Advertisement

Pharmacogenomics and Phytochemicals

  • Madhumita Roy
  • Amitava Datta
Chapter

Abstract

It is well known for a long time that the same drugs have different efficacy in different patients due to variations in metabolism of the drugs. One of the reasons for these variations is the differences in genetic makeup of individuals. There may be variations in key inherited genes through germline cells from parents due to differences in copy numbers, variations due to single nucleotide polymorphism, or presence of different alleles of the same gene. There may also be variations in genetic makeup of somatic cells due to mutations in diseases like cancer. It is important to personalize medicines considering these genetic variations in individuals in order to decide on appropriate dosage for better outcome in treatment and also to reduce side effects of drugs. We have discussed the details of pharmacogenomics both due to genetic variations in germline cells and somatic cells. In particular we have discussed the effects of such genetic variations in cancer and how phytochemicals can mitigate the effects of some of these variations in cancer.

References

  1. 1.
    J. Baillargeon, H. Holmes, Y. Lin, M.A. Raji, G. Sharma, Y.F. Kuo, Concurrent use of warfarin and antibiotics and the risk of bleeding in older adults. Am. J. Med. 125(2), 183–189 (2012)CrossRefGoogle Scholar
  2. 2.
    S. Bak, F. Beisson, G. Bishop, B. Hamberger, R. Höfer, S. Paquette, D. Werck-Reichhart, Cytochromes p450. Arabidopsis Book. 9, e0144 (2011)CrossRefGoogle Scholar
  3. 3.
    P. Chatterjee, M.R. Franklin, Human cytochrome p450 inhibition and metabolic-intermediate complex formation by goldenseal extract and its methylenedioxyphenyl components. Drug Metab. Dispos. 31(11), 1391–1397 (2003)CrossRefGoogle Scholar
  4. 4.
    M.A. Correia, P.R. Sinclair, F. De Matteis, Cytochrome P450 regulation: The interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal. Drug Metab. Rev. 43(1), 1–26 (2010)CrossRefGoogle Scholar
  5. 5.
    M.F. Crader, J.K. Arnold, Warfarin drug interactions. [Updated 2019 Jan 17], in StatPearls [Internet], (Treasure Island, StatPearls Publishing, 2012).; 2019 Jan–. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441964/ Google Scholar
  6. 6.
    A.K. Daly, Pharmacogenetics: A general review on progress to date. Br. Med. Bull. 124, 65–79 (2017)PubMedGoogle Scholar
  7. 7.
    L. Dean, Warfarin therapy and the genotypes CYP2C9 and VKORC1, medical genetics summaries, in Medical Genetics Summaries [Internet], ed. by V. Pratt, H. McLeod, L. Dean, et al., (National Center for Biotechnology Information (US), Bethesda, 2012)Google Scholar
  8. 8.
    T. Efferth, S. Kahl, K. Paulus, M. Adams, R. Rauh, H. Boechzelt, X. Hao, B. KAina, R. Bauer, Phytochemistry and pharmacogenomics of natural products derived from traditional Chinese medicine and chinese materia medica with activity against tumor cells. Mol. Cancer Ther. 7(1), 152 (2008)CrossRefGoogle Scholar
  9. 9.
    T. Efferth, M. Saeed, E. Mirghani, A. Alim, Z. Yassin, E. Saeed, H.E. Khalid, S. Daak, Integration of phytochemicals and phytotherapy into cancer precision medicine. Oncotarget 8(30), 50284–50304 (2017)CrossRefGoogle Scholar
  10. 10.
    R. Fagard, V. Metelev, I. Souissi, F. Baran-Marszak, STAT3 inhibitors for cancer therapy: Have all roads been explored? JAKSTAT 2(1), e22882 (2013)PubMedPubMedCentralGoogle Scholar
  11. 11.
    K. Fujita, Y. Sasaki, Pharmacogenomics in drug-metabolizing enzymes catalyzing anticancer drugs for personalized cancer chemotherapy. Curr. Drug Metab. 8(6), 554–562 (2007)CrossRefGoogle Scholar
