Marine Fungi as a Potential Source of Future Cosmeceuticals

  • Shivankar Agrawal
  • Sunil K. Deshmukh
  • Colin J. BarrowEmail author


Marine fungi are promising sources of bioactive metabolites. The wide array of fungal metabolites produced depends on the origin of the marine fungi, as their habitats are diverse, including living symbiotically with marine sponges and algae, or found in mangrove and bottom sediments. The metabolites discovered from marine fungi possess a range of biological activities, including antibacterial, antiviral, and anticancer activity. Some metabolites from these fungi have been used in beauty products and cosmetics and form an integral part of anti-acne, antiaging, and skin-whitening formulations. Some bioactives with novel scaffolds or new biological activities, obtained from this group of fungi, warrant further development as cosmeceuticals. The review discussed metabolites obtained from marine fungi that may be useful for beauty health products and cosmeceuticals.


Cosmeceutical Marine fungi Marine natural products Hyperpigmentation Acne 


  1. Aasen IM, Ertesvåg H, Heggeset TMB, Liu B, Brautaset T, Vadstein O, Ellingsen TE (2016) Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol 100:4309–4321PubMedCrossRefGoogle Scholar
  2. Abdel-Lateff A, König GM, Fisch KM, Höller U, Jones PG, Wright AD (2002) New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium sp. J Nat Prod 65:1605–1611PubMedCrossRefGoogle Scholar
  3. Abdel-Lateff A, Fisch KM, Wright AD, König GM (2003a) A new antioxidant isobenzofuranone derivative from the algicolous marine fungus Epicoccum sp. Planta Med 69:831–834PubMedCrossRefGoogle Scholar
  4. Abdel-Lateff A, Klemke C, König GM, Wright AD (2003b) Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. J Nat Prod 66:706–708PubMedCrossRefGoogle Scholar
  5. Adarme-Vega TC, Thomas-Hall SR, Schenk PM (2014) Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol 26:14–18PubMedCrossRefGoogle Scholar
  6. Agrawal S, Adholeya A, Barrow CJ, Deshmukh SK (2018a) In-vitro evaluation of marine derived fungi against Cutibacterium acnes. Anaerobe 49:5–13PubMedCrossRefGoogle Scholar
  7. Agrawal S, Adholeya A, Barrow CJ, Deshmukh SK (2018b) Marine fungi: an untapped bioresource for future cosmeceuticals. Phytochem Lett 23:15–20CrossRefGoogle Scholar
  8. Ambati R, Phang S-M, Ravi S, Aswathanarayana R (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12:128–152PubMedPubMedCentralCrossRefGoogle Scholar
  9. Borse B, Bhat D, Borse K, Tuwar N, Pawar N (2012) Marine fungi of India (monograph). Broadway Publishing House, PanjimGoogle Scholar
  10. Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 91:31–46PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cambon-Bonavita MA, Raguenes G, Jean J, Vincent P, Guezennec J (2002) A novel polymer produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. J Appl Microbiol 93:310–315PubMedCrossRefPubMedCentralGoogle Scholar
  13. Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar Drugs 9:387–446PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen Y, Guo S-D, Xu J, Chen Y-L, Li H-Y, Qi X-H, Mao W-J (2010) Studies on exopolysaccharides from a marine Endogenetic fungus of the sponge (Alternaria sp.). Period Ocean Univ China 5:1–4Google Scholar
