Advertisement

Bandwidth Enhancement with the Asymmetrical Bridged T-coil Network

  • Suhash Chandra Dutta RoyEmail author
Chapter

Abstract

This chapter presents the results of a theoretical investigation of the asymmetrical bridged T-coil (BTC) bandwidth enhancement network under the condition of maximally flat magnitude (MFM) response. Conventionally, the BTC is used in the symmetrical configuration and it is well known that, as compared to the commonly used RC load, the maximum bandwidth enhancement ratio (BWER) under the MFM condition is \( 2\sqrt 2 \). It is shown here that by introducing asymmetry, even under the constraint of MFM response, the maximum achievable BWER is theoretically unlimited, the limit being set only by practical considerations. Unlimited BWER has never been considered possible, even theoretically, with BTC or any other network, and the result reported here is believed to be a breakthrough in the design of wide-band and ultra wide-band amplifiers. Simulations for a few designs indicate that practical realization of the full potential of the asymmetrical BTC may have to wait for improved technologies which facilitate tight coupling between the two parts of the coil and also minimize parasitic effects.

Keywords

Bandwidth enhancement Bridged T-coil Maximally flat magnitude Wide-band amplifiers 

Notes

Acknowledgements

This work was supported by the Indian National Science Academy through the Honorary Scientist scheme. The author is thankful to Y. V. Joshi, S. K. Koul, R. Bhattacharya, and G. Chowdary for their help in preparing the manuscript.

