Advertisement

Enabling Bioeconomy with Offshore Macroalgae Biorefineries

  • Alexander Golberg
  • Meiron Zollmann
  • Meghanath Prabhu
  • Ruslana Rachel Palatnik
Chapter

Abstract

The bioeconomy provides a possible solution for the increasing demand on natural resources by substitution of the nonrenewable resources with resources derived from biomass, thus reducing the environmental impact of fossil fuels. A fundamental unit that will enable the bioeconomy implementation is biorefinery. The bioeconomy is a collective term for the complex system that includes biomass production, transportation, conversion into products, and product distribution. In this chapter, we introduce the concept of offshore marine biorefineries as potential drivers for the bioeconomy of the future. We discuss fundamental thermodynamics principles that determine the optimum scale of biorefineries and put the limit for the services area for a single-processing unit. We provide a review of the current methods to produce biomass offshore. Next, we exemplify the marine biorefineries, which show co-production of several products from the same biomass, thus reducing the waste and maximizing economic benefit from the unit. In addition, we discuss the economic and environmental challenges of marine biorefineries as an emerging platform for society transition to low-carbon economy.

Keywords

Biorefineries Bioeconomy Green technology Renewable energy Biofuel Biomass 

Notes

Acknowledgments

The authors thank the Israel Ministry of Energy, Israel Ministry of Science and Technology, and Israel Innovation Authority for the support.

References

  1. Abraham RE, Su P, Puri M, Raston CL, Zhang W (2019) Optimisation of biorefinery production of alginate, fucoidan and laminarin from brown seaweed Durvillaea Potatorum. Algal Res 38:101389CrossRefGoogle Scholar
  2. Aitken D, Bulboa C, Godoy-Faundez A, Turrion-Gomez JL, Antizar-Ladislao B (2014) Life cycle assessment of macroalgae cultivation and processing for biofuel production. J Clean Prod 75:45–56CrossRefGoogle Scholar
  3. Alvarado-Morales M, Boldrin A, Karakashev DB, Holdt SL, Angelidaki I, Astrup T (2013) Life cycle assessment of biofuel production from brown seaweed in nordic conditions. Bioresour Technol 129:92–99CrossRefGoogle Scholar
  4. Alvarado-Morales M, Gunnarsson IB, Fotidis IA, Vasilakou E, Lyberatos G, Angelidaki I (2015) Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal Res 9:126–132CrossRefGoogle Scholar
  5. Ashkenazi DY, Israel A, Abelson A (2019) A novel two-stage seaweed integrated multi-trophic aquaculture. Rev Aquac 11:246–262CrossRefGoogle Scholar
  6. Baghel RS, Trivedi N, Reddy CRK (2016) A simple process for recovery of a stream of products from marine macroalgal biomass. Bioresour Technol 2016(203):160–165CrossRefGoogle Scholar
  7. Balina K, Romagnoli F, Blumberga D (2017) Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia 128:504–511CrossRefGoogle Scholar
  8. Ben Yahmed N, Jmel MA, Ben Alaya M, Bouallagui H, Marzouki MN, Smaali I (2016) A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas. Energy Convers Manag 119:257–265CrossRefGoogle Scholar
  9. Bentsen NS, Felby C (2012) Biomass for energy in the European Union – a review of bioenergy resource assessments. Biotechnol Biofuels 5(1):25CrossRefGoogle Scholar
  10. Bikker P, Krimpen MM, Wikselaar P, Houweling-Tan B, Scaccia N, Hal JW, Huijgen WJJ, Cone JW, López-Contreras AM, van Krimpen MM et al (2016a) Biorefinery of the green seaweed Ulva Lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol 28:3511–3525CrossRefGoogle Scholar
