Advertisement

Dynamics Analysis and Control of the Malkus-Lorenz Waterwheel with Parametric Errors

  • Angelo M. TussetEmail author
  • Jose M. Balthazar
  • Mauricio A. Ribeiro
  • Wagner B. Lenz
  • Thiago C. L. Marsola
  • Mateus F. V. Pereira
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 228)

Abstract

This work presents a dynamical analysis for the Malkus-Lorenz waterwheel, a physical system that behaves following the Lorenz equations. With this, two types of controllers were designed to control the system presenting chaotic behavior. The first controller is the time-delay feedback control (TDFC), and the second one is the State-Dependent Riccati Equation control (SDRE). The control strategy for the SDRE control involves the application of two signals: a nonlinear feedforward signal to maintain the controlled system in a periodic orbit, and a feedback signal, to take the system trajectory into the desired periodic orbit. Numerical simulations demonstrated the effectiveness of the control strategy in taking the system presenting chaotic behavior into a desired periodic orbit. In addition, the SDRE control robustness is investigated analyzing parametric errors in control loop.

Keywords

Time delay feedback control SDRE control Malkus-Lorenz waterwheel 

References

  1. 1.
    L.E. Matson, The Malkus-Lorenz water wheel revisited. Am. J. Phys. 75(12), 1114–1122 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors (Springer, New York, 1982), Chapter 1 and Appendix BGoogle Scholar
  3. 3.
    S.H. Strogatz, Nonlinear Dynamics and Chaos Perseus Books (Cambridge, MA, 1994)Google Scholar
  4. 4.
    J.L. Tylee, Chaos in a real system. Simulation 64(3), 176–183 (1995)CrossRefGoogle Scholar
  5. 5.
    F. Gassmann, Noise-induced chaos-order transitions. Phys. Rev. E 55, 2215–2221 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    K. Pyragas, Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    P.C. Mracek, J.R. Cloutier, Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method. Int. J. Robust Nonlinear Control, 401–433 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    H.T. Banks, B.M. Lewis, H.T. Tran, Nonlinear feedback controllers and compensators: a state-dependent Riccati equation approach. Comput. Optim. Appl. 177–218 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    A.M. Tusset, V. Piccirillo, A.M. Bueno, J.M. Balthazar, D. Sado, J.L.P. Felix, R.M.L.R.F. Brasil, Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. J. Vib. Control (22), 3621–3637 (2016)Google Scholar
  10. 10.
    A.M. Tusset, F.C. Janzen, R.T. Rocha, J.M. Balthazar, On an optimal control applied in MEMS oscillator with chaotic behavior including fractional order. Complexity 1–12 (2018)Google Scholar
  11. 11.
    N.J. Peruzzi, F.R. Chavarette, J.M. Balthazar, A.M. Tusset, A.L.P.M. Perticarrari, R.M.F.L. Brasil, The dynamic behavior of a parametrically excited time-periodic MEMS taking into account parametric errors. J. Vib. Control 22, 4101–4110 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Federal University of Technology—ParanáPonta GrossaBrazil

Personalised recommendations