Diversity and Bioprospecting of Yeasts from Extreme Environments

  • Shiv Mohan Singh
  • Nitin Adhapure
  • Rohit SharmaEmail author


The life of humans has been greatly benefited by microbes since their existence on earth. Extremophiles have unique energy transduction processes and adaptation strategies which help them to survive in an extreme environment (high or low temperature, pH, etc.). Fungi with yeast stage in their life cycle are found in various habitats including extreme environments like hot springs, alkaline lakes, hypersaline lakes, cold glaciers, deep ocean, and several others. Recently, psychrophilic yeasts have been studied widely, but contributions on thermophilic, acidophilic, and halophilic yeasts are lagging behind. Mrakia, Leucosporidium, and Naganishia are some examples of yeasts isolated from cold environments. In the past decades, several investigations have been undertaken on yeasts to assess their biotechnological potentials. Extremophilic yeasts produce enzymes, antifreeze proteins, heat shock proteins, PUFA, EPS, etc., which have immense applications in health, agriculture, and industry. In this chapter, diversity of extremophilic yeasts, strategies adapted for such niches, and potential applications of extremophilic yeasts in biotechnology have been discussed. Yeasts from extreme environments can be exploited in several biotechnological industries, thus helping in the bioeconomy of the country.


Antarctica Biotechnology Biopotentials Enzymes Extreme environments Yeasts 



RS is grateful to the Department of Biotechnology, New Delhi, for financial support for the establishment of National Centre for Microbial Resource (NCMR), Pune, wide grant letter no. BT/Coord.II/01/03/2016 dated April 6, 2017. SMS acknowledges financial support from Indian Council of Agricultural Research (ICAR) [NBAIM/AMAAS/2014-17/PF/24/21] for research on the Himalayas.


  1. Abe F, Miura T, Nagahama T, Inoue A, Usami R, Horikoshi K (2001) Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett 23:2027–2034CrossRefGoogle Scholar
  2. Agno R (1990) Taxonomic distribution of alkali-tolerant yeasts. Syst Appl Microbiol 13:394–397CrossRefGoogle Scholar
  3. Aguilera J, Randez-Gil F, Prieto JA (2007) Cold response in Saccharomyces cerevisiae: new functions for old mechanisms. FEMS Microbiol Rev 31:327–341PubMedCrossRefGoogle Scholar
  4. Aksu Z, Dönmez G (2001) Comparison of copper (II) biosorptive properties of live and treated Candida sp. J Environ Sci Health 36:367–381CrossRefGoogle Scholar
  5. Alcaíno J, Cifuentes V, Baeza M (2015) Physiological adaptations of yeasts living in cold environments and their potential applications. World J Microbiol Biotechnol 31(10):1467–1473PubMedCrossRefGoogle Scholar
  6. Al-Fageeh MB, Smales CM (2006) Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 397:247–259PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barth G, Gaillardin C (1996) Yarrowia lipolytica. In Wolf K (ed) Handbook of nonconventional yeast in biotechnology. Springer, Berlin/Heidelberg, pp 313–388CrossRefGoogle Scholar
  8. Besancon X, Smet C, Chabalier C, Rivemale M, Reverbel JP, Ratomahenina R, Galzy P (1992) Study of surface yeast flora of Roquefort cheese. Int J Food Microbiol 17:9–18PubMedCrossRefGoogle Scholar
  9. Bohn JA, BeMiller JN (1995) (1→ 3)-ß-D-glucans as biological response modifiers: a review of structure–functional activity relationships. Carbohydr Polym 28:3–14CrossRefGoogle Scholar
