Advertisement

Structural Biology of NOD-Like Receptors

  • Xinru Yang
  • Guangzhong Lin
  • Zhifu Han
  • Jijie ChaiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1172)

Abstract

The nucleotide-binding domain (NBD) and leucine-rich repeat (LRR) containing (NLR) proteins are a large family of intracellular immune receptors conserved in both animals and plants. Mammalian NLRs function as pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) or host-derived danger associated molecular patterns (DAMPs). PAMP or DAMP perception activates NLRs which consequently recruit pro-caspase-1 directly or indirectly. These sequential events result in formation of large multimeric protein complexes termed inflammasomes that mediate caspase-1 activation for pyroptosis and cytokine secretion. Recent structural and biochemical studies provide significant insights into the acting mechanisms of NLR proteins. In this chapter, we review and discuss these studies concerning autoinhibition, ligand recognition, activation of NLRs, and assembly of NLR inflammasomes.

Keywords

NOD-like receptors Pattern recognition receptors Inflammasome assembly Autoinhibition Ligand recognition 

Notes

Acknowledgements

The project was funded by the Chinese Ministry of Science and Technology (2014CB910101 to J.C.), Alexander von Humboldt-Foundation (Humboldt Professorship to J.C.) and Max-Planck-Gesellschaft (Max-Planck Fellow) to J.C.