  15. Chen M, Fu X-M, Kong C-J, Wang C-Y (2014) Nucleoside derivatives from the marine-derived fungus Aspergillus versicolor. Nat Prod Res 28:895–900PubMedCrossRefGoogle Scholar
  16. Chen H, Huang M, Li X, Liu L, Chen B, Wang J, Lin Y (2018) Phochrodines A-D, first naturally occurring new chromenopyridines from mangrove entophytic fungus Phomopsis sp. 33 Fitoterapia 124:103–107PubMedCrossRefPubMedCentralGoogle Scholar
  17. Courtois A, Berthou C, Guézennec J, Boisset C, Bordron A (2014) Exopolysaccharides isolated from hydrothermal vent bacteria can modulate the complement system. PLoS One 9:e94965PubMedPubMedCentralCrossRefGoogle Scholar
  18. Covington MB (2004) Omega-3 fatty acids. Am Fam Physician 70:133–140PubMedGoogle Scholar
  19. Cui CM, Li XM, Li CS, Sun HF, Gao SS, Wang BG (2009) Benzodiazepine alkaloids from marine-derived endophytic fungus Aspergillus ochraceus. Helv Chim Acta 92:1366–1370CrossRefGoogle Scholar
  20. Day TA, Neale PJ (2002) Effects of UV-B radiation on terrestrial and aquatic primary producers. Annu Rev Ecol Syst 33:371–396CrossRefGoogle Scholar
  21. Deshmukh SK, Prakash V, Ranjan N (2018) Marine fungi: a source of potential anticancer compounds. Front Microbiol 8:2536PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ding LJ, Gu BB, Jiao WH, Yuan W, Li YX, Tang WZ, Yu HB, Liao XJ, Han BN, Li ZY, Xu SH (2015) New furan and cyclopentenone derivatives from the sponge-associated fungus Hypocrea koningii PF04. Mar Drugs 13:5579–5592PubMedPubMedCentralCrossRefGoogle Scholar
  23. Du F-Y, Li X, Li X-M, Zhu L-W, Wang B-G (2017) Indolediketopiperazine alkaloids from Eurotium cristatum EN-220, an endophytic fungus isolated from the marine alga Sargassum thunbergii. Mar Drugs 15:24PubMedCentralCrossRefGoogle Scholar
  24. Dunlap WC, Yamamoto Y (1995) Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Comp Biochem Physiol B: Biochem Mol Biol 112:105–114CrossRefGoogle Scholar
  25. Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398PubMedCrossRefPubMedCentralGoogle Scholar
  26. Giacomoni PU (2008) Advancement in skin aging: the future cosmeceuticals. Clin Dermatol 26:364–366PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gao SS, Li XM, Du FY, Li CS, Proksch P, Wang BG (2011) Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Mar Drugs 9(1):59–70CrossRefGoogle Scholar
  28. Gupta A, Singh D, Barrow CJ, Puri M (2013) Exploring potential use of Australian thraustochytrids for the bioconversion of glycerol to omega-3 and carotenoids production. Biochem Eng J 78:11–17CrossRefGoogle Scholar
  29. Huang Z, Nong X, Ren Z, Wang J, Zhang X, Qi S (2017) Anti-HSV-1, antioxidant and antifouling phenolic compounds from the deep-sea-derived fungus Aspergillus versicolor SCSIO 41502. Bioorg Med Chem Lett 27:787–791PubMedCrossRefPubMedCentralGoogle Scholar
  30. Hutchings JA, Reynolds JD (2004) Marine fish population collapses: consequences for recovery and extinction risk. AIBS Bull 54:297–309Google Scholar
  31. Jouault SC, Chevolot L, Helley D, Ratiskol J, Bros A, Sinquin C, Roger O, Fischer AM (2001) Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus. Biochimica et Biophysica Acta (BBA)-Gen Sub 1528:141–151Google Scholar
  32. Kamauchi H, Noji M, Kinoshita K, Takanami T, Koyama K (2018) Coumarins with an unprecedented tetracyclic skeleton and coumarin dimers from chemically engineered extracts of a marine-derived fungus. Tetrahedron 74:2846–2856CrossRefGoogle Scholar