  10. Brandão LR, Libkind D, Vaz ABM, Santo LCE, Moliné M, García V, Broock M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13PubMedCrossRefGoogle Scholar
  11. Breuer U, Harms H (2006) Debaryomyces hansenii – an extremophilic yeast with biotechnological potential. Yeast 23:415–437PubMedCrossRefGoogle Scholar
  12. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244(2):229–234PubMedCrossRefGoogle Scholar
  13. Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82(2):217–241PubMedCrossRefGoogle Scholar
  14. Buzzini P, Turk M, Perini L, Turchetti B, Gunde-Cimerman N (2017) Yeasts in polar and subpolar habitats. In: Yeasts in natural ecosystems: diversity. Springer, Cham, pp 331–365CrossRefGoogle Scholar
  15. Buzzini P, Turchetti B, Yurkov A (2018) Extremophilic yeasts: the toughest yeasts around? Yeast 35(8):487–497. Scholar
  16. Cantrell SA, Casillas-Martinez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110(8):962–970PubMedCrossRefGoogle Scholar
  17. Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:251PubMedPubMedCentralCrossRefGoogle Scholar
  18. Charoenchai C, Fleet GH, Henschke PA, Ben T (1997) Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Austr J Grape Wine Res 3:2–8CrossRefGoogle Scholar
  19. Connell L, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria land, Antarctica. Microb Ecol 56:448–459. Scholar
  20. Cruz JM, Dominguez JM, Dominguez H, Parajo JC (2000) Dimorphic behaviour of Debaryomyces hansenii grown on barley bran acid hydrolysates. Biotechnol Lett 22:605–610CrossRefGoogle Scholar
  21. D’elia T, Veerapaneni R, Theraisnathan V, Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763PubMedCrossRefGoogle Scholar
  22. Davenport RR (1980) An introduction to yeasts and yeast-like organisms. Academic, London, pp 1–27Google Scholar
  23. De Garcia V, Brizzio S, Libkind D, Buzzini P, Van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59:331–341PubMedCrossRefGoogle Scholar
  24. Deak T (2006). Environmental factors influencing yeasts. In Rosa CA, Gárbor P (eds) Yeasts handbook on biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 155–174Google Scholar
  25. Deak T (2008) Handbook of food spoilage yeasts, 2nd edn. CRC Press, Boca Raton, pp 17–36Google Scholar
  26. Donzis RA (1996). Substantially purified β-(1,3) finely ground yeast cell wall glucan composition with dermatological and nutritional uses. US Patent 5, 576,015Google Scholar
  27. Droby S, Chalutz E, Wilson CL, Wisniewski M (1989) Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Can J Microbiol 35:794–800CrossRefGoogle Scholar
  28. Dziezak JD (1987) Yeasts and yeast derivatives. Appl Food Technol 41:122–125Google Scholar
  29. Edwards AB, Douglas AM, Anesio SM, Rassner TDL, Irvine-Fynn B, Sattler GW Griffith (2013) A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard. Fungal Ecol 6(2): 168–176CrossRefGoogle Scholar
  30. Ellis-Evans JC (1985) Fungi from maritime Antarctic freshwater environments. Br Antarct Survey Bull 68:37–45Google Scholar
  31. Epova E, Guseva M, Kovalyov L, Isakova E, Deryabina Y, Belyakova A, Zylkova M, Shevelev A (2012) Identification of proteins involved in pH adaptation in extremophile yeast Yarrowia lipolytica. In: Proteomic applications in biology. InTech, RijekaGoogle Scholar
  32. Fatichenti F, Bergere JL, Deiana P, Farris GA (1983) Antagonistic activity of Debaryomyces hansenii towards Clostridium tyrobutyricum and C. butyricum. J Dairy Res 50:449–457PubMedCrossRefGoogle Scholar
  33. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208PubMedCrossRefPubMedCentralGoogle Scholar
  34. Ferreira A, Viljoen BC (2003) Yeasts as adjunct starters in matured Cheddar cheese. Int J Food Microbiol 86:131–140PubMedCrossRefPubMedCentralGoogle Scholar
  35. Fleet GH (1992) Spoilage yeasts. Crit Rev Biotechnol 12:1–44PubMedCrossRefGoogle Scholar
  36. Fleet GH, Mian MA (1987) The occurrence and growth of yeasts in dairy products. Int J Food Microbiol 4:145–155CrossRefGoogle Scholar
  37. Flores M, Dura MA, Marco A, Toldra F (2004) Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Sci 68:439–446PubMedCrossRefGoogle Scholar
  38. Fonseca A, Boekhout T, Fell JW (2011) Cryptococcus Vuillemin (1901). In: Kurtzman C, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, Amsterdam, pp 1661–1738CrossRefGoogle Scholar
  39. Fournier D, Lemieux R, Couillard D (1998) Essential interactions between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process. Environ Pollut 101:303–309PubMedCrossRefGoogle Scholar
  40. Gadanho M, Libkind D, Sampaio JP (2006) Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt. Microb Ecol 52(3):552–563PubMedCrossRefGoogle Scholar
  41. Garcia-Gonzalez A, Ochoa JL (1999) Anti-inflammatory activity of Debaryomyces hansenii Cu, Zn-SOD. Arch Med Res 30:69–73PubMedCrossRefGoogle Scholar
  42. Girio FM, Peito MA, Amaral-Collaco MT (1989) Enzymatic and physiological study of D-xylose metabolism by Candida shehatae. Appl Microb Biotechnol 32:199–204CrossRefGoogle Scholar
  43. Girio FM, Roseiro JC, Sá-Machado P, Duarte-Reis AR, Amaral-Collaço MT (1994) Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii. Enzym Microb Technol 16:1074–1078CrossRefGoogle Scholar
  44. Goto S, Sugiyama J, Iizuka H (1969) Taxonomic study of Antarctic yeasts. Mycologia 61:748–774PubMedCrossRefGoogle Scholar
  45. Gunot AM (1999). Microbial life in permanently cold soils. In Margesin R, Schinner F (eds) Cold-adapted organisms: ecology, physiology, enzymology and molecular biology. Springer, Berlin, pp 3–15Google Scholar
  46. Hofmeyer T, Bulani SI, Grzeschik J, Krah S, Glotzbach B, Uth C, Avrutina O, Brecht M, Göringer HU, van Zyl P, Kolmar H (2014) Protein production in Yarrowia lipolytica via fusion to the secreted lipase Lip2p. Mol Biotechnol 56(1):79–90PubMedCrossRefGoogle Scholar
  47. Jamas S, Easson J, Davidson D, Ostroff GR (1996). Use of aqueous soluble glucan preparation to stimulate platelet production. US Patent 5, 532, 223Google Scholar
  48. Kambura AK, Mwirichia RK, Kasili RW, Karanja EN, Makonde HM, Boga HI (2016) Diversity of fungi in sediments and water sampled from the hot springs of Lake Magadi and Little Magadi in Kenya. Afr J Microbiol Res 10(10):330–338CrossRefGoogle Scholar
  49. Kaszycki P, Czechowska K, Petryszak P, Międzobrodzki J, Pawlik B, Kołoczek H (2006) Methylotrophic extremophilic yeast Trichosporon sp.: a soil-derived isolate with potential applications in environmental biotechnology. Acta Biochimica Polonicas 53(3/2006):463–473Google Scholar
  50. Laubscher PJ, Viljoen BC (1999) The occurrence, growth and survival of yeasts in matured Cheddar. University of the Free State, Bloemfontein, pp 77–95Google Scholar
  51. Libkind D, Brizzio S, Ruffini A, Gadanho M, Van Broock M, Sampaio JP (2003) Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie Van Leeuwenhoek 84:313–322PubMedCrossRefPubMedCentralGoogle Scholar
  52. Libkind D, Moliné M, Sampaio JP, Van Broock M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362PubMedCrossRefPubMedCentralGoogle Scholar
  53. Lozovaia OG, Kasatkina TP, Podgorskii VS (2004) Search of heavy metals biosorbents among yeasts of different taxonomic groups. Mikrobiol Z 66:92–101PubMedPubMedCentralGoogle Scholar
