin, 81(6), 358.CrossRefGoogle Scholar
  17. Filev, D. P., & Yager, R. R. (1994). On the analysis of fuzzy logic controllers. Fuzzy Sets and Systems, 68(1), 39–66.  https://doi.org/10.1016/0165-0114(94)90272-0.CrossRefGoogle Scholar
  18. Foster, J. E., Horowitz, A. W., & Méndez, F. (2012). An axiomatic approach to the measurement of corruption: Theory and applications. The World Bank Economic Review, 26(2), 217–235.CrossRefGoogle Scholar
  19. Georgy, M. E., Chang, L. M., & Zhang, L. (2005). Prediction of engineering performance: A neurofuzzy approach. Journal of Construction Engineering and Management-Asce, 131(5), 548–557.  https://doi.org/10.1061/(asce)0733-9364(2005)131:5(548).CrossRefGoogle Scholar
  20. Goel, R. K., & Nelson, M. A. (2011). Measures of corruption and determinants of US corruption. Economics of Governance, 12(2), 155–176.  https://doi.org/10.1007/s10101-010-0091-x.CrossRefGoogle Scholar
  21. Golden, M. A., & Picci, L. (2001). Proposal for a new measure of corruption, and tests using Italian data. Economics and Politics, 17(1), 37–75.CrossRefGoogle Scholar
  22. Gray, C. W., & Kaufmann, D. (1998). Corruption and development. Finance and Development, 35(1), 7–10.Google Scholar
  23. Gunduz, M., & Onder, O. (2013). Corruption and internal fraud in the Turkish construction industry. Science and Engineering Ethics, 19(2), 505–528.  https://doi.org/10.1007/s11948-012-9356-9.CrossRefGoogle Scholar
  24. Hadipriono, F. C. (1988). Fuzzy set concepts for evaluating performance of constructed facilities. Journal of Performance of Constructed Facilities, 2(4), 209–225.  https://doi.org/10.1061/(ASCE)0887-3828(1988)2:4(209).CrossRefGoogle Scholar
  25. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2010). Multivariate data analysis. New Jersey: Prentice Hall Upper Saddle River.Google Scholar
  26. Hall, T., & Yago, G. (2000). Estimating the cost of opacity using sovereign bond spreads: Policy brief. California: Miliken Institute, April 3, 2000.Google Scholar
  27. Han, Z. (2011). The discursive construction of civil judgments in Mainland China. Discourse and Society, 22(6), 743–765.  https://doi.org/10.1177/0957926511419924.CrossRefGoogle Scholar
  28. Hsueh, P.-R., Graybill, J. R., Playford, E. G., Watcharananan, S. P., Oh, M.-D., Ja’alam, K., et al. (2009). Consensus statement on the management of invasive candidiasis in intensive care units in the Asia-Pacific region. International Journal of Antimicrobial Agents, 34(3), 205–209.  https://doi.org/10.1016/j.ijantimicag.2009.03.014.CrossRefGoogle Scholar
  29. Hwang, B.-G., Zhao, X., & Toh, L. P. (2014). Risk management in small construction projects in Singapore: Status, barriers and impact. International Journal of Project Management, 32(1), 116–124.  https://doi.org/10.1016/j.ijproman.2013.01.007.CrossRefGoogle Scholar
  30. Ika, L. A., Diallo, A., & Thuillier, D. (2012). Critical success factors for World Bank projects: An empirical investigation. International Journal of Project Management, 30(1), 105–116.  https://doi.org/10.1016/j.ijproman.2011.03.005.CrossRefGoogle Scholar
  31. Jain, A. K. (2001). Corruption: A review. Journal of Economic Surveys, 15(1), 71–116.CrossRefGoogle Scholar
  32. Kaufmann, D., Kraay, A., & Zoido-Lobatón, P. (1999). Aggregating governance indicators. Washington, D.C: The World Bank.Google Scholar
  33. Kenny, C. (2009). Transport construction, corruption and developing countries. Transport Reviews, 29(1), 21–41.CrossRefGoogle Scholar
  34. Kishore, V., Abraham, D. M., & Sinfield, J. V. (2011). Portfolio cash assessment using fuzzy systems theory. Journal of Construction Engineering and Management-Asce, 137(5), 333–343.  https://doi.org/10.1061/(asce)co.1943-7862.0000299.CrossRefGoogle Scholar
  35. Ko, K., & Samajdar, A. (2010). Evaluation of international corruption indexes: Should we believe them or not? Social Science Journal, 47(3), 508–540.  https://doi.org/10.1016/j.soscij.2010.03.001.CrossRefGoogle Scholar
  36. Lam, K.-C., Tao, R., & Lam, M. C.-K. (2010). A material supplier selection model for property developers using fuzzy principal component analysis. Automation in Construction, 19(5), 608–618.  https://doi.org/10.1016/j.autcon.2010.02.007.CrossRefGoogle Scholar
  37. Lambsdorff, J. G. (1998). Corruption in comparative perception. Economic Corruption, 65, 81–109.CrossRefGoogle Scholar
  38. Lancaster, T. D., & Montinola, G. R. (1997). Toward a methodology for the comparative study of political corruption. Crime, Law and Social Change, 27(3–4), 185–206.CrossRefGoogle Scholar