  12. 12.
    K. Fujita, Y. Kubota, H. Ishida, Y. Sasaki, Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J. Gastroenterol. 21(43), 12234–12248 (2015)CrossRefGoogle Scholar
  13. 13.
    K.M. Giakomini, C.M. Brett, R.B. Altman, N.L. Benowitz, M.E. Dolan, D.A. Flockhart, J.A. Johnson, D.F. Hayes, T. Klein, R.M. Krauss, D.L. Kroetz, H.L. McLeod, A.T. Nguyen, M.J. Ratain, M.V. Relling, V. Reus, D.M. Roden, C.A. Schaefer, A.R. Shuldiner, T. Skaar, K. Tantisira, R.F. Tyndale, L. Wang, R.M. Weinshilboum, S.T. Weiss, I. Zineh, The Pharmacogenetics research network: From SNP discovery to clinical drug response. Clin. Pharmacol. Ther. 81(3), 328–345 (2007)CrossRefGoogle Scholar
  14. 14.
    F.J. Gonzalez, H.V. Gelboin, Human cytochromes P450: Evolution and cDNA-directed expression. Environ. Health Perspect. 98, 81–85 (1992)CrossRefGoogle Scholar
  15. 15.
    D. Gurwitz, M.M. Hopkins, S. Gaisser, D. Ibarreta, Pharmacogenetics in Europe: Barriers and opportunities. Public Health Genomics 12, 134–141 (2009)CrossRefGoogle Scholar
  16. 16.
    O. Hankinson, The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol. 35, 307–340 (1995)CrossRefGoogle Scholar
  17. 17.
    I. Hanukoglu, Electron transfer proteins of cytochrome P450 systems. Physiological functions of cytochrome P450 in relation to structure and regulation. Adv. Mol. Cell Biol. 14, 29–56 (1996)CrossRefGoogle Scholar
  18. 18.
    J.A. Hasler, R. Estabrook, M. Murray, I. Pikuleva, M. Waterman, J. Capdevila, V. Holla, C. Helvig, J.R. Falck, G. Farrell, L.S. Kaminsky, S.D. Spivack, E. Boitier, P. Beaune, Human cytochromes P450. Mol. Asp. Med. 20(1–2), 1–137 (1999)CrossRefGoogle Scholar
  19. 19.
    D.M. Hyman, B.S. Taylor, J. Baselga, Implementing genome-driven oncology. Cell 168(4), 584–599 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Ingelman-Sundberg, C. Rodriguez-Antona, Pharmacogenetics of drug-metabolizing enzymes: Implications for a safer and more effective drug therapy. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 360(1460), 1563–1570 (2005)CrossRefGoogle Scholar
  21. 21.
    M. Ingelman-Sundberg, Pharmacogenetics of cytochrome P450 and its applications in drug therapy: The past, present and future. Trends Pharmacol. Sci. 25(4), 193–200 (2004)CrossRefGoogle Scholar
  22. 22.
    C. Kearon, E.A. Akl, A.J. Comerota, P. Prandoni, H. Bounameaux, S.Z. Goldhaber, M.E. Nelson, P.S. Wells, M.K. Gould, F. Dentali, M. Crowther, S.R. Kahn, Antithrombotic therapy for VTE disease: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141(2 Suppl), e419S–e496S (2012)CrossRefGoogle Scholar
  23. 23.
    D. Lee, C. Szumlanski, J. Houtman, R. Honchel, K. Rojas, J. Overhauser, E.D. Wieben, R.M. Weinshilboum, Thiopurine methyltransferase pharmacogenetics. Cloning of human liver cDNA and a processed pseudogene on human chromosome 18q21.1. Drug Metab. Dispos. 23(3), 398–405 (1995)PubMedGoogle Scholar
  24. 24.
    W. Lee, A.C. Lockhart, R.B. Kim, M.L. Rothenberg, Cancer pharmacogenomics: Powerful tools in cancer chemotherapy and drug development. Oncologist 10, 104–111 (2005)CrossRefGoogle Scholar
  25. 25.
    X. Li, F.M. Lian, D. Guo, L. Fan, J. Tang, J.-B. Peng, H.-W. Deng, Z.-Q. Liu, X. Xiao, Y. Wang, K. Qu, S. Deng, Q. Zhong, Y. Sha, Y. Zhu, Y. Bai, X. Chen, Q. Zhou, H. Zhou, X. Tong, W. Zhang, The rs1142345 in TPMT affects the therapeutic effect of traditional hypoglycemic herbs in Prediabetes. Evid. Based Complement. Alternat. Med. 2013, 327629 (2013). 8 pagesPubMedPubMedCentralGoogle Scholar
  26. 26.
