Advertisement

The Delayed van der Pol Oscillator and Energy Harvesting

  • Zakaria Ghouli
  • Mustapha Hamdi
  • Mohamed BelhaqEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 228)

Abstract

In the first part of the chapter, we present some results on quasi-periodic (QP) vibration-based energy harvesting (EH) in a delayed van der Pol oscillator with modulated delay amplitude. Two examples are considered which include a delayed van der Pol harvester coupled either to a delayed or undelayed electromagnetic sub- system. The influence of delay parameters on the performance of the harvester has been examined. It is shown that a maximum amplitude of the response does not induce necessarily a maximum output power. In the second part, we investigate QP vibration-based EH in the case where the van der Pol oscillator is subjected to external harmonic excitation and coupled to a delayed piezoelectric component. Perturbation method is applied near a resonance to obtain approximation of the periodic and QP responses as well as the amplitude of the harvested powers. To guarantee the robustness of the QP vibration during energy extraction operation, a stability anal- ysis is performed and the QP stability chart is determined. Results show that in the presence of time delay in the electrical circuit of the excited van der Pol oscillator, it is possible to harvest energy from QP vibrations with a good performance over a broadband of system parameters away from the resonance. Numerical simulations are conducted to support the analytical predictions.

Keywords

Energy harvesting Van der Pol oscillator Quasi-periodic vibrations Delayed piezoelectric coupling 

References

  1. 1.
    N.G. Stephen, On energy harvesting from ambient vibration. J. Sound Vib. 293, 409–425 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    G.A. Lesieutre, G.K. Ottman, H.F. Hofmann, Damping as a result of piezoelectric energy harvesting. J. Sound Vib. 269, 991–1001 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    H.A. Sodano, D.J. Inman, G. Park, Generation and storage of electricity from power harvesting devices. J. Intell. Mater. Syst. 16, 67–75 (2005)CrossRefGoogle Scholar
  4. 4.
    H.A. Sodano, D.J. Inman, G. Park, Comparison of piezoelectric energy harvesting devices for recharging batteries. J. Intell. Mater. Syst. 16, 799–807 (2005)CrossRefGoogle Scholar
  5. 5.
    D.D. Quinn, A.L. Triplett, A.F. Vakakis, L.A. Bergman, Energy harvesting from impulsive loads using intestinal essential nonlinearities. J. Vib. Acoust. 133, 011004 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Abdelkefi, A.H. Nayfeh, M.R. Hajj, Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn. 67, 925–939 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Abdelkefi, A.H. Nayfeh, M.R. Hajj, Design of piezoaeroelastic energy harvesters. Nonlinear Dyn. 68, 519–530 (2012)CrossRefGoogle Scholar
  8. 8.
    B.P. Mann, N.D. Sims, Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    A. Bibo, M.F. Daqaq, Energy harvesting under combined aerodynamic and base excitations. J. Sound Vib. 332, 5086–5102 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    M. Hamdi, M. Belhaq, Quasi-periodic vibrations in a delayed van der Pol oscillator with time-periodic delay amplitude. J. Vib. Control (2015).  https://doi.org/10.1177/1077546315597821CrossRefGoogle Scholar
  11. 11.
    M. Belhaq, M. Hamdi, Energy harversting from quasi-periodic vibrations. Nonlinear Dyn. 86, 2193–2205 (2016)CrossRefGoogle Scholar
  12. 12.
    Z. Ghouli, M. Hamdi, F. Lakrad, M. Belhaq, Quasiperiodic energy harvesting in a forced and delayed Duffing harvester device. J. Sound Vib. 407, 271–285 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Ghouli, M. Hamdi, M. Belhaq, Energy harvesting from quasi-periodic vibrations using electromagnetic coupling with delay. Nonlinear Dyn. 89, 1625–1636 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Belhaq, Z. Ghouli, M. Hamdi, Energy harvesting in a Mathieu-van der Pol-Duffing MEMS device using time delay. Nonlinear Dyn. 94, 2537–2546 (2018)CrossRefGoogle Scholar
  15. 15.
    Z. Ghouli, M. Hamdi, M. Belhaq, Improving energy harvesting in excited Duffing harvester device using a delayed piezoelectric coupling, in MATEC Web of Conferences, vol. 241 (2018), pp. 01010CrossRefGoogle Scholar
  16. 16.
    I. Kirrou, A. Bichri, M. Belhaq, Energy harvesting in a delayed Rayleigh harvester device, in MATEC Web of Conferences, vol. 241 (2018), pp. 01026CrossRefGoogle Scholar
  17. 17.
    G. Stepan, T. Kalmr-Nagy, Nonlinear regenerative machine tool vibrations, in Proceedings of the 1997 ASME Design Engineering Technical Conferences, 16th ASME Biennial Conference on Mechanical Vibration and Noise (Sacramento, 1997), DETC97/VIB-4021 (1997), pp. 1–11Google Scholar
  18. 18.
    T. Kalmr-Nagy, G. Stepan, F.C. Moon, Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dyn. 26, 121–142 (2001)Google Scholar
  19. 19.
    R. Rusinek, A. Weremczuk, J. Warminski, Regenerative model of cutting process with nonlinear Duffing oscillator. Mech. Mech. Eng. 15, 129–143 (2011)Google Scholar
  20. 20.
    A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, 1979)zbMATHGoogle Scholar
  21. 21.
    L.E. Shampine, S. Thompson, Solving delay differential equations with dde23 (2000). http://www.radford.edu/~thompson/webddes/tutorial.pdf
  22. 22.
    M. Belhaq, M. Houssni, Quasi-periodic oscillations, chaos and suppression of chaos in a nonlinear oscillator driven by parametric and external excitations. Nonlinear Dyn. 18, 1–24 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zakaria Ghouli
    • 1
  • Mustapha Hamdi
    • 2
  • Mohamed Belhaq
    • 1
    Email author
  1. 1.Faculty of Sciences Ain ChockUniversity Hassan II CasablancaCasablancaMorocco
  2. 2.University Mohammed I Oujda, FST-Al HoceimaAl-HoceimaMorocco

Personalised recommendations