References

  1. 1.
    Kaparakis M, Philpott DJ, Ferrero RL (2007) Mammalian NLR proteins; discriminating foe from friend. Immunol Cell Biol 85:495–502. Published online EpubAug–Sep.  https://doi.org/10.1038/sj.icb.7100105PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Meunier E, Broz P (2017) Evolutionary convergence and divergence in NLR function and structure. Trends Immunol 38:744–757. Published online EpubOct.  https://doi.org/10.1016/j.it.2017.04.005PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420. Published online EpubJul.  https://doi.org/10.1038/nri.2016.58PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157:1013–1022. Published online EpubMay 22.  https://doi.org/10.1016/j.cell.2014.04.007PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Jones JD, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354. Published online EpubDec 2.  https://doi.org/10.1126/science.aaf6395PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434:926–933. Published online EpubApr 14.  https://doi.org/10.1038/nature03465PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Maekawa T, Kufer TA, Schulze-Lefert P (2011) NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 12:817–826. Published online EpubAug 18.  https://doi.org/10.1038/ni.2083PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Zhou M, Li Y, Hu Q, Bai XC, Huang W, Yan C, Scheres SH, Shi Y (2015) Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1. Genes Dev 29:2349–2361. Published online EpubNov 15.  https://doi.org/10.1101/gad.272278.115CrossRefGoogle Scholar
  9. 9.
    Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832. Published online EpubMar 19.  https://doi.org/10.1016/j.cell.2010.01.040CrossRefGoogle Scholar
  10. 10.
    Hu Z, Chai J (2016) Structural mechanisms in NLR inflammasome assembly and signaling. Curr Top Microbiol Immunol 397:23–42.  https://doi.org/10.1007/978-3-319-41171-2_2Google Scholar
  11. 11.
    Yin Q, Fu TM, Li J, Wu H (2015) Structural biology of innate immunity. Annu Rev Immunol 33:393–416.  https://doi.org/10.1146/annurev-immunol-032414-112258PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286. Published online EpubJan 18.  https://doi.org/10.1038/nature10759PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245–254. Published online EpubApr.  https://doi.org/10.1016/j.tibs.2016.10.004PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. Published online EpubOct 29.  https://doi.org/10.1038/nature15514CrossRefGoogle Scholar
  15. 15.
    Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671. Published online EpubOct 29.  https://doi.org/10.1038/nature15541CrossRefGoogle Scholar
  16. 16.
    Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–116. Published online EpubJul 7.  https://doi.org/10.1038/nature18590PubMedCrossRefGoogle Scholar
  17. 17.
    Aglietti RA, Estevez A, Gupta A, Ramirez A, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci USA 113:7858–7863. Published online EpubJul 12.  https://doi.org/10.1073/pnas.1607769113CrossRefGoogle Scholar
  18. 18.
    Allen IC (2014) Non-inflammasome forming NLRs in inflammation and tumorigenesis. Front Immunol 5:169.  https://doi.org/10.3389/fimmu.2014.00169
  19. 19.
    Lukens JR, Gurung P, Shaw PJ, Barr MJ, Zaki MH, Brown SA, Vogel P, Chi H, Kanneganti TD (2015) The NLRP12 sensor negatively regulates autoinflammatory disease by modulating interleukin-4 production in T cells. Immunity 42:654–664. Published online EpubApr 21.  https://doi.org/10.1016/j.immuni.2015.03.006PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Allen IC, Moore CB, Schneider M, Lei Y, Davis BK, Scull MA, Gris D, Roney KE, Zimmermann AG, Bowzard JB, Ranjan P, Monroe KM, Pickles RJ, Sambhara S, Ting JP (2011) NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-kappaB signaling pathways. Immunity 34:854–865. Published online EpubJun 24.  https://doi.org/10.1016/j.immuni.2011.03.026PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Schneider M, Zimmermann AG, Roberts RA, Zhang L, Swanson KV, Wen H, Davis BK, Allen IC, Holl EK, Ye Z, Rahman AH, Conti BJ, Eitas TK, Koller BH, Ting JP (2012) The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-kappaB. Nat Immunol 13:823–831. Published online EpubSep.  https://doi.org/10.1038/ni.2378PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600. Published online EpubSep 14.  https://doi.org/10.1038/nature10510PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–595. Published online EpubAug 28.  https://doi.org/10.1038/nature10394PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hu Z, Zhou Q, Zhang C, Fan S, Cheng W, Zhao Y, Shao F, Wang HW, Sui SF, Chai J (2015) Structural and biochemical basis for induced self-propagation of NLRC4. Science 350:399–404. Published online EpubOct 23.  