  11. Bikker P, van Krimpen MM, van Wikselaar P, Houweling-Tan B, Scaccia N, van Hal JW, Huijgen WJJ, Cone JW, Lopez-Contreras AM (2016b) Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol 28:1–15CrossRefGoogle Scholar
  12. Bikker P, van Krimpen MMM, van Wikselaar P, Houweling-Tan B, Scaccia N, van Hal JWW, Huijgen WJ, Cone JWW, López-Contreras AM, Scaccia NazarenoScaccia N et al (2016c) Biorefinery of the green seaweed Ulva Lactuca to produce animal feed. Chem Biofuels 28:1–15Google Scholar
  13. Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Soon Lee T, Tullman-Ercek D, Voigt CA, Simmons BA et al (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia Coli. Proc Natl Acad Sci 108:19949–19954CrossRefGoogle Scholar
  14. Brown TR (2015) A techno-economic review of thermochemical cellulosic biofuel pathways. Bioresour Technol 178:166–176CrossRefGoogle Scholar
  15. Buck BH, Buchholz CM (2004) The offshore-ring: a new system design for the open ocean aquaculture of macroalgae. J Appl Phycol 16(5):355–368CrossRefGoogle Scholar
  16. Buck BH, Buchholz CM (2005) Response of offshore cultivated Laminaria saccharina to hydrodynamic forcing in the North Sea. Aquaculture 250(3–4):674–691CrossRefGoogle Scholar
  17. Buck BH, Krause G, Rosenthal H (2004) Extensive open ocean aquaculture development within wind farms in Germany: the prospect of offshore co-management and legal constraints. Ocean Coast Manag 47(3–4):95–122CrossRefGoogle Scholar
  18. Buck BH, Krause G, Michler-Cieluch T, Brenner M, Buchholz CM, Busch JA, Fisch R, Geisen M, Zielinski O (2008) Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms. Helgol Mar Res 62(3):269–281CrossRefGoogle Scholar
  19. Buschmann AH, Camus C, Infante J, Neori A, Israel Á, Hernández-González MC, Pereda SV, Gomez-Pinchetti JL, Golberg A, Tadmor-Shalev N et al (2017) Seaweed production: overview of the global state of exploitation, farming and emerging research activity seaweed production. Eur J Phycol 52:391CrossRefGoogle Scholar
  20. Chandra R, Iqbal HMN, Vishal G, Lee H-S, Nagra S (2019) Algal biorefinery: a sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour Technol 278:346–359. No. November 2018CrossRefGoogle Scholar
  21. Chemodanov A, Robin A, Golberg A (2017a) Design of marine macroalgae photobioreactor integrated into building to support seagriculture for biorefinery and bioeconomy. Bioresour Technol 241:1084–1093CrossRefGoogle Scholar
  22. Chemodanov A, Jinjikhashvily G, Habiby O, Liberzon A, Israel A, Yakhini Z, Golberg A (2017b) Net primary productivity, biofuel production and CO2 emissions reduction potential of Ulva Sp. (Chlorophyta) biomass in a coastal area of the Eastern Mediterranean. Energy Convers Manag 148:1497–1507Google Scholar
  23. Czyrnek-Delêtre MM, Rocca S, Agostini A, Giuntoli J, Murphy JD (2017) Life cycle assessment of seaweed biomethane, generated from seaweed sourced from integrated multi-trophic aquaculture in temperate oceanic climates. Appl Energy 196:34–50CrossRefGoogle Scholar
  24. De Jong E, Jungmeier G (2015) Bioreenery concepts in comparison to petrochemical Reeneries. In: Industrial Biorefineries White Biotechnol, pp 3–33CrossRefGoogle Scholar
  25. De Jong E, Higson A, Walsh P, Wellisch M (2012) Product developments in the bio-based chemicals arena. Biofuels Bioprod Biorefin 6(6):606–624CrossRefGoogle Scholar
  26. Drimer N (2019) First principle approach to the design of an open sea aquaculture system. Ships Offshore Struc.  https://doi.org/10.1080/17445302.2016.1213491CrossRefGoogle Scholar
