Analysis on Transient Thermal Behaviors of the Novel Vapor Chamber

  • Yao Chen
  • Yaping ZhangEmail author
  • Pei Wang
  • Yongxin Guo
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


A heat pipe substrate module diffused heat by phase change was designed, and transient thermal properties of the vapor chamber were analyzed. The time of the vapor chamber to get steady-state mainly depends on the heat transfer coefficient. As the heat transfer coefficient increases, the time to reach steady state is shorter. Reducing the temperature drop of the vapor chamber core portion can effectively improve thermal performance for the vapor chamber. The transient temperature rise of vapor chamber tube core is smaller than that of the pure copper substrate module and the air heat pipe substrate module with fixed thermal resistance, it is beneficial to overcome the power “swell” and improve thermal shock resistance of the power device. The thermal resistance of the heat sink accounts for more than 70% of the thermal resistance of the entire heat dissipation module. The transient thermal performance of the vapor chamber and the power module integrated packaged can ensure thermal diffusion efficient and smooth operation.


Vapor chamber Thermal performance Transient behaviors Substrate 



The project is supported by the National Natural Science Foundation of China (Grant No. 51504188).


  1. 1.
    Zhu, K., et al.: Experimental study of energy saving performances in chip cooling by using heat sink with embedded heat pipe. Energy Procedia 105, 5160–5165 (2017)CrossRefGoogle Scholar
  2. 2.
    Jaroslaw, L., et al.: Measurements and simulations of transient characteristics of heat pipes. Microelectron. Reliab. 46, 109–115 (2006)CrossRefGoogle Scholar
  3. 3.
    Kim, K.S., et al.: Heat pipe cooling technology for desktop PC CPU. Appl. Therm. Eng. 23(9), 1137–1144 (2003)CrossRefGoogle Scholar
  4. 4.
    Guo, L.: Development of heat dissipation in electronics components. Cryog. Supercond. 42(2), 62–66 (2014)Google Scholar
  5. 5.
    Zhang, M., Liu, Z.L., Wang, C.: The integrated design of heat pipe spreader and heat sink. J. Eng. Thermophys. 31(5), 853–856 (2010)Google Scholar
  6. 6.
    Zhang, L.H., et al.: Thermal characteristic of a novel flat plate heat pipe for hybrid integrated power electronic module. Acat Electronica Sin. 37(8), 1848–1853 (2009)Google Scholar
  7. 7.
    Chen, T.S., Chen, K.H., Wang, C.: A simplified transient three-dimensional model for estimating the thermal performance of the vapor chambers. Appl. Therm. Eng. 26, 2087–2094 (2006)CrossRefGoogle Scholar
  8. 8.
    Rahman, M.L., et al.: Effect of fin and insert on the performance characteristics of close loop pulsating heat pipe (CLPHP). Procardia Eng. 05, 129–136 (2015)CrossRefGoogle Scholar
  9. 9.
    Tran, T., et al.: Experimental investigation on the feasibility of heat pipe cooling. Appl. Therm. Eng. 63(2), 551–558 (2014)CrossRefGoogle Scholar
  10. 10.
    Take, K., Webb, L.R.: Thermal performance of integrated plate heat pipe with a heat spreader. J. Electron. Packag. 123 (2001)CrossRefGoogle Scholar
  11. 11.
    Sauciuc, I., Chrysler, G., Mahajan, R., Prasher, R.: Spreading in the heat sink base: phase change systems or solid metals. IEEE Trans. Compon. Packag. Technol. 25 (2008)CrossRefGoogle Scholar
  12. 12.
    Wei, J., Cha, A., Copeland, D.: Measurement of vapor chamber performance. In: IEEE, Semi-Therm Symposium (2013)Google Scholar
  13. 13.
    Ivanova, M., Avenas, Y., et al.: Heat pipe integrated in direct bonded copper technology for cooling of power electronics packaging. IEEE Trans. Power Electron. 21(6) (2016)Google Scholar
  14. 14.
    Gao, M., Cao, Y.: Flat and U-shaped heat spreaders for high-power electronics. Heat Transfer Eng. 24(3), 57–65 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Xi’an University of Science and TechnologyXi’anChina

Personalised recommendations