    N.A. Limdi, D.L. Veenstra, Warfarin Pharmacogenetics. Pharmacotherapy 28(9), 1084–1097 (2008)CrossRefGoogle Scholar
  27. 27.
    M.Z. Liu, Y.L. Zhang, M.Z. Zeng, F.Z. He, Z.Y. Luo, J.Q. Luo, J.G. Wen, X.P. Chen, H.H. Zhou, W. Zhang, Pharmacogenomics and herb-drug interactions: Merge of future and tradition. Evid. Based Complement. Alternat. Med. 2015, 321091 (2015). 8 pagesPubMedPubMedCentralGoogle Scholar
  28. 28.
    D.Y. Lu, T.R. Lu, B. Xu, J. Ding, Pharmacogenetics of cancer therapy: Breakthroughs from beyond? Future Sci. OA 1(4), FSO80 (2015)CrossRefGoogle Scholar
  29. 29.
    M.H. Manjili, Therapeutic cancer vaccines. J. Clin. Cell Immunol. 2, e101 (2011)CrossRefGoogle Scholar
  30. 30.
    M.C. McFadyen, W.T. Melvin, G.I. Murray, Cytochrome P450 enzymes: Novel options for cancer therapeutics. Mol. Cancer Ther. 3, 363–371 (2004)PubMedGoogle Scholar
  31. 31.
    R. Nagasubramanian, F. Innocenti, M.J. Ratain, Pharmacogenetics in cancer treatment review of medicine. Annu. Rev. Med. 54(1), 437–452 (2003)CrossRefGoogle Scholar
  32. 32.
    D.W. Nebert, D.W. Russell, Clinical importance of the cytochromes P450. Lancet 360(9340), 1155–1162 (2002)CrossRefGoogle Scholar
  33. 33.
    H. Omote, M.K. Al-Shawi, Interaction of transported drugs with the lipid bilayer and P-glycoprotein through a solvation exchange mechanism. Biophys. J. 90(11), 4046–4059 (2006)CrossRefGoogle Scholar
  34. 34.
    R.P. Owen, L. Gong, H. Sagreiya, T.E. Klein, R.B. Altman, VKORC1 pharmacogenomics summary. Pharmacogenet. Genomics 20(10), 642–644 (2010)CrossRefGoogle Scholar
  35. 35.
    R.P. Owen, K. Sangkuhl, T.E. Klein, R.B. Altman, Cytochrome P450 2D6. Pharmacogenet. Genomics 19(7), 559–562 (2009)CrossRefGoogle Scholar
  36. 36.
    T. Oyama, N. Kagawa, N. Kunugita, K. Kitagawa, M. Ogawa, T. Yamaguchi, R. Suzuki, T. Kinaga, Y. Yashima, S. Ozaki, T. Isse, Y.D. Kim, H. Kim, T. Kawamoto, Expression of cytochrome P450 in tumor tissues and its association with cancer development. Front. Biosci. 9, 1967–1976 (2004)CrossRefGoogle Scholar
  37. 37.
    S.C. Preissner, M.F. Hoffmann, R. Preissner, M. Dunkel, A. Gewiess, S. Preissner, Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One 8(12), e82562 (2013)CrossRefGoogle Scholar
  38. 38.
    M. Rooseboom, J.N. Commandeur, N.P. Vermeulen, Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol. Rev. 56(1), 53–102 (2004)CrossRefGoogle Scholar
  39. 39.
    R.I. Shorr, W.A. Ray, J.R. Daugherty, M.R. Griffin, Concurrent use of non-steroidal anti-inflammatory drugs and oral anticoagulants places elderly persons at risk for hemorrhagic peptic ulcer disease. Arch. Intern. Med. 153, 1665–1670 (1993)CrossRefGoogle Scholar
  40. 40.
    S.-H. Yang, C.-L. Yu, H.-Y. Chen, Y.-H. Lin, A commonly used Chinese herbal formula, Shu-Jing-Hwo-Shiee-Tang, potentiates anticoagulant activity of warfarin in a rabbit model. Molecules 18, 11712–11723 (2013)CrossRefGoogle Scholar
  41. 41.
    S.C. Sim, C. Risinger, M.L. Dahl, E. Aklillu, M. Christensen, L. Bertilsson, M. Ingelman-Sundberg, A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin. Pharmacol. Ther. 79, 103–113 (2006)CrossRefGoogle Scholar
  42. 42.
    C.Y. Tan, R. Suzuki, T. Haga, F. Iwata, T. Nagamune, Immobilization of a bacterial cytochrome P450 Monooxygenase system on a solid support. Angew. Chem. Int. Ed. 55(48), 15002–15006 (2016)CrossRefGoogle Scholar
  43. 43.
    N.E. Thomford, K. Dzobo, D. Chopera, A. Wonkam, M. Skelton, D. Blackhurst, S. Chirikure, C. Dandara, Pharmacogenomics implications of using herbal medicinal plants on African populations in health transition. Pharmaceuticals 8, 637–663 (2015)CrossRefGoogle Scholar