References

  1. 1.
    P. Staric, An analysis of the tapped coil peaking circuit for wideband/-pulse amplifiers. Elektrotehniski Vestnik. 49, 66–79 (1982)Google Scholar
  2. 2.
    P. Staric, Three and four pole tapped coil circuits for wideband/-pulse amplifiers. Elektrotehniski Vestnik. 50, 129–137 (1983)Google Scholar
  3. 3.
    E.M. Chase, W. Kennan, A power distributed amplifier with constant-R network, in Proceedings of the IEEE GaAs IC Symposium, Genelefe, FL (1986), pp. 13–17Google Scholar
  4. 4.
    C. Hutchinson, W. Kennan, A low noise distributed amplifier with gain control, in Proceedings of the IEEE GaAs IC Symposium, Anaheim, CA (1987), pp. 119–122Google Scholar
  5. 5.
    D.L. Feucht, Handbook of Analog Circuit Design (Academic Press, San Diego, CA, 1990)Google Scholar
  6. 6.
    L. Selmi, D.B. Estreich, B. Ricco, Small-signal MMIC amplifier with bridged T-coil matching networks. IEEE J. Solid State Circuits 7, 1093–1096 (1992)CrossRefGoogle Scholar
  7. 7.
    J. Kim, J.-K. Kim, B.-J. Lee, M. S. Huang, H.-R. Lee, S.-H. Lee, N. Kim, D.-K. Jeong, W. Kim, Circuit techniques for a 40 Gb/s transmitter in 0.13 μm CMOS, in Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA (2005), pp. 150–151Google Scholar
  8. 8.
    S. Galal, B. Razavi, Broadband ESD protection circuits in CMOS technology, in Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA (2003), pp. 182–183Google Scholar
  9. 9.
    T. Toifl, M. Kossel, C. Menolfi, T. Morf, M. Schmatz, A 23 GHz differential amplifier with monolithically integrated T-coil in 0.09 μm CMOS technology, in IEEE Microwave Theory and Techniques Society Symposium, Philadelphia, PA (2003), pp. 239–242Google Scholar
  10. 10.
    S. Galal, B. Razavi, 10 Gb/s limiting amplifier and laser modulation driver in 0.18 μm CMOS technology. IEEE J. Solid State Circuits 38, 2334–2339 (2003)CrossRefGoogle Scholar
  11. 11.
    S. Galal, B. Razavi, Broadband ESD protection circuits in 0.18 mm CMOS technology. IEEE J. Solid State Circuits 38, 2138–2146 (2003)CrossRefGoogle Scholar
  12. 12.
    S. Galal, B. Razavi, 40 Gb/s amplifier and ESD protection circuit in 0.18 mm CMOS technology. IEEE J. Solid State Circuits 39, 2389–2396 (2004)CrossRefGoogle Scholar
  13. 13.
    T.H. Lee, Planar Microwave Engineering: A Practical Guide to Theory, Measurement and Circuits (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  14. 14.
    S. Shekhar, J.S. Walling, D.J. Allstot, Bandwidth extension techniques for CMOS amplifiers. IEEE J. Solid State Circuits 41, 2414–2439 (2005)Google Scholar
  15. 15.
    H. Zheng, S.Z. Lou, H.P. Leung, RF system architectures and circuit techniques for wide-band transceiver, in Proceedings of the IEEE International Workshop on Radio Frequency Integration Technology, Singapore (2005), pp. 30–37Google Scholar
  16. 16.
    J. Paramesh, D.J. Allstot, Analysis of the bridged T-coil circuit using the extra-element theorem. IEEE Trans. Circuits Syst. II Express Briefs 53, 1408–1412 (2006)CrossRefGoogle Scholar
  17. 17.
    S.C. Dutta Roy, Comments on ‘Analysis of the bridged T-coil circuit using the extra element theorem’. IEEE Trans. Circuits Syst. II Express Briefs 54, 673–674 (2007)CrossRefGoogle Scholar
  18. 18.
    M.T. Reiha, J.R. Long, Symmetrical monolithic T-coils for broadband IC design, in IEEE Microwave Theory and Techniques Society Symposium, Honolulu, HI (2007), pp. 1909–1911Google Scholar
  19. 19.
    E. Pillai, J. Wiess, Novel T-coil structures and implementation in a 6.4-Gb/s CMOS receiver to meet return loss specifications, in Proceedings of the IEEE Electronic Components and Technology Conference, Reno, NV (2007), pp. 147–153Google Scholar
  20. 20.
    D. Linton, S. Thijs, J. Borremans, M. Dehan, D. Tremouilles, M. Scholz, M. I. Natarajan, P. Wambacq, G. Groeseneken, T-diodes—a novel plug-and-play wideband RF circuit for ESD protection methodology, in Proceedings of the EOS/ESD Symposium, Anaheim, CA (2007), pp. 4A.1.1–4A.1.8Google Scholar
  21. 21.
    M. Kossel, C. Menolfi, J. Weiss, P. Buchmann, G.V. Bueren, L. Rodoni, T. Morf, T. Toifl, M. Schmatz, A T-coil enhanced 8.5 Gb/s high swing SST transmitter in 65 nm bulk CMOS with <−16 dB return loss over 10 GHz bandwidth. IEEE J. Solid State Circuits 43, 2905–2920 (2008)CrossRefGoogle Scholar
  22. 22.
    B.-J. Huang, C.-H. Wang, C.-C. Chen, M.-F. Leei, P.-C. Huang, K.-Y. Lin, H. Wang, Design of amplifier for a 60-GHz low-noise amplifier with RF ESD protection. IEEE Trans. Microw. Theory Tech. 57, 298–305 (2009)CrossRefGoogle Scholar
  23. 23.
    J. Kim, J.K. Kim, B.J. Lee, D.K. Jeong, Design optimization of on-chip inductive peaking structures for 0.13-μm CMOS 40-Gb/s transmitter circuits. IEEE Trans. Circuits Syst. I Regul. Papers 56, 2544–2555 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    S. Kim, S. Kim, G. Jung, K.-W. Kwm, J.-H. Chun, Design of a reliable broadband I/O employing T-coil. J. Semicond. Technol. Sci. 9, 198–204 (2009)CrossRefGoogle Scholar
  25. 25.
    S. Cao, J.H. Chun, S.G. Beebe, R.W. Dutton, ESD design strategies for high-speed digital and RF circuits in deeply scaled silicon technologies. IEEE Trans. Circuits Syst. I Regul. Papers 57, 2301–2310 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Y.-S. Lim, J.-H. Lee, Miniature ultra-wideband power divider using bridged T-coils. IEEE Microw. Wirel. Compon. Lett. 22, 391–393 (2012)CrossRefGoogle Scholar
  27. 27.
    Y.S. Lim, J.H. Lee, Miniature Butler matrix design using glass based passive device technology for 2.5-GHz application. IEEE Trans. Microw. Theory Tech. 61, 2590–2602 (2013)Google Scholar
  28. 28.
    W.-T. Fang, T.-H. Tseng, Y.-S. Lin, Miniature ultra-wideband bandpass filter using bridged T-coil. IEEE Microw. Wirel. Compon. Lett. 24, 367–369 (2014)CrossRefGoogle Scholar
  29. 29.
    T.-S. Hong, J.-M. Wu, L.-Q. Yang, S.-T. Fang, A novel modified T-equivalent circuit for modeling LTCC embedded inductors with a large bandwidth, in Proceedings of the IEEE Microwave Theory and Techniques Society Symposium, Philadelphia, PA (2003), pp. 1015–1018Google Scholar
  30. 30.
    H.-Y. Lin, J.-S. Fu, Analysis of magnetically coupled all-pass networks for phase-shifter design. IEEE Trans. Microw. Theory Tech. 62, 2625–2637 (2014)Google Scholar
  31. 31.
    T. True, Bridged-T termination network. U.S. Patent 3, 155, 927 (1964)Google Scholar
  32. 32.
    F.A. Muller, High frequency compensation of RC amplifiers. Proc. IRE 43, 1271–1276 (1954)CrossRefGoogle Scholar
  33. 33.
    R.D. Middlebrook, Null double injection and the extra-element theorem. IEEE Trans. Educ. 32, 167–189 (1989)CrossRefGoogle Scholar
  34. 34.
    M.E. Van Valkenburg, Introduction to Modern Network Synthesis (Wiley, New York, 1960)Google Scholar
  35. 35.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)zbMATHGoogle Scholar
  36. 36.
    S.C. Dutta Roy, On the solution of quartic and cubic equations. IETE J. Educ. 47, 91–95 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations