Advertisement

Oxa- and Azacycle-Formation via Migrative Cyclization of Sulfonylalkynol and Sulfonylalkynamide

  • Yinli WangEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter described how NHC promotes cyclization of sulfonylalkynols and sulfonylalkynamides in an a4 Umpolung-type bond formation process that accompanied 1,2-migration of the sulfonyl groups. This reaction provides a novel access to oxa- and azacycles possessing a pendant vinyl sulfone functionality, which in turn is amenable to further transformations. During research on this migrative cyclization, mechanism studies indicated that nucleophiles other than NHCs might also induce this transformation. Further investigations showed that a catalytic amount of phosphine or 4-(N,N-dimethylamino)pyridine (DMAP) also promoted migrative cyclization in an a4 Umpolung manner similarly. Furthermore, asymmetric induction was observed when a chiral DMAP derivative was used in the reaction.

Keywords

a4 Umpolung Sulfonylalkynol Sulfonylalkynamide Migrative cyclization Heterocycle formation 

References

  1. 1.
    Oxacycles: (a) Elliott MC, Williams E (2001) Saturated oxygen heterocycles. J Chem Soc Perkin Trans 1:2303–2340. (b) Elliott MC (2000) Saturated oxygen heterocycles. J Chem Soc Perkin Trans 1:1291–1318. (c) Alali FQ, Liu XX, McLaughlin JL (1999) Annonaceous acetogenins: recent progress. J Nat Prod 62:504–540. (d) Boivin TLB (1987) Synthetic routes to tetrahydrofuran, tetrahydropyran, and spiroketal units of polyether antibiotics and a survey of spiroketals of other natural products. Tetrahedron 43:3309–3362. Azacycles: (e) Michael JP (2001) Indolizidine and quinolizidine alkaloids. Nat Prod Rep 18:520–542. (f) Mitchinson A, Nadin A (2000) Saturated nitrogen heterocycles. J Chem Soc Perkin Trans 1:2862–2892. (g) O’Hagan D (2000) Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Nat Prod Rep 17:435–446. (h) Liddell JR (1998) Pyrrolizidine alkaloids. Nat Prod Rep 15:363–370 Google Scholar
  2. 2.
    Our previous reports on development of a methodology using an NHC: (a) Kang B, Wang Y, Ref S, Yamaoka Y, Takasu K, Yamada K (2017) Site-selective benzoin-type cyclization of unsymmetrical dialdoses catalyzed by N-heterocyclic carbenes for divergent cyclitol synthesis. Chem Commun 53:4469–4472. (b) Kang B, Sutou T, Wang Y, Kuwano S, Yamaoka Y, Takasu K, Yamada K (2015) N‐Heterocyclic Carbene‐Catalyzed Benzoin Strategy for Divergent Synthesis of Cyclitol Derivatives from Alditols. Adv Synth Catal 357:131–147. (c) Kuwano S, Harada S, Kang B, Oriez R, Yamaoka Y, Takasu K, Yamada K (2013) Enhanced Rate and Selectivity by Carboxylate Salt as a Basic Cocatalyst in Chiral N-Heterocyclic Carbene-Catalyzed Asymmetric Acylation of Secondary Alcohols. J Am Chem Soc 135:11485–11488. (d) Ref. [27] in Chap. 1. (e) Yamada K, Matsumoto Y, Selim KB, Yamamoto Y, Tomioka K (2012) Steric tuning of C2-symmetric chiral N-heterocyclic carbene in gold-catalyzed asymmetric cyclization of 1,6-enynes. Tetrahedron 68:4159–4165. (f) Selim KB, Nakanishi H, Matsumoto Y, Yamamoto Y, Yamada K, Tomioka K (2011) Chiral N-Heterocyclic Carbene−Copper(I)-Catalyzed Asymmetric Allylic Arylation of Aliphatic Allylic Bromides: Steric and Electronic Effects on γ-Selectivity. J Org Chem 76:1398–1408. (g) Matsumoto Y, Selim KB, Nakanishi H, Yamada K, Yamamoto Y, Tomioka K (2010) Chiral carbene approach to gold-catalyzed asymmetric cyclization of 1,6-enynes. Tetrahedron Lett 51:404–406. (h) Selim KB, Matsumoto Y, Yamada K, Tomioka K (2009) Efficient Chiral N‐Heterocyclic Carbene/Copper(I)‐Catalyzed Asymmetric Allylic Arylation with Aryl Grignard Reagents. Angew Chem Int Ed 48:8733-8735. (i) Matsumoto Y, Yamada K, Tomioka K (2008) C2 Symmetric Chiral NHC Ligand for Asymmetric Quaternary Carbon Constructing Copper-Catalyzed Conjugate Addition of Grignard Reagents to 3-Substituted Cyclohexenones. J Org Chem 73:4578–4581Google Scholar