  39. Le, Y., Shan, M., Chan, A. P., & Hu, Y. (2014). Investigating the causal relationships between causes of and vulnerabilities to corruption in the Chinese public construction sector. Journal of Construction Engineering and Management, 140(9), 05014007.CrossRefGoogle Scholar
  40. Leon, C. J., Arana, J. E., & de Leon, J. (2013). Correcting for scale perception bias in measuring corruption: An application to Chile and Spain. Social Indicators Research, 114(3), 977–995.  https://doi.org/10.1007/s11205-012-0185-7.CrossRefGoogle Scholar
  41. Li, J., Moselhi, O., & Alkass, S. (2006). Forecasting project status by using fuzzy logic. Journal of Construction Engineering and Management, 132(11), 1193–1202.  https://doi.org/10.1061/(asce)0733-9364(2006)132:11(1193).CrossRefGoogle Scholar
  42. Ling, F. Y. Y., & Hoang, V. T. P. (2010). Political, economic, and legal risks faced in international projects: Case study of Vietnam. Journal of Professional Issues in Engineering Education and Practice, 136(3), 156–164.  https://doi.org/10.1061/(asce)ei.1943-5541.0000015.CrossRefGoogle Scholar
  43. Lorterapong, P., & Moselhi, O. (1996). Project-network analysis using fuzzy sets theory. Journal of Construction Engineering and Management, 122(4), 308–317.CrossRefGoogle Scholar
  44. Marquette, H. (2001). Corruption, democracy and the World Bank. Crime, Law and Social Change, 36(4), 395–407.CrossRefGoogle Scholar
  45. Mauro, P. (1995). Corruption and growth. The Quarterly Journal of Economics, 110(3), 681–712.CrossRefGoogle Scholar
  46. National Bureau of Statistics of China, N. (2012). China statistical yearbook, 2012. Retrieved from http://www.stats.gov.cn/tjsj/ndsj/2012/indexch.htm.
  47. Netemeyer, R. G., Bearden, W. O., & Sharma, S. E. (2003). Scaling procedures: Issues and applications. Sage.Google Scholar
  48. Nieto-Morote, A., & Ruz-Vila, F. (2011). A fuzzy approach to construction project risk assessment. International Journal of Project Management, 29(2), 220–231.  https://doi.org/10.1016/j.ijproman.2010.02.002.CrossRefGoogle Scholar
  49. Norušis, M. J. (2008). SPSS 16.0 advanced statistical procedures companion. New Jersey: Prentice Hall Higher Education.Google Scholar
  50. Ofori, G. (2000). Challenges of construction industries in developing countries: Lessons from various countries. In Proceedings of 2nd International Conference of CIB Task Group 29: Challenges Facing the Construction Industry in Developing Countries.Google Scholar
  51. Oxford Dictionaries, O. (2014). Definition of corruption in English. Retrieved from http://www.oxforddictionaries.com/definition/english/corruption?q=corruption.
  52. Sampford, C., Shacklock, A., Connors, C., & Galtung, F. (2006). Measuring corruption. Hampshire, England: Ashgate Publishing Ltd.Google Scholar
  53. Seligson, M. A. (2006). The measurement and impact of corruption victimization: Survey evidence from Latin America. World Development, 34(2), 381–404.  https://doi.org/10.1016/j.worlddev.2005.03.012.CrossRefGoogle Scholar
  54. Shaheen, A. A., Fayek, A. R., & Abourizk, S. M. (2007). Fuzzy numbers in cost range estimating. Journal of Construction Engineering and Management, 133(4), 325–334.  https://doi.org/10.1061/(ASCE)0733-9364(2007)133:4(325).CrossRefGoogle Scholar
  55. Shan, M., Chan, A. P. C., Le, Y., & Hu, Y. (2015). Investigating the effectiveness of response strategies for vulnerabilities to corruption in the chinese public construction sector. Science and Engineering Ethics, 21(3), 683–705.  https://doi.org/10.1007/s11948-014-9560-x.CrossRefGoogle Scholar
  56. Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). New York: McCraw-Hill.Google Scholar
  57. Sohail, M., & Cavill, S. (2008). Accountability to prevent corruption in construction projects. Journal of Construction Engineering and Management-Asce, 134(9), 729–738.  https://doi.org/10.1061/(asce)0733-9364(2008)134:9(729).CrossRefGoogle Scholar
  58. Svensson, J. (2005). Eight questions about corruption. Journal of Economic Perspectives, 19(3), 19–42.  https://doi.org/10.1257/089533005774357860.CrossRefGoogle Scholar
  59. Tabish, S., & Jha, K. N. (2011). Analyses and evaluation of irregularities in public procurement in India. Construction Management and Economics, 29(3), 261–274.CrossRefGoogle Scholar
  60. Tanzi, V. (1998). Corruption around the world: causes, consequences, scope, and cures. In IMF Staff Papers (Vol. 45, pp. 559–594).CrossRefGoogle Scholar
  61. Tanzi, V., & Davoodi, H. (1998). Corruption, public investment, and growth. In H. Shibata & T. Ihori (Eds.), (pp. 41–60). Japan: Springer.Google Scholar
  62. Transparency International, T. (1999). Bribe payers index 1999. Retrieved from https://www.transparency.org/research/bpi/bpi_1999/0.