https://doi.org/10.1126/science.aac5489PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Zhang L, Chen S, Ruan J, Wu J, Tong AB, Yin Q, Li Y, David L, Lu A, Wang WL, Marks C, Ouyang Q, Zhang X, Mao Y, Wu H (2015) Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350:404–409. Published online EpubOct 23.  https://doi.org/10.1126/science.aac5789PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Tenthorey JL, Haloupek N, Lopez-Blanco JR, Grob P, Adamson E, Hartenian E, Lind NA, Bourgeois NM, Chacon P, Nogales E, Vance RE (2017) The structural basis of flagellin detection by NAIP5: a strategy to limit pathogen immune evasion. Science 358:888–893. Published online EpubNov 17.  https://doi.org/10.1126/science.aao1140PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Broz P, von Moltke J, Jones JW, Vance RE, Monack DM (2010) Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8:471–483. Published online EpubDec 16.  https://doi.org/10.1016/j.chom.2010.11.007CrossRefGoogle Scholar
  28. 28.
    Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791. Published online EpubJul 15.  https://doi.org/10.4049/jimmunol.0901363PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Elliott EI, Sutterwala FS (2015) Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 265:35–52. Published online EpubMay.  https://doi.org/10.1111/imr.12286PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chavarria-Smith J, Vance RE (2015) The NLRP1 inflammasomes. Immunol Rev 265:22–34. Published online EpubMay.  https://doi.org/10.1111/imr.12283PubMedCrossRefGoogle Scholar
  31. 31.
    Van Opdenbosch N, Gurung P, Vande Walle L, Fossoul A, Kanneganti TD, Lamkanfi M (2014) Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun 5:3209.  https://doi.org/10.1038/ncomms4209
  32. 32.
    Liao KC, Mogridge J (2013) Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infect Immun 81:570–579. Published online EpubFeb.  https://doi.org/10.1128/IAI.01003-12PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Chavarria-Smith J, Vance RE (2013) Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog 9:e1003452.  https://doi.org/10.1371/journal.ppat.1003452PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Finger JN, Lich JD, Dare LC, Cook MN, Brown KK, Duraiswami C, Bertin J, Gough PJ (2012) Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J Biol Chem 287:25030–25037. Published online EpubJul 20.  https://doi.org/10.1074/jbc.M112.378323PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S, Sastalla I, Leppla SH, Moayeri M (2012) Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 8:e1002638.  https://doi.org/10.1371/journal.ppat.1002638PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Newman ZL, Printz MP, Liu S, Crown D, Breen L, Miller-Randolph S, Flodman P, Leppla SH, Moayeri M (2010) Susceptibility to anthrax lethal toxin-induced rat death is controlled by a single chromosome 10 locus that includes rNlrp1. PLoS Pathog 6:e1000906. Published online EpubMay 20.  https://doi.org/10.1371/journal.ppat.1000906PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hu Z, Yan C, Liu P, Huang Z, Ma R, Zhang C, Wang R, Zhang Y, Martinon F, Miao D, Deng H, Wang J, Chang J, Chai J (2013) Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341:172–175. Published online EpubJul 12.  https://doi.org/10.1126/science.1236381PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Maekawa S, Ohto U, Shibata T, Miyake K, Shimizu T (2016) Crystal structure of NOD2 and its implications in human disease. Nat Commun 7:11813. Published online EpubJun 10.  https://doi.org/10.1038/ncomms11813
  39. 39.
    Reubold TF, Wohlgemuth S, Eschenburg S (2011) Crystal structure of full-length Apaf-1: how the death signal is relayed in the mitochondrial pathway of apoptosis. Structure 19:1074–1083. Published online EpubAug 10.  https://doi.org/10.1016/j.str.2011.05.013PubMedCrossRefGoogle Scholar
  40. 40.
    Lukasik E, Takken FL (2009) STANDing strong, resistance proteins instigators of plant defence. Curr Opin Plant Biol 12:427–436. Published online EpubAug.  https://doi.org/10.1016/j.pbi.2009.03.001PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Tanabe T, Chamaillard M, Ogura Y, Zhu L, Qiu S, Masumoto J, Ghosh P, Moran A, Predergast MM, Tromp G, Williams CJ, Inohara N, Nunez G (2004) Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition. EMBO J 23:1587–1597. Published online EpubApr 7.  https://doi.org/10.1038/sj.emboj.7600175PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Pellegrini E, Desfosses A, Wallmann A, Schulze WM, Rehbein K, Mas P, Signor L, Gaudon S, Zenkeviciute G, Hons M, Malet H, Gutsche I, Sachse C, Schoehn G, Oschkinat H, Cusack S (2018) RIP2 filament formation is required for NOD2 dependent NF-kappaB signalling. Nat Commun 9:4043. Published online EpubOct 2.  https://doi.org/10.1038/s41467-018-06451-3
  43. 43.