  54. Maharana AK, Singh SM (2018) A cold and organic solvent tolerant lipase produced by Antarctic strain Rhodotorula sp. Y-23. J BasicMicrobiol 58:331–342Google Scholar
  55. Marcincakova R, Kadukoka J, Mrazikova A, Velgosora O, Vojtko M (2015) Lithium bioleaching from lepidolite using the yeast Rhodoturula rubra. J Polish Miner Eng Soc 16:1–6Google Scholar
  56. Meléndez-Martínez AJ, Mapelli-Brahm P, Benítez-González A, Stinco CM (2015) A comprehensive review on the colorless carotenoids phytoene and phytofluene. Arch Biochem Biophys 572:188–200PubMedCrossRefGoogle Scholar
  57. Moliné M, Libkind D, de Garcia V, Giraudo MR (2014) Production of pigments and photo-protective compounds by cold-adapted yeasts. Cold-adapted Yeasts. Springer, Berlin/Heidelberg, pp 193–224Google Scholar
  58. Morita T, Fukuoka T, Imura T, Kitamoto D (2013) Production of mannosylerythritol lipids and their application in cosmetics. Appl Microbiol Biotechnol 97(11):4691–4700PubMedCrossRefPubMedCentralGoogle Scholar
  59. Moubasher AA, Abdel-Sater MA, Soliman ZS (2018) Diversity of yeasts and filamentous fungi in mud from hypersaline and freshwater bodies in Egypt. Czech Mycol 70(1):1–32CrossRefGoogle Scholar
  60. Mukhopadhyaya SK, Chatterjeea S, Gauria SS, Dasa SS, Mishraa A, Moumita Patraa M, Ghosha AK, Dasa AK, Singh SM, Dey S (2014) Isolation and characterization of extracellular polysaccharide Thelebolan produced by a newly isolated psychrophilic Antarctic fungus Thelebolus. Carbohydr Polym 104:204–212CrossRefGoogle Scholar
  61. Nguyen TH, Fleet GH, Rogers PL (1998) Composition of the cell walls of several yeast species. Appl Microbiol Biotechnol 50:206–212PubMedCrossRefPubMedCentralGoogle Scholar
  62. Nguyen VAT, Senoo K, Mishima T, Hisamatsu M (2001) Multiple tolerance of Rhodotorula glutinis R-1 to acid, aluminum ion and manganese ion, and its unusual ability of neutralizing acidic medium. J Biosci Bioeng 92:366–371PubMedCrossRefPubMedCentralGoogle Scholar
  63. Orozco MR, Hernandez-Saavedra NY, Valle FA, Gonzalez BA, Ochoa JL (1998) Cell yield and superoxide dismutase activity of the marine yeast Debaryomyces hansenii under different culture conditions. J Mar Biotechnol 6:255–259Google Scholar
  64. Parajo JC, Dominguez H, Dominguez JM (1995) Production of xylitol from raw wood hydrolysates by Debaryomyces hansenii NRRL Y-7426. Bioproc Engin 13:125–131CrossRefGoogle Scholar
  65. Parajo JC, Dominguez H, Dominguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolysates. Enz Microb Technol 21:18–24CrossRefGoogle Scholar
  66. Pathan AAK, Bhadra B, Begum Z, Shivaji S (2010) Diversity of yeasts from puddles in the vicinity of midre lovenbreen glacier, arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol 60(4):307–314PubMedCrossRefPubMedCentralGoogle Scholar
  67. Pearce DA (2003) Bacterioplankton community structure in a maritime Antarctic oligotrophic lake during a period of holomixis, as determined by denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). Microb Ecol 46:92–105PubMedCrossRefPubMedCentralGoogle Scholar
  68. Perfumo A, Banat IM, Marchant R (2018) Going green and cold: biosurfactants from low-temperature environments to biotechnology applications. Trends Biotechnol 36(3):277–289PubMedCrossRefGoogle Scholar
  69. Pitt JI, Hockin AD (2009) The ecology of fungal food spoilage. In: Fungi and food spoilage. Springer, Boston, pp 3–9CrossRefGoogle Scholar