  33. Kawahara T, Takagi M, Shin-ya K (2012) JBIR-124: a novel antioxidative agent from a marine sponge-derived fungus Penicillium citrinum SpI080624G1f01. J Antibiot 65:45PubMedCrossRefGoogle Scholar
  34. Kim S-K (2016) Marine cosmeceuticals: trends and prospects. CRC Press, Boca Raton, 428 ppCrossRefGoogle Scholar
  35. Kirkwood TB, Holliday R (1979) The evolution of ageing and longevity. Proc R Soc Lond B 205:531–546PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kogej T, Gostinčar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006) Mycosporines in extremophilic fungi—novel complementary osmolytes? Environ Chem 3:105–110CrossRefGoogle Scholar
  37. Kohlmeyer E, Kohlmeyer J (1980) Marine mycology: the higher fungi. JSTORGoogle Scholar
  38. Kot AM, Błażejak S, Kurcz A, Gientka I, Kieliszek M (2016) Rhodotorula glutinis—potential source of lipids, carotenoids, and enzymes for use in industries. Appl Microbiol Biotechnol 100:6103–6117PubMedPubMedCentralCrossRefGoogle Scholar
  39. Leutou AS, Yun K, Kang JS, Son BW (2013) Induced production of methyl bromodihydroxyphenyl acetates by the marine-derived fungus Aspergillus sp. Chem Pharm Bull 61:483–485PubMedCrossRefGoogle Scholar
  40. Leutou AS, Yun K, Son BW (2016a) Induced production of 6, 9-dibromoflavasperone, a new radical scavenging naphthopyranone in the marine-mudflat-derived fungus Aspergillus niger. Arch Pharmacal Res 39:806–810PubMedCrossRefGoogle Scholar
  41. Leutou AS, Yun K, Son BW (2016b) New production of antibacterial polycyclic quinazoline alkaloid, thielaviazoline, from anthranilic acid by the marine-mudflat-derived fungus Thielavia sp. Nat Prod Sci 22:216–219CrossRefGoogle Scholar
  42. Li X, Jeong JH, Lee KT, Rho JR, Choi HD, Kang JS, Son BW (2003) γ-Pyrone derivatives, kojic acid methyl ethers from a marine-derived fungus Alternaria sp. Arch Pharm Res 26:532–534PubMedCrossRefGoogle Scholar
  43. Li Y, Li X, Kang JS, Choi HD, Son BW (2004a) New radical scavenging and ultraviolet-A protecting prenylated dioxopiperazine alkaloid related to isoechinulin A from a marine isolate of the fungus Aspergillus. J Antibiot 57:337–340PubMedCrossRefGoogle Scholar
  44. Li Y, Li X, Kim S-K, Kang JS, Choi HD, Rho JR, Son BW (2004b) Golmaenone, a new diketopiperazine alkaloid from the marine-derived fungus Aspergillus sp. Chem Charmaceut Bull 52:375–376CrossRefGoogle Scholar
  45. Li X, Kim MK, Lee U, Kim S-K, Kang JS, Choi HD, Son BW (2005) Myrothenones A and B, cyclopentenone derivatives with tyrosinase inhibitory activity from the marine-derived fungus Myrothecium sp. Chem Pharm Bull 53:453–455PubMedCrossRefGoogle Scholar
  46. Li X, Kim S-K, Kang JS, Choi HD, Son BW (2006) Radical scavenging hydroxyphenyl ethanoic acid derivatives from a marine-derived fungus. J Microbiol BiotechnolGoogle Scholar
  47. Li X, Li X-M, Xu G-M, Li C-S, Wang B-G (2014) Antioxidant metabolites from marine alga-derived fungus Aspergillus wentii EN-48. Phytochem Lett 7:120–123CrossRefGoogle Scholar
  48. Li HL, Li XM, Li X, Wang CY, Liu H, Kassack MU, Meng LH, Wang BG (2017) Antioxidant hydroanthraquinones from the marine algal-derived endophytic fungus Talaromyces islandicus EN-501. J Nat Prod 80:162–168PubMedCrossRefGoogle Scholar
  49. Maciel OMC, Tavares RSN, Caluz DRE, Gaspar LR, Debonsi HM (2018) Photoprotective potential of metabolites isolated from algae-associated fungi Annulohypoxylon stygium. J Photochem Photobiol B Biol 178:316–322CrossRefGoogle Scholar