    Zhong FL, Mamai O, Sborgi L, Boussofara L, Hopkins R, Robinson K, Szeverenyi I, Takeichi T, Balaji R, Lau A, Tye H, Roy K, Bonnard C, Ahl PJ, Jones LA, Baker PJ, Lacina L, Otsuka A, Fournie PR, Malecaze F, Lane EB, Akiyama M, Kabashima K, Connolly JE, Masters SL, Soler VJ, Omar SS, McGrath JA, Nedelcu R, Gribaa M, Denguezli M, Saad A, Hiller S, Reversade B (2016) Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell 167:187–202 e117. Published online EpubSep 22.  https://doi.org/10.1016/j.cell.2016.09.001PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zhong FL, Robinson K, Teo DET, Tan KY, Lim C, Harapas CR, Yu CH, Xie WH, Sobota RM, Au VB, Hopkins R, D’Osualdo A, Reed JC, Connolly JE, Masters SL, Reversade B (2018) Human DPP9 represses NLRP1 inflammasome and protects against auto-inflammatory diseases via both peptidase activity and FIIND domain binding. J Biol Chem. Published online EpubOct 5.  https://doi.org/10.1074/jbc.RA118.004350PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD, Brown FC, Reed C, Peguero E, de Stanchina E, Kentsis A, Bachovchin DA (2018) DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med 24:1151–1156. Published online EpubAug.  https://doi.org/10.1038/s41591-018-0082-yPubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K (2014) An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med 211:2385–2396. Published online EpubNov 17.  https://doi.org/10.1084/jem.20141091PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Williams SJ, Sornaraj P, deCourcy-Ireland E, Menz RI, Kobe B, Ellis JG, Dodds PN, Anderson PA (2011) An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP. Mol Plant-Microbe Interact: MPMI 24:897–906. Published online EpubAug.  https://doi.org/10.1094/MPMI-03-11-0052PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Takken FL, Albrecht M, Tameling WI (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9:383–390. Published online EpubAug.  https://doi.org/10.1016/j.pbi.2006.05.009PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Howles P, Lawrence G, Finnegan J, McFadden H, Ayliffe M, Dodds P, Ellis J (2005) Autoactive alleles of the flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response. Mol Plant-Microbe Interact: MPMI 18:570–582. Published online EpubJun.  https://doi.org/10.1094/MPMI-18-0570PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Hara H, Seregin SS, Yang D, Fukase K, Chamaillard M, Alnemri ES, Inohara N, Chen GY, Nunez G (2018) The NLRP6 inflammasome recognizes lipoteichoic acid and regulates gram-positive pathogen infection. Cell. Published online EpubOct 26.  https://doi.org/10.1016/j.cell.2018.09.047PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 103:8888–8893. Published online EpubJun 6.  https://doi.org/10.1073/pnas.0602577103CrossRefGoogle Scholar
  52. 52.
    Liao KC, Mogridge J (2009) Expression of Nlrp1b inflammasome components in human fibroblasts confers susceptibility to anthrax lethal toxin. Infect Immun 77:4455–4462. Published online EpubOct.  https://doi.org/10.1128/IAI.00276-09PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Khare S, Dorfleutner A, Bryan NB, Yun C, Radian AD, de Almeida L, Rojanasakul Y, Stehlik C (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36:464–476. Published online EpubMar 23.  https://doi.org/10.1016/j.immuni.2012.02.001PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Qi D, DeYoung BJ, Innes RW (2012) Structure-function analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein. Plant Physiol 158:1819–1832. Published online EpubApr.  https://doi.org/10.1104/pp.112.194035PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Tenthorey JL, Kofoed EM, Daugherty MD, Malik HS, Vance RE (2014) Molecular basis for specific recognition of bacterial ligands by NAIP/NLRC4 inflammasomes. Mol cell 54:17–29. Published online EpubApr 10.  https://doi.org/10.1016/j.molcel.2014.02.018PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Yang X, Yang F, Wang W, Lin G, Hu Z, Han Z, Qi Y, Zhang L, Wang J, Sui SF, Chai J (2018) Structural basis for specific flagellin recognition by the NLR protein NAIP5. Cell Res 28:35–47. Published online EpubJan.  https://doi.org/10.1038/cr.2017.148PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Yang J, Zhao Y, Li P, Yang Y, Zhang E, Zhong M, Li Y, Zhou D, Cao Y, Lu M, Shao F, Yan H (2018) Sequence determinants of specific pattern-recognition of bacterial ligands by the NAIP-NLRC4 inflammasome. Cell Discov 4:22.  https://doi.org/10.1038/s41421-018-0018-1)
  58. 58.
    Davis BK, Roberts RA, Huang MT, Willingham SB, Conti BJ, Brickey WJ, Barker BR, Kwan M, Taxman DJ, Accavitti-Loper MA, Duncan JA, Ting JP (2011) Cutting edge: NLRC5-dependent activation of the inflammasome. J Immunol 186:1333–1337. Published online EpubFeb 1.  https://doi.org/10.4049/jimmunol.1003111PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Man SM, Hopkins LJ, Nugent E, Cox S, Gluck IM, Tourlomousis P, Wright JA, Cicuta P, Monie TP, Bryant CE (2014) Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci USA 111:7403–7408. Published online EpubMay 20.  https://doi.org/10.1073/pnas.1402911111CrossRefGoogle Scholar