  44. 44.
    N. Toomula, K. Hima Bindu, D. Sathish Kumar, R. Arun Kumar, Pharmacogenomics- personalized treatment of Cancer, diabetes and cardiovascular diseases. J Pharmacogenom Pharmacoproteomics 3, 1 (2012)CrossRefGoogle Scholar
  45. 45.
    D. Urbančiča, A. Kotar, A. Šmid, M. Jukič, S. Gobec, L.G. Mårtensson, J. Plavec, I. Mlinarič-Raščan, Methylation of selenocysteine catalysed by thiopurine S-methyltransferase. Biochim. Biophys. Acta 1863(1), 182–190 (2019)CrossRefGoogle Scholar
  46. 46.
    M.M. Valenzuela, J.W. Neidigh, N.R. Wall, Antimetabolite treatment for pancreatic cancer. Chemotherapy (Los Angel). 3(3), 137 (2014)PubMedPubMedCentralGoogle Scholar
  47. 47.
    H.A. Weber, M.K. Zart, A.E. Hodges, H.M. Molloy, B.M. O’Brien, L.A. Moody, A.P. Clark, R.K. Harris, J.D. Overstreet, C.S. Smith, Chemical comparison of goldenseal (Hydrastis canadensis L.) root powder from three commercial suppliers. J. Agric. Food Chem. 51(25), 7352–7358 (2003)CrossRefGoogle Scholar
  48. 48.
    M.T. Whitstock, C.M. Pearce, E.J. Eckermann, Randomised controlled trials and ‘unexpected’ adverse events associated with newly released drugs: Improvements in Pharmacovigilance systems are necessary for real-time identification of patient safety risks. J. Clin. Toxicol. S2, 001 (2011)Google Scholar
  49. 49.
    A.L. Wong, J. Hirpara, S. Pervaiz, J.-Q. Eu, G. Sethi, B.C. Goh, Do STAT3 inhibitors have potential in the future for cancer therapy? Expert Opin. Investig. Drugs 26(8), 883–887 (2017)CrossRefGoogle Scholar
  50. 50.
    A.L. Wong, R.A. Soo, D.S. Tan, S.C. Lee, J.S. Lim, P.C. Marban, L.R. Kong, Y.J. Lee, L.Z. Wang, W.L. Thuya, R. Soong, M.Q. Yee, T.M. Chin, M.T. Cordero, B.R. Asuncion, B. Pang, S. Pervaiz, J.L. Hirpara, A. Sinha, W.W. Xu, M. Yuasa, T. Tsunoda, M. Motoyama, T. Yamauchi, B.C. Goh, Phase I and biomarker study of OPB-51602, a novel signal transducer and activator of transcription (STAT) 3 inhibitor, in patients with refractory solid malignancies. Ann. Oncol. 26, 998–1005 (2015)CrossRefGoogle Scholar
  51. 51.
    M. Yamamura, M. Yamamoto, Tumor metastasis and the fibrinolytic system. Gan to Kagaku Ryoho. Cancer Chemother. 16(4 Pt 2–1), 1246–1254 (1989)Google Scholar
  52. 52.
    B. Yu, S.A. O’Toole, R.J. Trent, Somatic DNA mutation analysis in targeted therapy of solid tumors. Translat. Pediatr. 4(2), 125–138 (2015)Google Scholar
  53. 53.
    H.Y. Yuan, J.J. Chen, M.T. Lee, J.C. Wung, Y.F. Chen, M.J. Charng, M.J. Lu, C.R. Hung, C.Y. Wei, C.H. Chen, J.Y. Wu, Y.T. Chen, A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum. Mol. Genet. 14(13), 1745–1751 (2005)CrossRefGoogle Scholar
  54. 55.
    U.M. Zanger, M. Schwab, Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138, 103–141 (2013)CrossRefGoogle Scholar
  55. 56.
    G. Zaza, M. Cheok, W. Yang, J.C. Panetta, C.-H. Pui, M. Relling, W.E. Evans, Gene expression and thioguanine nucleotide disposition in acute lymphoblastic leukemia after in vivo mercaptopurine treatment. Blood 106, 1778–1785 (2005)CrossRefGoogle Scholar
  56. 57.
    K. Zeratsky, Grapefruit juice: Can it cause drug interactions? Ask a food & nutrition specialist. MayoClinic.com. Retrieved 2009-02-09 (2008)

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Madhumita Roy
    • 1
  • Amitava Datta
    • 2
  1. 1.Environmental Carcinogenesis and ToxicologyChittaranjan National Cancer InstituteKolkataIndia
  2. 2.Department of Computer Science and Software EngineeringThe University of Western AustraliaPerthAustralia

Personalised recommendations