  27. Druehl LD, Baird R, Lindwall A, Lloyd KE, Pakula S (1988) Longline cultivation of some laminariaceae in British Columbia, Canada. Aquac Fish Manag 19:253–263Google Scholar
  28. Du X, Lu L, Reardon T, Zilberman D (2016) Economics of agricultural supply chain design: a portfolio selection approach. Am J Agric Econ 98:1377–1388CrossRefGoogle Scholar
  29. Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32CrossRefGoogle Scholar
  30. Enquist-Newman M, Faust AME, Bravo DD, Santos CNS, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR et al (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505(7482):239–243CrossRefGoogle Scholar
  31. Eswaran K, Ghosh PK, Siddhanta AK, Patolia JS, Periyasamy C, Mehta AS, Mody KH, Ramavat BK, Prasad K, Rajyaguru MR (2005) Integrated method for production of carrageenan and liquid fertilizer from fresh seaweeds. US Patent 6,893,479Google Scholar
  32. Feinberg D, Hock S (1985) Technical and economic evaluation of macroalgae cultivation for fuel production (draft). NREL Report. https://www.nrel.gov/docs/legosti/old/2685.pdf
  33. Fernand F, Israel A, Skjermo J, Wichard T, Timmermans KR, Golberg A (2017) Offshore macroalgae biomass for bioenergy production: environmental aspects, technological achievements and challenges. Renew Sust Energ Rev 75:35–45CrossRefGoogle Scholar
  34. Gajaria TK, Suthar P, Baghel RS, Balar NB, Sharnagat P, Mantri VA, Reddy CRK (2017) Integration of protein extraction with a stream of byproducts from marine macroalgae: a model forms the basis for marine bioeconomy. Bioresour Technol 243:867–873CrossRefGoogle Scholar
  35. Ghaderi H, Pishvaee MS, Moini A (2016) Biomass supply chain network design: an optimization-oriented review and analysis. Ind Crop Prod 94:972–1000CrossRefGoogle Scholar
  36. Glasson CRK, Sims IM, Carnachan SM, de Nys R, Magnusson M (2017) A cascading biorefinery process targeting sulfated polysaccharides (Ulvan) from Ulva Ohnoi. Algal Res 27:383–391CrossRefGoogle Scholar
  37. Golberg A, Liberzon A (2015) Modeling of smart mixing regimes to improve marine biorefinery productivity and energy efficiency. Algal Res 11:28–32CrossRefGoogle Scholar
  38. Golden JS, Handfield RB, Daystar J, McConnell TE (2015) An economic impact analysis of the us biobased products industry: a report to the congress of the United States of America. Ind Biotechnol 11(4):201–209CrossRefGoogle Scholar
  39. Haberl H, Erb K-H, Krausmann F, Bondeau A, Lauk C, Müller C, Plutzar C, Steinberger JK (2011) Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields. Biomass Bioenergy 35(12):4753–4769CrossRefGoogle Scholar
  40. Hanisak M (1987) Cultivation of Gracilaria and other macroalgae in Florida for energy production. Dev Aquac Fish Sci:191–218Google Scholar
  41. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784CrossRefGoogle Scholar
  42. Holt TJ (1984) The development of techniques for the cultivation of Laminariales in the Irish Sea. Ph.D, University of Liverpool, p 266Google Scholar
  43. Hughes AD, Kelly MS, Black KD, Stanley MS (2012) Biogas from macroalgae: is it time to revisit the Idea? Biotechnol Biofuels 5(1):86CrossRefGoogle Scholar
  44. Ingle K, Vitkin E, Robin A, Yakhini Z, Mishori D, Golberg A (2017) Macroalgae biorefinery from Kappaphycus Alvarezii: conversion Modeling and performance prediction for India and Philippines as examples. Bio Energy Res:1–11Google Scholar
  45. International Energy Agency (2011) World energy outlookGoogle Scholar
  46. Jung KAA, Lim S-RR, Kim Y, Park JMM (2013) Potentials of Macroalgae as Feedstocks for Biorefinery. Bioresour Technol 135:182–190CrossRefGoogle Scholar