  60. 60.
    Qu Y, Misaghi S, Newton K, Maltzman A, Izrael-Tomasevic A, Arnott D, Dixit VM (2016) NLRP3 recruitment by NLRC4 during Salmonella infection. J Exp Med 213:877–885. Published online EpubMay 30.  https://doi.org/10.1084/jem.20132234PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Innes RW (2004) Guarding the goods. New insights into the central alarm system of plants. Plant Physiol 135:695–701. Published online EpubJun.  https://doi.org/10.1104/pp.104.040410PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Keestra AM, Winter MG, Auburger JJ, Frassle SP, Xavier MN, Winter SE, Kim A, Poon V, Ravesloot MM, Waldenmaier JF, Tsolis RM, Eigenheer RA, Baumler AJ (2013) Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496:233–237. Published online EpubApr 11.  https://doi.org/10.1038/nature12025PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Xu H, Yang J, Gao W, Li L, Li P, Zhang L, Gong YN, Peng X, Xi JJ, Chen S, Wang F, Shao F (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237–241. Published online EpubSep 11.  https://doi.org/10.1038/nature13449PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Thulasi Devendrakumar K, Li X, Zhang Y (2018) MAP kinase signalling: interplays between plant PAMP- and effector-triggered immunity. Cell Mol Life Sci: CMLS 75:2981–2989. Published online EpubAug.  https://doi.org/10.1007/s00018-018-2839-3PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M, Overton J, Meffre E, Khokha MK, Huttner AJ, West B, Podoltsev NA, Boggon TJ, Kazmierczak BI, Lifton RP (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46:1135–1139. Published online EpubOct.  https://doi.org/10.1038/ng.3066PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y, DiMattia MA, Zaal KJ, Sanchez GA, Kim H, Chapelle D, Plass N, Huang Y, Villarino AV, Biancotto A, Fleisher TA, Duncan JA, O’Shea JJ, Benseler S, Grom A, Deng Z, Laxer RM, Goldbach-Mansky R (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46:1140–1146. Published online EpubOct.  https://doi.org/10.1038/ng.3089PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Vladimer GI, Weng D, Paquette SW, Vanaja SK, Rathinam VA, Aune MH, Conlon JE, Burbage JJ, Proulx MK, Liu Q, Reed G, Mecsas JC, Iwakura Y, Bertin J, Goguen JD, Fitzgerald KA, Lien E (2012) The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37:96–107. Published online EpubJul 27.  https://doi.org/10.1016/j.immuni.2012.07.006PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, Schroder GF, Fitzgerald KA, Wu H, Egelman EH (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–1206. Published online EpubMar 13.  https://doi.org/10.1016/j.cell.2014.02.008PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Cai X, Chen J, Xu H, Liu S, Jiang QX, Halfmann R, Chen ZJ (2014) Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156:1207–1222. Published online EpubMar 13.  https://doi.org/10.1016/j.cell.2014.01.063PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Li Y, Fu TM, Lu A, Witt K, Ruan J, Shen C, Wu H (2018) Cryo-EM structures of ASC and NLRC4 CARD filaments reveal a unified mechanism of nucleation and activation of caspase-1. Proc Natl Acad Sci USA 115:10845–10852. Published online EpubOct 23.  https://doi.org/10.1073/pnas.1810524115CrossRefGoogle Scholar
  71. 71.
    He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ, Han J (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 25:1285–1298. Published online EpubDec.  https://doi.org/10.1038/cr.2015.139PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Okondo MC, Johnson DC, Sridharan R, Go EB, Chui AJ, Wang MS, Poplawski SE, Wu W, Liu Y, Lai JH, Sanford DG, Arciprete MO, Golub TR, Bachovchin WW, Bachovchin DA (2017) DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat Chem Biol 1346–53. Published online EpubJan.  https://doi.org/10.1038/nchembio.2229PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lu A, Li Y, Schmidt FI, Yin Q, Chen S, Fu TM, Tong AB, Ploegh HL, Mao Y, Wu H (2016) Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism. Nat Struct Mol Biol 23:416–425. Published online EpubMay.  https://doi.org/10.1038/nsmb.3199CrossRefGoogle Scholar
  74. 74.
    Matyszewski M, Zheng W, Lueck J, Antiochos B, Egelman EH, Sohn J (2018) Cryo-EM structure of the NLRC4(CARD) filament provides insights into how symmetric and asymmetric supramolecular structures drive inflammasome assembly. J Biol Chem. Published online EpubNov 1.  https://doi.org/10.1074/jbc.RA118.006050PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Li Y, Zhou M, Hu Q, Bai XC, Huang W, Scheres SH, Shi Y (2017) Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme. Proc Natl Acad Sci USA 114:1542–1547. Published online EpubFeb 14.  https://doi.org/10.1073/pnas.1620626114CrossRefGoogle Scholar