  50. Maeda K, Fukuda M (1991) In vitro effectiveness of several whitening cosmetic components in human melanocytes. J Soc Cosmet Chem 42:361–368Google Scholar
  51. Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microbial Cell Factor 13:12CrossRefGoogle Scholar
  52. McCusker MM, Grant-Kels JM (2010) Healing fats of the skin: the structural and immunologic roles of the ω-6 and ω-3 fatty acids. Clin Dermatol 28:440–451PubMedCrossRefPubMedCentralGoogle Scholar
  53. Mourshid SS, Badr JM, Risinger AL, Mooberry SL, Youssef DT (2016) Penicilloitins A and B, new antimicrobial fatty acid esters from a marine endophytic Penicillium species. Zeitschrift für Naturforschung C 71:387–392CrossRefGoogle Scholar
  54. Niu S, Liu D, Hu X, Proksch P, Shao Z, Lin W (2014) Spiromastixones A–O, antibacterial chlorodepsidones from a deep-sea-derived Spiromastix sp. fungus. J Nat Prod 77:1021–1030PubMedCrossRefPubMedCentralGoogle Scholar
  55. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Intl J Mol Sci 13:14002–14015CrossRefGoogle Scholar
  56. Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  57. Pang X, Lin X, Yang J, Zhou X, Yang B, Wang J, Liu Y (2018) Spiro-Phthalides and Isocoumarins isolated from the marine-sponge-derived fungus Setosphaeria sp. SCSIO41009. J Nat Prod 81:1860–1868PubMedCrossRefPubMedCentralGoogle Scholar
  58. Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8:1779–1802PubMedPubMedCentralCrossRefGoogle Scholar
  59. Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–145CrossRefGoogle Scholar
  60. Rastogi RP, Incharoensakdi A (2013) UV radiation-induced accumulation of photoprotective compounds in the green alga Tetraspora sp. CU2551. Plant Physiol Biochem 70:7–13PubMedCrossRefPubMedCentralGoogle Scholar
  61. Řezanka T, Temina M, Tolstikov A, Dembitsky V (2004) Natural microbial UV radiation filters—mycosporine-like amino acids. Folia Microbiol 49:339–352CrossRefGoogle Scholar
  62. Richards TA, Jones MD, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522PubMedCrossRefGoogle Scholar
  63. Rozema J, Boelen P, Blokker P (2005) Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. Environ Pollut 137:428–442PubMedCrossRefPubMedCentralGoogle Scholar
  64. Rukachaisirikul V, Khamthong N, Sukpondma Y, Phongpaichit S, Hutadilok-Towatana N, Graidist P, Sakayaroj J, Kirtikara K (2010) Cyclohexene, diketopiperazine, lactone and phenol derivatives from the sea fan-derived fungi Nigrospora sp. PSU-F11 and PSU-F12. Arch Pharm Res 33:375–380PubMedCrossRefPubMedCentralGoogle Scholar
  65. Saleem M, Ali MS, Hussain S, Jabbar A, Ashraf M, Lee YS (2007) Marine natural products of fungal origin. Nat Prod Rep 24:1142–1152PubMedCrossRefPubMedCentralGoogle Scholar
  66. Scopel M, Abraham W-R, Henriques AT, Macedo AJ (2013) Dipeptide cis-cyclo (Leucyl-Tyrosyl) produced by sponge associated Penicillium sp. F37 inhibits biofilm formation of the pathogenic Staphylococcus epidermidis. Bioorg Med Chem Lett 23:624–626PubMedCrossRefPubMedCentralGoogle Scholar
  67. Silber J, Ohlendorf B, Labes A, Erhard A, Imhoff J (2013) Calcarides A–E, antibacterial macrocyclic and linear polyesters from a Calcarisporium strain. Marine Ddrugs 11:3309–3323CrossRefGoogle Scholar