  70. Plemenitaš A, Lenassi M, Konte T, Kejžar A, Zajc J, Gostinčar C, Gunde-Cimerman N (2014) Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front Microbiol 5:199PubMedPubMedCentralGoogle Scholar
  71. Podgorskii VS, Kasatkina TP, Lozovaia OG (2004) Yeasts – biosorbents of heavy metals. Mikrobiol Z 66:91–103PubMedGoogle Scholar
  72. Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63(10):4005–4009PubMedPubMedCentralGoogle Scholar
  73. Ramirez-Orozco M, Hernandez-Saavedra NY, Ochoa J-L (2001) Debaryomyces hansenii growth in non-sterile seawater ClO2–peptone-containing medium. Can J Microbiol 47:676–679PubMedCrossRefGoogle Scholar
  74. Raspor P, Zupan J (2006) Yeasts in extreme environments. In: Biodiversity and ecophysiology of yeasts. Springer, Berlin/Heidelberg, pp 371–417CrossRefGoogle Scholar
  75. Ratledge CO, Tan KH (1990) Oils and fats: production, degradation and utilization by yeasts. In Verachtert HJ, De mot R (eds) Yeast biotechnology and biocatalysis. Marcel Dekker, New York, pp 223–253Google Scholar
  76. Ray MK, Shivaji S, Rao NS, Bhargava PM (1989) Yeast strains from the Schirmacher oasis. Antarctica Polar Biol 9:305–309CrossRefGoogle Scholar
  77. Ray MK, Devi KU, Kumar GS, Shivaji S (1992) Extracellular protease from the antarctic yeast Candida humicola. Appl Environ Microbiol 58(6):1918–1923PubMedPubMedCentralGoogle Scholar
  78. Rikhvanov EG, Varakina NN, Sozinov DY, Voinikov VK (1999) Association of bacteria and yeasts in hot springs. Appl Environ Microbiol 65(9):4292–4293PubMedPubMedCentralGoogle Scholar
  79. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353CrossRefGoogle Scholar
  80. Roostita R, Fleet GH (1996) The occurrence and growth of yeasts in Camembert and blue-veined cheeses. Int J Food Microbiol 28:393–404PubMedCrossRefGoogle Scholar
  81. Roseiro JC, Peito MA, Girio FM, Amaral-Collaco T (1991) The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii. Arch Microbiol 156:484–490CrossRefGoogle Scholar
  82. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409(6823):1092PubMedCrossRefGoogle Scholar
  83. Russell NJ (2006) Antarctic microorganisms: coming in from the cold. Culture 27:965–989Google Scholar
  84. Russell NJ (2008) Membrane components and cold sensing. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 177–190CrossRefGoogle Scholar
  85. Salinas E, Orellano M, Rezza I, Martinez L, Marchesvky E, Tossetti M (2000) Removal of cadmium and lead from dilute aqueous solutions by Rhodotorula rubra. Bioresour Technol 72:107–112CrossRefGoogle Scholar
  86. Sampaio JP (2004) Diversity, phylogeny and classification of basidiomycetous yeasts. In: Agerer R, Blanz P, Piepenbring M (eds) Frontiers in Basidiomycote mycology. IHW-Verlag, Eching, pp 49–80Google Scholar
  87. Sampaio JP (2011) Rhodotorula Harrison (1928). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, vol 3, 5th edn. Elsevier, London, pp 1873–1927CrossRefGoogle Scholar
  88. Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89(1):78–90Google Scholar
  89. Seeley RD (1977) Fractionation and utilisation of baker’s yeast. MBAA Tech Q 14:35–39Google Scholar
  90. Sekova VY, Isakova EP, Deryabina YI (2015) Biotechnological applications of the extremophilic yeast Yarrowia lipolytica. Appl Biochem Microbiol 51(3):278–291CrossRefGoogle Scholar
  91. Shivaji S, Prasad GS (2009) Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Berlin, pp 3–16CrossRefGoogle Scholar
  92. Shivaji S, Chattopadhyay MK, Ray MK (1994) Bacteria and yeasts of Schirmacher Oasis, Antarctica: taxonomy, biochemistry and molecular biology. Proc NIPR Symp Polar Biol 7:173–184Google Scholar