  3. 3.
    Flanigan DM, Romanov-Michailidis F, White NA, Rovis T (2015) Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. Chem Rev 115:9307–9387CrossRefGoogle Scholar
  4. 4.
    (a) Trost BM, Li C-J (1994) Novel Umpolung in C-C Bond Formation Catalyzed by Triphenylphosphine. J Am Chem Soc 116:3167–3168. (b) Trost BM, Li C-J (1994) Phosphine-Catalyzed Isomerization-Addition of Oxygen Nucleophiles to 2-Alkynoates. J Am Chem Soc 116:10819–10820. (c) Trost BM, Drake GR (1997) Nitrogen Pronucleophiles in the Phosphine-Catalyzed γ-Addition Reaction. J Org Chem 62:5670–5671. Albeit not in catalytic form, Cristau first demonstrated the γ-Umpolung addition of nucleophiles to activated allenes; see: (d) Cristau H-J, Viala J, Christol H (1982) Inversion de polarite a4 des cetones α-alleniques par le groupe triphenylphosphonio. Tetrahedron Lett 23:1569–1572. (e) Cristau H-J, Viala J, Christol H (1985) Inversion de polarité par les [80] groupes phosphorés: inversion de régiosélectivité dans l’addition des nucléophiles sur les allènes activés par des groupes attracteurs. Bull Soc chim Fr 5:980–988. (f) Cristau HJ, Fonte M, Torreilles E (1989) “Umpolung” Using a Phosphorus Group. A Novel Method for the Chemoselective Synthesis of 2-Acetonyl or 3-Acetonyl Morpholines. Synthesis 301–303Google Scholar
  5. 5.
    Chung YK, Fu GC (2009) Phosphine‐Catalyzed Enantioselective Synthesis of Oxygen Heterocycles. Angew Chem Int Ed 48:2225–2227CrossRefGoogle Scholar
  6. 6.
    (a) Back TG, Clary KN, Gao D (2010) Cycloadditions and Cyclizations of Acetylenic, Allenic, and Conjugated Dienyl Sulfones. Chem Rev 110:4498. (b) Back TG (2001) The chemistry of acetylenic and allenic sulfones. Tetrahedron 57:5263–5301Google Scholar
  7. 7.
    (a) Stirling CJM (1964) Elimination–addition. Part IV. Additions of sulphur nucleophiles to allenic and acetylenic sulphones. J Chem Soc 5856–5862. (b) Braverman S, Mechoulam H (1974) Studies on the addition of allyl oxides to sulfonylallenes. Preparation of highly substituted allyl vinyl ethers for carbanionic Claisen rearrangements. Tetrahedron 30:3883–3890. (c) Denmark SE, Harmata MA, White KS (1987) Studies on the addition of allyl oxides to sulfonylallenes. Preparation of highly substituted allyl vinyl ethers for carbanionic Claisen rearrangements. J Org Chem 52:4031–4042. (d) Back TG, Parvez M, Wulff JE (2003) Conjugate Additions of o-Iodoanilines and Methyl Anthranilates to Acetylenic Sulfones. A New Route to Quinolones Including First Syntheses of Two Alkaloids from the Medicinal Herb Ruta chalepensis. J Org Chem 68:2223–2233.Google Scholar
  8. 8.
    (a) Padwa A, Yeske PE (1988) Synthesis of cyclopentenyl sulfones via the [3 + 2] cyclization-elimination reaction of (phenylsulfonyl)allene. J Am Chem Soc 110:1617–1618. (b) Padwa A, Yeske PE (1991) [3 + 2] Cyclization-elimination route to cyclopentenyl sulfones using (phenylsulfonyl)-1,2-propadiene. J Org Chem 56:6386–6390Google Scholar
  9. 9.
    Bordwell FG (1988) Acc Chem Res 21:456–463CrossRefGoogle Scholar
  10. 10.