  68. Solomon KR (2008) Effects of ozone depletion and UV-B radiation on humans and the environment. Atmosphere-Ocean 46:185–202CrossRefGoogle Scholar
  69. Suen YL, Tang H, Huang J, Chen F (2014) Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin. J Agric Food Chem 62:12392–12398PubMedCrossRefGoogle Scholar
  70. Sun C, Wang J-W, Fang L, Gao X-D, Tan R-X (2004) Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. Life Sci 75:1063–1073PubMedCrossRefGoogle Scholar
  71. Sun K, Chen Y, Niu Q, Zhu W, Wang B, Li P, Ge X (2016) An exopolysaccharide isolated from a coral-associated fungus and its sulfated derivative activates macrophages. Int J Biol Macromol 82:387–394PubMedCrossRefGoogle Scholar
  72. Sun Y, Liu J, Li L, Gong C, Wang S, Yang F, Hua H, Lin H (2018) New butenolide derivatives from the marine sponge-derived fungus Aspergillus terreus. Bioorg Med Chem Lett 28:315–318PubMedCrossRefGoogle Scholar
  73. Suresh Kumar A, Mody K, Jha B (2007) Bacterial exopolysaccharides–a perception. J Basic Microbiol 47:103–117CrossRefGoogle Scholar
  74. Tan C, Liu Z, Chen S, Huang X, Cui H, Long Y, Lu Y, She Z (2016) Antioxidative polyketones from the mangrove-derived fungus ascomycota sp. SK2YWS-L. Sci Rep 6:36609PubMedPubMedCentralCrossRefGoogle Scholar
  75. Tsuchiya T, Yamada K, Minoura K, Miyamoto K, Usami Y, Kobayashi T, Hamada-Sato N, Imada C, Tsujibo H (2008) Purification and determination of the chemical structure of the tyrosinase inhibitor produced by Trichoderma viride strain H1-7 from a marine environment. Biol Pharm Bull 31:1618–1620PubMedCrossRefGoogle Scholar
  76. Vílchez C, Forján E, Cuaresma M, Bédmar F, Garbayo I, Vega JM (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9:319–333PubMedPubMedCentralCrossRefGoogle Scholar
  77. Wang Y-N, Tian L, Hua H-M, Lu X, Sun S, Wu H-H, Pei Y-H (2009) Two new compounds from the broth of the marine fungus Penicillium griseofulvum Y19-07. J Asian Nat Prod Res 11:912–917PubMedCrossRefGoogle Scholar
  78. Wang X, Wang H, Liu T, Xin Z (2014) A PKS I gene-based screening approach for the discovery of a new polyketide from Penicillium citrinum Salicorn 46. Appl Microbiol Biotechnol 98:4875–4885. Scholar
  79. Wang J, Ding W, Wang R, Du Y, Liu H, Kong X, Li C (2015) Identification and bioactivity of compounds from the mangrove endophytic fungus Alternaria sp. Mar Drugs 13:4492–4504. Scholar
  80. Wang H, Hong J, Yin J, Liu J, Liu Y, Choi JS, Jung JH (2016) Paecilonic acids A and B, bicyclic fatty acids from the jellyfish-derived fungus Paecilomyces variotii J08NF-1. Bioorg Med Chem Lett 26:2220–2223PubMedCrossRefGoogle Scholar
  81. Wickens AP (2001) Ageing and the free radical theory. Respir Physiol 128:379–391PubMedCrossRefGoogle Scholar
  82. Wu B, Wu X, Sun M, Li M (2013) Two novel tyrosinase inhibitory sesquiterpenes induced by CuCl2 from a marine-derived fungus Pestalotiopsis sp. Z233. Marine Drugs 11:2713–2721PubMedPubMedCentralCrossRefGoogle Scholar
  83. Wu B, Oesker V, Wiese J, Schmaljohann R, Imhoff J (2014) Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar Drugs 12:1208–1219PubMedPubMedCentralCrossRefGoogle Scholar
  84. Wynn JP, Ratledge C (2005) Microbial production of oils and fats. In: Food biotechnology. CRC Press, Boca Raton, pp 459–488Google Scholar
  85. Xiao Z, Chen S, Cai R, Lin S, Hong K, She Z (2016) New furoisocoumarins and isocoumarins from the mangrove endophytic fungus Aspergillus sp. 085242. Beilstein J Org Chem 12:2077–2085. Scholar