  93. Singh SM, Nayaka S (2017) Contributions to the floral diversity of Schirmacher oasis and Larsemann Hills, Antarctica. Proc Indian Natn Sci Acad 83(2):469–481Google Scholar
  94. Singh P, Singh SM (2012) Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biol 35(4):575–583CrossRefGoogle Scholar
  95. Singh SM, Singh PN, Singh SK, Sharma PK (2012) Pigment, fatty acids and extracellular enzyme analysis, of a fungal strain Thelebolus microsporus from Larsemann Hills Antarctica. Polar Record. Scholar
  96. Singh P, Tsuji M, Singh SM, Roy U, Hoshino T (2013) Taxonomic characterization, adaptation strategies and biotechnological potential of cryophilic yeasts from ice cores of Midre Lovénbreen glacier, Svalbard, Arctic. Cryobiology 66:167–175PubMedCrossRefGoogle Scholar
  97. Singh P, Singh SM, Tsuji M, Prasad GS, Hoshino T (2014) Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Ålesund, Arctic. Cryobiology 68:122–128PubMedCrossRefGoogle Scholar
  98. Singh P, Kapse N, Arora P, Singh SM, Dhakephalkar PK (2015) Draft genome of Cryobacterium sp. MLB-32, an obligate psychrophile from glacier cryoconite holes of high Arctic. Mar Genomics 21:25–26. Scholar
  99. Singh P, Roy U, Tsuji M (2016) Characterisation of yeast and filamentous fungi from Brøggerbreen glaciers, Svalbard. Polar Rec 52(4):442–449Google Scholar
  100. Sjöling S, Cowan DA (2003) High 16S rDNA bacteria diversity in glacial meltwater lake sediment, Bratina island, Antarctica. Extremophiles 7:275–282PubMedCrossRefGoogle Scholar
  101. Spencer JFT, Spencer DM (1997) Yeasts in natural and artificial habitat. Springer, Berlin, p 381CrossRefGoogle Scholar
  102. Stanley SO, Rose AH (1967) Bacteria and yeasts from lakes on Deception Island. Proc R Soc Ser B 252:199–207Google Scholar
  103. Stetter KO (2006) History of discovery of the first hyperthermophiles. Extremophiles 10(5):357–362PubMedCrossRefGoogle Scholar
  104. Strauss MLA, Jolly NP, Lambrechts MG, van Rensburg P (2001) Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J Appl Microbiol 91:182–190PubMedCrossRefGoogle Scholar
  105. Thomas T, Cavicchioli R (2000) Effect of temperature on stability and activity of elongation factor 2 proteins from Antarctic and thermophilic methanogens. J Bacteriol 182:1328–1332PubMedPubMedCentralCrossRefGoogle Scholar
  106. Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Threelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and Italian Alps – description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59PubMedCrossRefGoogle Scholar
  107. Tilbury RH (1980). Xerotolerant (osmophilic) yeasts. In: Skinner FA, Passmore SM, Davenport RR (eds) Biology and activities of yeasts.Academic, London, pp 153–179Google Scholar
  108. Trappen SV, Mergaert J, Eygen SV, Dawyndt P, Cnockaert MC, Swings J (2002) Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst Appl Microbiol 25:603–610PubMedCrossRefGoogle Scholar
  109. Tsuji M (2016) Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. R Soc Open Sci 3:160106PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tsuji M, Yokota Y, Shimohara K, Kudoh S, Hoshino T (2013a) An application of wastewater treatment in a cold environment and stable lipase production of Antarctic basidiomycetous yeast Mrakia blollopis. PLoS One 8(3):e59376PubMedPubMedCentralCrossRefGoogle Scholar
  111. Tsuji M, Fujiu S, Xiao N, Hanada Y, Kudoh S, Kondo H, Tsuda S, Hoshino T (2013b) Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes ice-free area, Antarctica. FEMS Microbiol Lett 346:121–130PubMedCrossRefGoogle Scholar