  47. Keasling JD, Chou H (2008) Metabolic engineering delivers next-generation biofuels. Nat Biotechnol 26:298–299CrossRefGoogle Scholar
  48. Keswani C, Singh SP (eds) (2019) Intellectual property issues in microbiology. Springer, Singapore. 425 pages, ISBN:9789811374654Google Scholar
  49. Korzen L, Abelson A, Israel A (2015a) Growth, protein and carbohydrate contents in Ulva rigida and gracilaria bursa-pastoris integrated with an offshore fish farm. J Appl Phycol 23:543–597Google Scholar
  50. Korzen L, Peled Y, Shamir SZ, Shechter M, Gedanken A, Abelson A, Israel A (2015b) An economic analysis of bioethanol production from the marine Macroalga Ulva (Chlorophyta). Technology 03(02n03):114–118CrossRefGoogle Scholar
  51. Korzen L, Pulidindi IN, Israel A, Abelson A, Gedanken A (2015c) Marine integrated culture of carbohydrate rich Ulva rigida for enhanced production of bioethanol. RSC Adv 5(73):59251–59256CrossRefGoogle Scholar
  52. Kostas ET, White DA, Cook DJ (2017) Development of a bio-refinery process for the production of speciality chemical, biofuel and bioactive compounds from Laminaria digitata. Algal Res 28(May):211–219CrossRefGoogle Scholar
  53. Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Chang 18(1):27–46. http://www.ask-force.org/web/Global-Warming/Kraan-Mass-cultivation-carbyhodrate-Macroalgae-2013.pdfCrossRefGoogle Scholar
  54. Kraan S, Guiry MD (2001) Phase II: strain hybridisation field experiments and genetic fingerprinting of the edible brown seaweed Alaria Esculenta 18(18)Google Scholar
  55. Kumar S, Sahoo D (2017) A comprehensive analysis of alginate content and biochemical composition of leftover pulp from brown seaweed Sargassum wightii. Algal Res 23:233–239CrossRefGoogle Scholar
  56. Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC (2013) Bioethanol production from Gracilaria Verrucosa, a Red Alga, in a biorefinery approach. Bioresour Technol 135:150–156CrossRefGoogle Scholar
  57. Langlois J, Sassi J-F, Jard G, Steyer J-P, Delgenes J-P, Hélias A (2012) Life cycle assessment of biomethane from offshore-cultivated seaweed. Biofuels Bioprod Biorefin 6(4):387–404CrossRefGoogle Scholar
  58. Laurens LML, Chen-Glasser M, McMillan JD (2017) A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal Res 24(March):261–264CrossRefGoogle Scholar
  59. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563CrossRefGoogle Scholar
  60. Lehahn Y, Ingle KN, Golberg A (2016) Global potential of offshore and shallow waters macroalgal biorefineries to provide for food, chemicals and energy: feasibility and sustainability. Algal Res 17:150–160CrossRefGoogle Scholar
  61. Lirasan T, Twide P (1993) Fourteenth international seaweed symposium. In: Chapman ARO, Brown MT, Lahaye M (eds) Fourteenth international seaweed symposium developments in hydrobiology, vol 85. Springer, Dordrecht, pp 353–355CrossRefGoogle Scholar
  62. Liu D, Keesing JK, Xing Q, Shi P (2009) World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar Pollut Bull 58(6):888–895CrossRefGoogle Scholar
  63. Liu D, Keesing JK, Dong Z, Zhen Y, Di B, Shi Y, Fearns P, Shi P (2010) Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra Yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar Pollut Bull 60(9):1423–1432CrossRefGoogle Scholar
  64. Magnusson M, Carl C, Mata L, de Nys R, Paul NA (2016) Seaweed salt from Ulva: a novel first step in a cascading biorefinery model. Algal Res 16:308–316CrossRefGoogle Scholar
