Advertisement

Cancer: Genetics and Important Pathways

  • Madhumita Roy
  • Amitava Datta
Chapter

Abstract

We have seen in Chap.  1 that all the hallmarks of cancer are related to molecular mechanisms in cells, driven by expression levels of key genes. Moreover, these genes are many times connected through genetic pathways. We have discussed the apoptosis pathway in Chap.  1. We start this chapter with a review of the fundamental concepts in genetics and molecular biology. We then discuss the genetic landscape of cancer. It is a complex problem to implicate specific genes for particular types of cancer, and our understanding is evolving all the time. We discuss the current understanding of the genetic landscapes for several important types of cancer. Finally we discuss some of the important pathways involved in cancer.

References

  1. 1.
    B. Alberts, A.D. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 6th edn. (Garland Science, New York, 2015)Google Scholar
  2. 2.
    B. Vogelstein, N. Papadopoulos, V.E. Velculescu, S. Zhou, L.A. Diaz Jr., K.W. Kinzler, Cancer genome landscapes. Science 339, 1546–1558 (2013)CrossRefGoogle Scholar
  3. 3.
    P.J. Stephens et al., The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403), 400–404 (2012).  https://doi.org/10.1038/nature11017 CrossRefGoogle Scholar
  4. 4.
    US National Library of Medicine, Genetics Home Reference, https://ghr.nlm.nih.gov/gene
  5. 5.
    NCBI gene resources, https://www.ncbi.nlm.nih.gov/gene
  6. 6.
    D. Huang et al., Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 37, 173–187 (2018)CrossRefGoogle Scholar
  7. 7.
    X. Wang et al., The molecular landscape of synchronous colorectal cancer reveals genetic heterogeneity. Carcinogenesis 39(5), 708–718 (2018)CrossRefGoogle Scholar
  8. 8.
    X. Li et al., Genomic analysis of liver cancer unveils novel driver genes and distinct prognostic features. Theranostics 8(6), 1740–1751 (2018)CrossRefGoogle Scholar
  9. 9.
    E.A. Semenova, R. Nagel, A. Berns, Origins, genetic landscape, and emerging therapies for small cell lung cancer. Genes Dev. 29, 1447–1462 (2015)CrossRefGoogle Scholar
  10. 10.
    L. Jiang et al., Genomic landscape survey identifies SRSF1 as a key oncodriver in small cell lung cancer. PLOS Genet. (2016).  https://doi.org/10.1371/journal.pgen.1005895 CrossRefGoogle Scholar
  11. 11.
    R. Govindan et al., Genomic landscape of non-small cell lung cancer in smokers and never smokers. Cell 150(6), 1121–1134 (2012). https://doi.org/10.1016/j.cell.2012.08.024 CrossRefGoogle Scholar
  12. 12.
    L. Ding et al., Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008)CrossRefGoogle Scholar
  13. 13.
    N. Hayward et al., Whole-genome landscapes of major melanoma subtypes. Nature 545, 175–180 (2017).  https://doi.org/10.1038/nature22071 CrossRefGoogle Scholar
  14. 14.
    E. Hodis et al., A landscape of driver mutations in melanoma. Cell 150(2), 251–263 (2012). https://doi.org/10.1016/j.cell.2012.06.024 CrossRefGoogle Scholar
  15. 15.
    N. Waddell et al., Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518(7540), 495–501 (2015).  https://doi.org/10.1038/nature14169 CrossRefGoogle Scholar
  16. 16.
    M.F. Berger et al., Melanoma genome sequencing reveals frequent PLEX2 mutations. Nature 485, 502–206 (2012).  https://doi.org/10.1038/nature11071 CrossRefGoogle Scholar
  17. 17.
    A. Ojesina et al., Landscape of genomic alterations in cervical carcinomas. Nature 506(7488), 371–375 (2014).  https://doi.org/10.1038/nature12881 CrossRefGoogle Scholar
  18. 18.
    B. Vogelstein, K.W. Kinzler, Nat. Med. 10, 789–799 (2004)CrossRefGoogle Scholar
  19. 19.
    O. Dreesen, A.H. Brivanlou, Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 3(1), 7–17 (2007)CrossRefGoogle Scholar
  20. 20.
    A. Weiss, L. Attisano, The TGFbeta superfamily signaling pathway. WIREs Dev. Biol. 2, 47–63 (2013).  https://doi.org/10.1002/wdev.86 CrossRefGoogle Scholar
  21. 21.
    R. Sever, J.S. Brugge, Signal transduction in cancer. Cold Spring Harb. Perspect. Med. 5, 1006098 (2015).  https://doi.org/10.1101/cshperspect.a006098 CrossRefGoogle Scholar
  22. 22.
    J. Messagué, TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012)CrossRefGoogle Scholar
  23. 23.
    F. Verrecchia, A. Mauviel, Transforming growth factor-β signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J. Invest. Darmatol. 118(2), 211–215 (2002)CrossRefGoogle Scholar
  24. 24.
    Y. Xia, S. Shen, I.M. Verma, NF-κB, and active player in human cancers. Cancer Immunol. Res. 2(9), 823–830 (2014)CrossRefGoogle Scholar
  25. 25.
    T. Żhan, N. Rindtorff, M. Boutros, Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017)CrossRefGoogle Scholar
  26. 26.
    W. Zhang, H.T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12(1), 9–18 (2002)CrossRefGoogle Scholar
  27. 27.
    B.A. Hemmings, D.F. Restuccia, PI3K-PKB/AKT pathway. Cold Spring Harb. Perspect. Biol. 4, a011189 (2012)CrossRefGoogle Scholar
  28. 28.
    J.S.L. Yu, W. Cui, Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signaling in pluripotency and cell fate determination. Development 143, 3050–3060 (2016)CrossRefGoogle Scholar
  29. 29.
    J.Ć. Haan et al., Genomic landscape of metastatic colorectal cancer. Nat. Commun. 5, 5457 (2014).  https://doi.org/10.1038/ncomms6457 CrossRefGoogle Scholar
  30. 30.
    N. Hama et al., Epigenetic landscape influences the liver cancer genomic architecture. Nat. Commun. 9, 1643 (2018). https://doi.org/10.1038/s41467-018-03999-y CrossRefGoogle Scholar
  31. 31.
    S.M. Hong et al., Molecular signatures of pancreatic cancer. Arch. Pathol. Lab. Med. 135(6), 716–727 (2011)PubMedPubMedCentralGoogle Scholar
  32. 32.
    S. Li, H.M. Lu, M.H. Black, The current genetic landscape of triple-negative breast cancer. J. Lab. Precis. Med. 3, 94 (2018)CrossRefGoogle Scholar
  33. 33.
    R. Nahar et al., Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing. Nat. Commun. 9, 216 (2018). https://doi.org/10.1038/s41467-017-02584-z CrossRefGoogle Scholar
  34. 34.
    S. Nik-Zainal et al., Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016).  https://doi.org/10.1038/nature17676 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Madhumita Roy
    • 1
  • Amitava Datta
    • 2
  1. 1.Environmental Carcinogenesis and ToxicologyChittaranjan National Cancer InstituteKolkataIndia
  2. 2.Department of Computer Science and Software EngineeringThe University of Western AustraliaPerthAustralia

Personalised recommendations