  112. Tsuji M, Yokota Y, Kudoh S, Hoshino T (2015) Comparative analysis of milk fat decomposition activity by Mrakia spp. isolated from Skarvsnes ice-free area, East Antarctica. Cryobiology 70:293–296PubMedCrossRefGoogle Scholar
  113. Turk M, Plemenita SA, Gunde-Cimerman N (2011) Extremophilic yeasts: plasmamembrane fluidity as determinant of stress tolerance. Fungal Biol 115:950–958PubMedCrossRefGoogle Scholar
  114. Van den Tempel T, Jacobsen M (2000) The technological characteristics of Debaryomyces hansenii and Yarrowia lipolytica and their potential as starter cultures for production of Danablu. Int Dairy J 10:263–270CrossRefGoogle Scholar
  115. Vaz ABM, Rosa LH, Vieira MLA, De Garcia V, Brandão LR, Teixeira LCRS, Moliné M, Libkind D, Van Broock M, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947PubMedPubMedCentralCrossRefGoogle Scholar
  116. Vishniac HS (2006a) A multivariate analysis of soil yeasts isolated from a latitudinal gradient. Microb Ecol 52:90–103PubMedCrossRefGoogle Scholar
  117. Vishniac HS (2006b) Yeast biodiversity in the Antarctic. Biodiversity and ecophysiology of yeasts. Springer, Berlin/Heidelberg, pp 419–440Google Scholar
  118. Welander U (2005) Microbial degradation of organic pollutants in soil in a cold climate. Soil Sediment Contam 14:281–291CrossRefGoogle Scholar
  119. Welthagen JJ, Viljoen BC (1998) Yeast profile in Gouda cheese during processing and ripening. Int J Food Microbiol 41:185–194PubMedCrossRefGoogle Scholar
  120. Williams DL, Pretus HA, McNamee RB, Jones EL, Ensley HE, Browder IW (1992) Development of a water-soluble, sulfated (1→ 3)-ß- D-glucan biological response modifier derived from Saccharomyces cerevisiae. Carbohydr Res 235:247–257PubMedCrossRefGoogle Scholar
  121. Wyder M-T, Puhan Z (1999) Role of selected yeasts in cheese ripening: – an evaluation in aseptic cheese curd slurries. Int Dairy J 9:117–124CrossRefGoogle Scholar
  122. Xiao N, Inaba S, Tojo M, Degawa Y, Fujiu S, Hanada Y, Kudoh S, Hoshino T (2010) Antifreeze activities of various fungi and Stramenophilia isolated from Antarctica. N Am Fungi 5:215–220Google Scholar
  123. Yamauchi K, Kang KH, Kaminogawa S, Komagata K (1975) Effects of yeasts isolated from cheese on the growth of lactic acid bacteria in skim milk. Jap J Zootech Sci 46:73–80Google Scholar
  124. Yanai T, Tsunekawa H, Okamura K & Okamoto R (1994). Manufacture of pyruvic acid with Debaryomyces. JP patent 0 600 091Google Scholar
  125. Yurkov AM, Vustin MM, Tyaglov BV, Maksimova IA, Sineokiy SP (2008) Pigmented basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q 10. Microbiology 77(1):1–6CrossRefGoogle Scholar
  126. Zajc J, Džeroski S, Kocev D, Oren A, Sonjak S, Tkavc R, Gunde-Cimerman N (2014) Chaophilic or chaotolerant fungi: a new category of extremophiles? Front Microbiol 5:708PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zhang H, Hosoi-Tanabe S, Nagata S, Ban S, Imura S (2008) Cultivation and characterization of microorganisms in Antarctic lakes. Conference proceedings, OCEANS Kobe: MTS/IEEE Kobe Techno-Ocean, pp 1–4Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shiv Mohan Singh
    • 1
  • Nitin Adhapure
    • 2
  • Rohit Sharma
    • 3
    Email author
  1. 1.Banaras Hindu University (BHU)VaranasiIndia
  2. 2.Department of Biotechnology and MicrobiologyVivekanand Arts, Sardar Dalip Singh Commerce and Science CollegeAurangabadIndia
  3. 3.National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS)PuneIndia

Personalised recommendations