  65. Marinho GS, Alvarado-Morales M, Angelidaki I (2016) Valorization of macroalga Saccharina latissima as novel feedstock for fermentation-based succinic acid production in a biorefinery approach and economic aspects. Algal Res 16:102–109CrossRefGoogle Scholar
  66. Mhatre A, Gore S, Mhatre A, Trivedi N, Sharma M, Pandit R, Anil A, Lali A (2018) Effect of multiple product extractions on bio-methane potential of marine macrophytic green alga Ulva lactuca. Renew Energy 132:742–751CrossRefGoogle Scholar
  67. Milledge JJ, Nielsen BV, Bailey D (2016) High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum Muticum. Rev Environ Sci Biotechnol 15(1):67–88CrossRefGoogle Scholar
  68. Möller B, Hong L, Lonsing R, Hvelplund F (2012) Evaluation of offshore wind resources by scale of development. Energy 48(1):314–322CrossRefGoogle Scholar
  69. Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shpigel M, Yarish C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231:361–391CrossRefGoogle Scholar
  70. Notoya M (2010) Production of biofuel by macroalgae with preservation of marine resources and environment. Springer, Dordrecht, pp 217–228Google Scholar
  71. Nunes N, Ferraz S, Valente S, Barreto MC, Pinheiro de Carvalho MAA (2017) Biochemical composition, nutritional value, and antioxidant properties of seven seaweed species from the Madeira archipelago. J Appl Phycol 29(5):2427–2437CrossRefGoogle Scholar
  72. Olanrewaju SO, Magee A, Kader ASA, Tee KF (2017) Simulation of offshore aquaculture system for macro algae (seaweed) oceanic farming. Ships and Offshore Structures 12(4):553–562CrossRefGoogle Scholar
  73. Palatnik RR, Zilberman D (2017) Economics of natural resource utilization – the case of macroalgae. In: Pinto A, Zilberman D (eds) Modeling, dynamics, optimization and bioeconomics II. Springer, pp 1–21Google Scholar
  74. Park JH, Yoon JJ, Park HD, Lim DJ, Kim SH (2012) Anaerobic digestibility of algal bioethanol residue. Bioresour Technol 113:78–82CrossRefGoogle Scholar
  75. Patarra RF, Paiva L, Neto AI, Lima E, Baptista J (2011) Nutritional value of selected macroalgae. J Appl Phycol 23(2):205–208CrossRefGoogle Scholar
  76. Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483CrossRefGoogle Scholar
  77. Peteiro C, Freire Ó (2012) Outplanting time and methodologies related to mariculture of the edible Kelp Undaria Pinnatifida in the Atlantic Coast of Spain. J Appl Phycol 24:1361–1372CrossRefGoogle Scholar
  78. Peteiro C, Sánchez N, Dueñas-Liaño C, Martínez B (2014) Open-sea cultivation by transplanting young Fronds of the Kelp Saccharina Latissima. J Appl Phycol 26:519–528CrossRefGoogle Scholar
  79. Pezoa-Conte R, Leyton A, Anugwom I, von Schoultz S, Paranko J, Mäki-Arvela P, Willför S et al (2015) Deconstruction of the green alga Ulva Rigida in ionic liquids: closing the mass balance. Algal Res 12:262–273. ElsevierCrossRefGoogle Scholar
  80. Pimentel D (2012) Global economic and environmental aspects of biofuels. CRC Press, Boca RatonCrossRefGoogle Scholar
  81. Pimentel M, Pimentel MH (2008) Food, energy, and society. CRC Press, Boca RatonGoogle Scholar
  82. Postma PR, Cerezo-Chinarro O, Akkerman RJ, Olivieri G, Wijffels RH, Brandenburg WA, Eppink MHM (2017) Biorefinery of the macroalgae Ulva Lactuca: extraction of proteins and carbohydrates by mild disintegration. J Appl Phycol:1–13Google Scholar
  83. Potts T, Du J, Paul M, May P, Beitle R, Hestekin J (2012) The production of butanol from Jamaica Bay macro algae. Environ Prog Sustain Energy 31:29–36CrossRefGoogle Scholar
  84. Prabhu M, Chemodanov A, Gottlieb R, Kazir M, Nahor O, Gozin M, Israel A, Livney YD, Golberg A (2019) Starch from the sea: the green macroalga Ulva ohnoi as a potential source for sustainable starch production in the marine biorefinery. Algal Res 37:215–227CrossRefGoogle Scholar