  76. 76.
    Cheng TC, Hong C, Akey IV, Yuan S, Akey CW (2016) A near atomic structure of the active human apoptosome. eLife 5. Published online EpubOct 4.  https://doi.org/10.7554/eLife.17755
  77. 77.
    Nambayan RJT, Sandin SI, Quint DA, Satyadi DM, de Alba E (2018) The inflammasome adapter ASC assembles into filaments with integral participation of its two death domains, PYD and CARD. J Biol Chem. Published online EpubNov 20.  https://doi.org/10.1074/jbc.RA118.004407PubMedCrossRefGoogle Scholar
  78. 78.
    Cheng TC, Akey IV, Yuan S, Yu Z, Ludtke SJ, Akey CW (2017) A near-atomic structure of the dark apoptosome provides insight into assembly and activation. Structure 25:40–52. Published online EpubJan 3.  https://doi.org/10.1016/j.str.2016.11.002PubMedCrossRefGoogle Scholar
  79. 79.
    Pang Y, Bai XC, Yan C, Hao Q, Chen Z, Wang JW, Scheres SH, Shi Y (2015) Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila. Genes Dev 29:277–287. Published online EpubFeb 1.  https://doi.org/10.1101/gad.255877.114CrossRefGoogle Scholar
  80. 80.
    Halff EF, Diebolder CA, Versteeg M, Schouten A, Brondijk TH, Huizinga EG (2012) Formation and structure of a NAIP5-NLRC4 inflammasome induced by direct interactions with conserved N- and C-terminal regions of flagellin. J Biol Chem 287:38460–38472. Published online EpubNov 9.  https://doi.org/10.1074/jbc.M112.393512PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Danot O, Marquenet E, Vidal-Ingigliardi D, Richet E (2009) Wheel of life, wheel of death: a mechanistic insight into signaling by STAND proteins. Structure 17:172–182. Published online EpubFeb 13.  https://doi.org/10.1016/j.str.2009.01.001PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kim HE, Du F, Fang M, Wang X (2005) Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci USA 102:17545–17550. Published online EpubDec 6.  https://doi.org/10.1073/pnas.0507900102CrossRefGoogle Scholar
  83. 83.
    Bao Q, Lu W, Rabinowitz JD, Shi Y (2007) Calcium blocks formation of apoptosome by preventing nucleotide exchange in Apaf-1. Mol Cell 25:181–192. Published online EpubJan 26.  https://doi.org/10.1016/j.molcel.2006.12.013PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Reubold TF, Wohlgemuth S, Eschenburg S (2009) A new model for the transition of APAF-1 from inactive monomer to caspase-activating apoptosome. J Biol Chem 284:32717–32724. Published online EpubNov 20.  https://doi.org/10.1074/jbc.M109.014027PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    van der Biezen EA, Jones JD (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol: CB 8:R226–227. Published online EpubMar 26Google Scholar
  86. 86.
    Song N, Li T (2018) Regulation of NLRP3 inflammasome by phosphorylation. Front Immunol 9:2305.  https://doi.org/10.3389/fimmu.2018.02305
  87. 87.
    Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J (2013) Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 49:331–338. Published online EpubJan 24.  https://doi.org/10.1016/j.molcel.2012.11.009PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Qu Y, Misaghi S, Izrael-Tomasevic A, Newton K, Gilmour LL, Lamkanfi M, Louie S, Kayagaki N, Liu J, Komuves L, Cupp JE, Arnott D, Monack D, Dixit VM (2012) Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490:539–542. Published online EpubOct 25.  https://doi.org/10.1038/nature11429PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lu B, Nakamura T, Inouye K, Li J, Tang Y, Lundback P, Valdes-Ferrer SI, Olofsson PS, Kalb T, Roth J, Zou Y, Erlandsson-Harris H, Yang H, Ting JP, Wang H, Andersson U, Antoine DJ, Chavan SS, Hotamisligil GS, Tracey KJ (2012) Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488:670–674. Published online EpubAug 30.  https://doi.org/10.1038/nature11290PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Duncan JA, Bergstralh DT, Wang Y, Willingham SB, Ye Z, Zimmermann AG, Ting JP (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci USA 104:8041–8046. Published online EpubMay 8.  https://doi.org/10.1073/pnas.0611496104CrossRefGoogle Scholar
  91. 91.
    Zurek B, Proell M, Wagner RN, Schwarzenbacher R, Kufer TA (2012) Mutational analysis of human NOD1 and NOD2 NACHT domains reveals different modes of activation. Innate Immun 18:100–111. Published online EpubFeb.  https://doi.org/10.1177/1753425910394002PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xinru Yang
    • 1
  • Guangzhong Lin
    • 1
  • Zhifu Han
    • 1
  • Jijie Chai
    • 1
    • 2
    • 3
    Email author
  1. 1.School of Life SciencesInnovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua UniversityBeijingChina
  2. 2.Max-Planck Institute for Plant Breeding ResearchCologneGermany
  3. 3.Institute of Biochemistry, University of CologneKoelnGermany

Personalised recommendations