  63. Transparency International, T. (2002). Bribe payers index 2002. Retrieved from https://www.transparency.org/research/bpi/bpi_2002/0.
  64. Transparency International, T. (2006). Bribe payers index 2006. Retrieved from https://www.transparency.org/research/bpi/bpi_2006/0.
  65. Transparency International, T. (2008). Bribe payers index 2008. Retrieved from https://www.transparency.org/research/bpi/bpi_2008/0.
  66. Transparency International, T. (2011). Bribe payers index 2011. Retrieved from https://www.transparency.org/research/bpi/bpi_2011/0.
  67. Xia, B., & Chan, A. P. C. (2012a). Identification of selection criteria for operational variations of the design-build system: A Delphi study in China. Journal of Civil Engineering and Management, 18(2), 173–183.  https://doi.org/10.3846/13923730.2012.657417.CrossRefGoogle Scholar
  68. Xia, B., & Chan, A. P. C. (2012b). Measuring complexity for building projects: A Delphi study. Engineering, Construction and Architectural Management, 19(1), 7–24.  https://doi.org/10.1108/09699981211192544.CrossRefGoogle Scholar
  69. Xia, B., Chan, A. P. C., & Yeung, J. F. Y. (2011). Developing a fuzzy multicriteria decision-making model for selecting Desing-Build operational variations. Journal of Construction Engineering and Management, 137(12), 1176–1184.CrossRefGoogle Scholar
  70. Xinhua Net, X. (2011). A total of 78 officials at the bureau level received disciplinary sanctions in the special campaign against corruption in construction. Retrieved from http://news.xinhuanet.com/lianzheng/2011-05/17/c_121426836.htm.
  71. Xinhua Net, X. (2013a). The trial result of Zhijun Liu: Death penalty, suspended for two years. Retrieved from http://news.xinhuanet.com/photo/2013-07/08/c_124973352.htm.
  72. Xinhua Net, X. (2013b). Xilai Bo was sentenced to lifetime in prison and political right deprived. Retrieved from http://news.xinhuanet.com/legal/2013-09/22/c_117449756.htm.
  73. Xu, Y., Yeung, J. F. Y., Chan, A. P. C., Chan, D. W. M., Wang, S. Q., & Ke, Y. (2010). Developing a risk assessment model for PPP projects in China—A fuzzy synthetic evaluation approach. Automation in Construction, 19(7), 929–943.  https://doi.org/10.1016/j.autcon.2010.06.006.CrossRefGoogle Scholar
  74. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.  https://doi.org/10.1016/S0019-9958(65)90241-X.CrossRefGoogle Scholar
  75. Zhao, X., Hwang, B.-G., & Low, S. P. (2013a). Developing fuzzy enterprise risk management maturity model for construction firms. Journal of Construction Engineering and Management, 139(9), 1179–1189.  https://doi.org/10.1061/(asce)co.1943-7862.0000712.CrossRefGoogle Scholar
  76. Zhao, X., Hwang, B. G., & Low, S. P. (2013b). Critical success factors for enterprise risk management in Chinese construction companies. Construction Management and Economics, 31(12), 1199–1214.  https://doi.org/10.1080/01446193.2013.867521.CrossRefGoogle Scholar
  77. Zhao, X., Hwang, B. G., & Yu, G. S. (2013c). Identifying the critical risks in underground rail international construction joint ventures: Case study of Singapore. International Journal of Project Management, 31(4), 554–566.  https://doi.org/10.1016/j.ijproman.2012.10.014.CrossRefGoogle Scholar
  78. Zhao, X., Hwang, B. G., & Low, S. P. (2014). Investigating enterprise risk management maturity in construction firms. Journal of Construction Engineering and Management, 140(8).  https://doi.org/10.1061/(asce)co.1943-7862.0000873.CrossRefGoogle Scholar
  79. Zhao, X., Hwang, B.-G., Low, S. P., & Wu, P. (2015). Reducing hindrances to enterprise risk management implementation in construction firms. Journal of Construction Engineering and Management, 141(3).  https://doi.org/10.1061/(asce)co.1943-7862.0000945.CrossRefGoogle Scholar
  80. Zimmermann, H. J. (2001). Fuzzy set theory and its applications. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Civil EngineeringCentral South UniversityChangshaChina
  2. 2.School of Economics and ManagementTongji UniversityShanghaiChina
  3. 3.Department of Building and Real EstateThe Hong Kong Polytechnic UniversityKowloonHong Kong
  4. 4.School of Economics and ManagementTongji UniversityShanghaiChina

Personalised recommendations