    For selected reviews, see: (a) Volla CMR, Atodiresei I, Rueping M (2014) Catalytic C–C Bond-Forming Multi-Component Cascade or Domino Reactions: Pushing the Boundaries of Complexity in Asymmetric Organocatalysis. Chem Rev 114:2390–2431. (b) Bertelsen S, Jørgensen KA (2009) Organocatalysis—after the gold rush. Chem Soc Rev 38:2178–2189. (c) Erkkila A, Majander I, Pihko PM (2007) Iminium Catalysis. Chem Rev 107:5416–5470. (d) Mukherjee S, Yang JW, Hoffmann S, List B (2007) Asymmetric Enamine Catalysis. Chem Rev 107:5471–5569Google Scholar
  11. 11.
    Several reported transformations using vinyl sulfone: (a) Fuchs PL, Braish TF (1986) Multiply convergent syntheses via conjugate-addition reactions to cycloalkenyl sulfones. Chem Rev 86:903–917. (b) Simpkins N (1990) The chemistry of vinyl sulphones. Tetrahedron 46:6951–6984. For vinyl sulfones in organocatalysis: (c) Nielsen M, Jacobsen CB, Holub N, Paixao MW, Jørgensen KA (2010) Asymmetric Organocatalysis with Sulfones. Angew Chem Int Ed 49:2668–2679. For vinyl sulfones in synthetic and biological applications: (d) Chauhan P, Hadad C, Loṕez AH, Silvestrini S, La Parola V, Frison E, Maggini M, Prato M, Carofiglio T (2014) A nanocellulose–dye conjugate for multi-format optical pH-sensing. Chem Commun 50:9493–9496. (e) Kudryavtsev KV, Podoplelova NA, Novikova A, Panteleev MA, Zabolotnev DV, Zefirov NS (2011) Inhibition of the Procoagulant Activity of Blood Platelets by Vinylsulfonyl Derivatives of Pyrrolidine-2-carboxylic Acid. Russ Chem Bull 60:679–684. (f) Morales-Sanfrutos J, Lopez-Jaramillo J, Ortega-Munoz M, Megia-Fernandez A, Perez-Balderas F, Hernandez-Mateo F, Santoyo-Gonzalez F (2010) Vinyl sulfone: a versatile function for simple bioconjugation and immobilization. Org Biomol Chem 8:667–675. (g) Kerr ID, Lee LH, Farady CJ, Marion R, Rickert M, Sajid M, Pandey KC, Caffrey CR, Legac J, Hansell E, McKerrow JH, Craik CS, Rosenthal PJ, Brinen LS (2009) Vinyl Sulfones as Antiparasitic Agents and a Structural Basis for Drug Design. J Biol Chem 284:25697–25703. (h) Santos MMM, Moreira R (2007) Michael acceptors as cysteine protease inhibitors. Mini-Rev Med Chem 7:1040–1050 and references cited thereinGoogle Scholar
  12. 12.
    (a) Fan YC, Kwon O (2013) Advances in nucleophilic phosphine catalysis of alkenes, allenes, alkynes, and MBHADs. Chem Commun 49:11588–11619. (b) De Rycke N, Couty F, David ORP (2011) Increasing the Reactivity of Nitrogen Catalysts. Chem Eur J 17:12852–12871. (c) Denmark SE, Beutner GL (2008) Lewis Base Catalysis in Organic Synthesis. Angew Chem Int Ed 47:1560–1638. (d) Ye L-W, Zhou J, Tang Y (2008) Phosphine-triggered synthesis of functionalized cyclic compounds. Chem Soc Rev 37:1140–1152. (e) Methot JL, Roush WR (2004) Nucleophilic Phosphine Organocatalysis. Adv Synth Catal 346:1035–1150.Google Scholar
  13. 13.
    Tributylphosphine was purchased and used as received. 1H NMR indicated that the supplied bottle contained a 5:1 mixture of tributylphosphine and tributylphosphine oxideGoogle Scholar
  14. 14.
    Mandai H, Fujii K, Yasuhara H, Abe K, Mitsudo K, Korenaga T, Suga S (2016) Enantioselective acyl transfer catalysis by a combination of common catalytic motifs and electrostatic interactions. Nat Commun 7:11297–11308Google Scholar
  15. 15.
    Edwards GL, Muldoon CA, Sinclair DJ (1996) Cyclic enol ether synthesis via arenesulfonyl iodide additions to alkynols. Tetrahedron 52:7779–7788CrossRefGoogle Scholar
  16. 16.
    Kang S-K, Ko B-S, Ha Y-H (2001) Radical Addition of p-Toluenesulfonyl Bromide and p-Toluenesulfonyl Iodide to Allenic Alcohols and Sulfonamides in the Presence of AIBN:  Synthesis of Heterocyclic Compounds. J Org Chem 66:3630–3633CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan

Personalised recommendations