  86. Xu L-L, Zhang C-C, Zhu X-Y, Cao F, Zhu H-J (2017) Bioactive phenyl ether derivatives from the marine-derived fungus Aspergillus carneus. Nat Prod Res 31:1875–1879PubMedCrossRefPubMedCentralGoogle Scholar
  87. Xu J, Liu P, Li X, Gan L, Wang P (2018) Novel stemphol derivatives from a marine fungus Pleospora sp. Nat Product Res:1–7Google Scholar
  88. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174PubMedPubMedCentralCrossRefGoogle Scholar
  89. Yun K, Kondempudi CM, Choi HD, Kang JS, Son BW (2011) Microbial mannosidation of bioactive chlorogentisyl alcohol by the marine-derived fungus Chrysosporium synchronum. Chem Pharm Bull 59:499–501PubMedCrossRefPubMedCentralGoogle Scholar
  90. Yun K, Feng Z, Choi HD, Kang JS, Son BW (2013) New production of (R)-(−)-5-bromomellein, a dihydroisocoumarin derivative from the marine-derived fungus Aspergillus ochraceus. Chem Nat Compd 49:24–26CrossRefGoogle Scholar
  91. Ze-Hong W, Dong L, Ying X, Jian-Liang C, Wen-Han L (2018) Antioxidant xanthones and anthraquinones isolated from a marine-derived fungus Aspergillus versicolor. Chin J Nat Med 16:219–224Google Scholar
  92. Zeng Y-B, Wang H, Zuo W-J, Zheng B, Yang T, Dai H-F, Mei W-L (2012) A fatty acid glycoside from a marine-derived fungus isolated from mangrove plant Scyphiphora hydrophyllacea. Mar Drugs 10:598–603PubMedPubMedCentralCrossRefGoogle Scholar
  93. Zhang D, Li X, Kang JS, Choi HD, Son BW (2007) A new α-Pyrone derivative, 6-[(E)-Hept-1-enyl]-α-pyrone, with Tyrosinase inhibitor activity from a marine isolate of the fungus Botrytis. Bull Kor Chem Soc 28:887CrossRefGoogle Scholar
  94. Zhang D, Yang X, Kang JS, Choi HD, Son BW (2008) Circumdatin I, a new ultraviolet-A protecting benzodiazepine alkaloid from a marine isolate of the fungus Exophiala. J Antibiot 61:40–42PubMedCrossRefPubMedCentralGoogle Scholar
  95. Zhang P, Meng L-H, Mándi A, Li X-M, Kurtán T, Wang B-G (2015) Structure, absolute configuration, and conformational study of resorcylic acid derivatives and related congeners from the fungus Penicillium brocae. RSC Adv 5:39870–39877. Scholar
  96. Zhong W, Wang J, Wei X, Chen Y, Fu T, Xiang Y, HuangX TX, Xiao Z, Zhang W, Zhang S, Long L, Wang F (2018) Variecolortins A–C, three pairs of spirocyclic diketopiperazine enantiomers from the marine-derived fungus Eurotium sp. SCSIO F452. Org Lett 20:4593–4596PubMedCrossRefPubMedCentralGoogle Scholar
  97. Zhou J, Diao X, Wang T, Chen G, Lin Q, Yang X, Xu J (2018) Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PLoS One 13:e0197359PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ziboh VA, Miller CC, Cho Y (2000). Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites. Am J Clin Nutr 71:361s–366sPubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shivankar Agrawal
    • 1
    • 2
    • 3
  • Sunil K. Deshmukh
    • 4
  • Colin J. Barrow
    • 2
    Email author
  1. 1.TERI-Deakin Nano Biotechnology Centre, Biotechnology and Management of Bioresources DivisionThe Energy and Resources InstituteNew DelhiIndia
  2. 2.Centre for Chemistry and Biotechnology (CCB), School of Life and Environmental SciencesDeakin UniversityWaurn PondsAustralia
  3. 3.Indian Council of Medical Research (ICMR)DelhiIndia
  4. 4.Biotech & Management of Bioresources DivThe Energy and Resources InstituteNew DelhiIndia

Personalised recommendations