  85. Reith JH, Deurwaarder EP, Hemmes K, Biomassa E, Curvers APWM, Windenergie E (2005) BIO-OFFSHORE Grootschalige Teelt van Zeewieren in Combinatie Met Offshore Windparken in de Noordzee. https://library.wur.nl/WebQuery/wurpubs/347698Google Scholar
  86. Ricardo R, Neori A, Valderrama D, Reddy CRK, Cronin H, Forster J (2015) Farming of seaweeds. In: Seaweed sustainability. Elsevier, pp 27–57Google Scholar
  87. Roels OA, Laurence S, Vanhemelryck L (1979) The utilization of cold, nutrient-rich deep ocean water for energy and mariculture. Ocean Manag 5:199–210CrossRefGoogle Scholar
  88. Roesijadi AG, Copping A, Huesemann M (2008) Techno-economic feasibility analysis of offshore seaweed farming for bioenergy and biobased products. https://arpa-e.energy.gov/sites/default/files/Techno-Economic%20Feasibility%20Analysis%20of%20Offshore%20Seaweed%20Farming%20for%20Bioenergy%20and%20Biobased%20Products-2008.pdfGoogle Scholar
  89. Roesijadi G, Jones SBB, Snowden-Swan LJ, Zhu Y (2010, September) Macroalgae as a biomass feedstock: a preliminary analysis. Dep. Energy under Contract DE-AC05-76RL01830 by Pacific Northwest Natl. Lab, pp 1–50. http://sailing-sea-farm.com/onewebmedia/PNNL-19944.pdf
  90. Sahoo D, Kumar S, Elangbam G, Devi SS (2012) Biofuel production from algae through integrated biorefinery. Sci Algal Fuels 25:215–230CrossRefGoogle Scholar
  91. Sanderson JC, Dring MJ, Davidson K, Kelly M, Culture S (2012) Yield and bioremediation potential of Palmaria Palmata (Linnaeus) Weber & Mohr and Saccharina Latissima (Linnaeus) C.E. Lane, C. Mayes, Druehl & G.W. Saunders adjacent to fish farm cages in Northwest Scotland. Aquaculture 354–355:128–135CrossRefGoogle Scholar
  92. Seghetta M, Hou X, Bastianoni S, Bjerre A-B, Thomsen M (2016a) Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers – a step towards a regenerative bioeconomy. J Clean Prod 137:1158–1169CrossRefGoogle Scholar
  93. Seghetta M, Marchi M, Thomsen M, Bjerre AB, Bastianoni S (2016b) Modelling biogenic carbon flow in a macroalgal biorefinery system. Algal Res 18:144–155CrossRefGoogle Scholar
  94. Seghetta M, Romeo D, D’Este M, Alvarado-Morales M, Angelidaki I, Bastianoni S, Thomsen M (2017) Seaweed as innovative feedstock for energy and feed – evaluating the impacts through a life cycle assessment. J Clean Prod 150:1–15CrossRefGoogle Scholar
  95. Singh HB, Jha A, Keswani C (eds) (2016) Intellectual property issues in biotechnology. CABI, Wallingford. 304 pages, ISBN-13:9781780646534Google Scholar
  96. Star-coliBRi (2011) European biorefinery joint strategic research roadmap for 2020. https://cordis.europa.eu/project/rcn/93170/reporting/enGoogle Scholar
  97. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562CrossRefGoogle Scholar
  98. Stichnothe H, Meier D, de Bari I (2016) Biorefineries: industry status and economics. Dev Glob Bioeconomy:41–67. https://rdm.pure.elsevier.com/it/publications/biorefineries-industry-status-and-economics
  99. Suutari M, Leskinen E, Fagerstedt K, Kuparinen J, Kuuppo P, Blomster J (2015) Macroalgae in biofuel production. Phycol Res 63(1):1–18CrossRefGoogle Scholar
  100. Szetela EJ, Krascella NL, Blecher WA, Christopher GL (1976) Evaluation of a marine energy farm concept. Am Chem Soc, Div Fuel Chem, Prepr.; (United States) 19:4Google Scholar
  101. Taheripour F, Hertel TW, Tyner WE, Beckman JF, Birur DK (2010) Biofuels and their by-products: global economic and environmental implications. Biomass Bioenergy 34:278–289CrossRefGoogle Scholar
  102. Trivedi N, Baghel RS, Bothwell J, Gupta V, Reddy CRK, Lali AM, Jha B (2016) An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Sci Rep 6:30728CrossRefGoogle Scholar
  103. Troell M, Joyce A, Chopin T, Neori A, Buschmann AH, Fang JG (2009) Ecological engineering in aquaculture – potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297(1–4):1–9CrossRefGoogle Scholar
  104. Valderrama D, Cai J, Hishamunda N, Ridler N, Neish IC, Hurtado AQ, Msuya FE, Krishnan M, Narayanakumar R, Kronen M et al (2015) The economics of kappaphycus seaweed cultivation in developing countries: a comparative analysis of farming systems. Aquac Econ Manag 19(2):251–277CrossRefGoogle Scholar
  105. van den Burg S, Stuiver M, Veenstra F, Bikker P, López Contreras A, Palstra A, Broeze J, Jansen H, Jak R, Gerritsen A, et al (2013) A triple P review of the feasibility of sustainable offshore seaweed production in the North Sea. https://library.wur.nl/WebQuery/wurpubs/442638Google Scholar
  106. van der Wal H, Sperber BLHMHM, Houweling-Tan B, Bakker RRCC, Brandenburg W, López-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva Lactuca. Bioresour Technol 128:431–437CrossRefGoogle Scholar
  107. Van Hal JW, Huijgen WJJ, López-Contreras AM (2014) Opportunities and challenges for seaweed in the biobased economy. Trends Biotechnol 32:231–233CrossRefGoogle Scholar
  108. van Oirschot R, Thomas J-BE, Gröndahl F, Fortuin KPJ, Brandenburg W, Potting J (2017) Explorative environmental life cycle assessment for system design of seaweed cultivation and drying. Algal Res 27:43–54CrossRefGoogle Scholar
  109. Wahlström N, Harrysson H, Undeland I, Edlund U (2018) A strategy for the sequential recovery of biomacromolecules from Red Macroalgae Porphyra Umbilicalis Kützing. Ind Eng Chem Res 57(1):42–53CrossRefGoogle Scholar
  110. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB et al (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313CrossRefGoogle Scholar
  111. Wei N, Quarterman J, Jin Y-S (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31(2):70–77CrossRefGoogle Scholar
  112. Xie EY, Liu DC, Jia C, Chen XL, Yang B (2013) Artificial seed production and cultivation of the edible brown alga Sargassum Naozhouense Tseng et Lu. J Appl Phycol 25(2):513–522CrossRefGoogle Scholar
  113. Yokoyama S, Jonouchi K, Imou K (2007) Energy production from marine biomass : fuel cell power generation driven by methane produced from seaweed. Int J Marine Environ Sci 1(4):320–323Google Scholar
  114. Yuan Y, Macquarrie DJ (2015) Microwave Assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept. Bioresour Technol 198:819–827CrossRefGoogle Scholar
  115. Zhang H, Liu Q, Cao Y, Feng X, Zheng Y, Zou H, Liu H, Yang J, Xian M (2014) Microbial production of sabinene–a new terpene-based precursor of advanced biofuel. Microb Cell Factories 13:20CrossRefGoogle Scholar
  116. Zilberman D, Lu L, Reardon T (2019) Innovation-induced food supply chain design. Food Policy, Elsevier 83(C):289–297CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Alexander Golberg
    • 1
  • Meiron Zollmann
    • 1
  • Meghanath Prabhu
    • 1
  • Ruslana Rachel Palatnik
    • 2
    • 3
  1. 1.Porter School of Environment and Earth SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Economics and Management, and SEED – the Sustainable Economic and Environmental Development Research CenterThe Max Stern Yezreel Valley CollegeAfula and NazarethIsrael
  3. 3.NRERC- Natural Resource and Environmental Research CenterUniversity of HaifaHaifaIsrael

Personalised recommendations