Modulation of Fungal Metabolome by Biotic Stress

  • Geane Pereira de Oliveira
  • Bruna de Almeida Martins
  • Matheus Thomaz Nogueira Silva Lima
  • Jacqueline Aparecida TakahashiEmail author


Filamentous fungi are ubiquitous microorganisms well known as one of the major sources of pharmaceuticals and other biotechnologically useful compounds. The amazing structural diversity of fungal secondary metabolites results from years of coevolution that selected unique mechanisms of resistance and communication in specific environments or in biotic relationships. Metabolite production is controlled by transcriptional regulation, and the production of carbon-based compounds is usually restricted to opportune situations. The dynamic nature of fungal metabolism consists on a complex in vivo process regulated by interactions between gene networks, but it can be modulated by generation of in vitro biotic stress. Both in vivo and in vitro interactions trigger activation of cryptic genes leading to changes in the fungal metabolic expression such as elicitation of new metabolite production, increase or minimization of the biosynthetic pathways, or even inhibition of some metabolic routes. While biosynthesis diversification and yield improvement are interesting tools for producing bioactive compounds, metabolite suppression can be used as a biotechnologically useful tool for decreasing toxin production. This review discusses the production of secondary metabolites by filamentous fungi under different natural biotic stresses caused by algae, bacteria, plants, and other organisms and the in vitro mimetization of these interactions leading to cryptic gene expression.


Bioactive compounds Biotic stress Fungal metabolites Metabolome diversification 



The authors gratefully acknowledge financial support from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG CEX APQ 02604/16), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant # 304922/2018-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and National Institute of Science and Technology - INCT BioNat, grant # 465637/2014-0, Brazil.


  1. Abanda-Nkpwatt D, Krimm U, Coiner HA, Schreiber L, Schwab W (2006) Plant volatiles can minimize the growth suppression of epiphytic bacteria by the phytopathogenic fungus Botrytis cinerea in co-culture experiments. Environ Exp Bot 56:108–119CrossRefGoogle Scholar
  2. Aguieiras ECG, Cavalcanti-Oliveira ED, Freire DMG (2015) Current status and new developments of biodiesel production using fungal lipases. Fuel 159:52–67CrossRefGoogle Scholar
  3. Aisyah S, Gruppen H, Madzora B, Vincken JP (2013) Modulation of isoflavonoid composition of Rhizopus oryzae elicited soybean (Glycine max) seedlings by light and wounding. J Agric Food Chem 61:8657–8667PubMedCrossRefGoogle Scholar
  4. Aisyah S, Gruppen H, Slager M, Helmink B, Vincken JP (2015) Modification of prenylated stilbenoids in peanut (Arachis hypogaea) seedlings by the same fungi that elicited them: the fungus strikes back. J Agric Food Chem 63:9260–9268PubMedCrossRefGoogle Scholar
  5. Albert S, Chauhan D, Pandya B, Padhiar A (2011) Screening of Trichoderma spp. as potential fungal partner in co-culturing with white rot fungi for efficient bio-pulping. Global J Biotech Biochem 6:95–101Google Scholar
  6. Andrade-Domínguez A, Salazar E, Vargas-Lagunas MC, Kolter R, Encarnación S (2014) Eco-evolutionary feedbacks drive species interactions. ISME J 8:1041–1054PubMedCrossRefGoogle Scholar
  7. Aptroot A, Cáceres MES (2014) New lichen species from termite nests in rainforest in Brazilian Rondônia and adjacent Amazonas. Lichenologist 46:365–372CrossRefGoogle Scholar
  8. Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297PubMedCrossRefGoogle Scholar
  9. Bačkorová M, Jendželovský R, Kello M, Bačkor M, Mikeš J, Fedoročko P (2012) Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol In Vitro 26:462–468PubMedCrossRefGoogle Scholar
  10. Baldi A, Jain A, Gupta N (2008) Co-culture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report. Biotechnol Lett 30:1671–1677PubMedCrossRefGoogle Scholar
  11. Baldi A, Srivastava AK, Bisaria VS (2009) Fungal elicitors for enhanced production of secondary metabolites in plant cell suspension cultures. In: Varma A, Kharkwal AC (eds) Symbiotic Fungi. Springer, Berlin/Heidelberg, pp 373–380CrossRefGoogle Scholar
  12. Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506PubMedCrossRefGoogle Scholar
  13. Bertrand S, Schumpp O, Bohni N, Bujard A, Azzollini A, Monod M, Gindro K, Wolfender JL (2013a) Detection of metabolite induction in fungal co-cultures on solid media by high-throughput differential ultra-high pressure liquid chromatography-time-of-flight mass spectrometry fingerprinting. J Chromatogr A 1292:219–228PubMedCrossRefGoogle Scholar
  14. Bertrand S, Schumpp O, Bohni N, Monod M, Gindro K, Wolfender JL (2013b) De novo production of metabolites by fungal co-culture of Trichophyton rubrum and Bionectria ochroleuca. J Nat Prod 76:1157–1165PubMedCrossRefGoogle Scholar
  15. Bertrand S, Azzollini A, Schumpp O, Bohni N, Schrenzel J, Monod M, Gindro K, Wolfender JL (2014a) Multi-well fungal co-culture for de novo metabolite-induction in time-series studies based on untargeted metabolomics. Mol BioSyst 10:2289–2298PubMedCrossRefGoogle Scholar
  16. Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL (2014b) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204PubMedCrossRefGoogle Scholar
  17. Bjerke JW, Elvebakk A, Domínguez E, Dahlback A (2005) Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flavocetraria nivalis. Phytochemistry 66:337–344PubMedCrossRefGoogle Scholar
  18. Bohni N, Hofstetter V, Gindro K, Buyck B, Schumpp O, Bertrand S, Monod M, Wolfender JL (2016) Production of fusaric acid by Fusarium spp. in pure culture and in solid medium co-cultures. Molecules 21:370PubMedPubMedCentralCrossRefGoogle Scholar
  19. Boustie J, Grube M (2005) Lichens – a promising source of bioactive secondary metabolites. Plant Genet Resour 3:273–287CrossRefGoogle Scholar
  20. Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32PubMedCrossRefGoogle Scholar
  21. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22PubMedCrossRefGoogle Scholar
  22. Brakhage AA, Thön M, Spröte P, Scharf DH, Al-Abdallah Q, Wolke SM, Hortschansky P (2009) Aspects on evolution of fungal β-lactam biosynthesis gene clusters and recruitment of trans-acting factors. Phytochemistry 70:1801–1811PubMedCrossRefGoogle Scholar
  23. Bugni TS, Andjelic CD, Pole AR, Rai P, Ireland CM, Barrows LR (2009) Biologically active components of a Papua New Guinea analgesic and anti-inflammatory lichen preparation. Fitoterapia 80:270–273PubMedPubMedCentralCrossRefGoogle Scholar
  24. Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459PubMedPubMedCentralCrossRefGoogle Scholar
  25. Candan M, Yılmaz M, Tay T, Aysen A, Türk Ö (2007) Antimicrobial activity of extracts of the lichen Parmelia sulcata and its salazinic acid constituent. Z Naturforsch C 62:619–621PubMedCrossRefGoogle Scholar
  26. Chatterjee S, Kuang Y, Splivallo R, Chatterjee P, Karlovsky P (2016) Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: fungal biomass, diversity of secreted metabolites and fumonisin production. BMC Microbiol 16:1–13CrossRefGoogle Scholar
  27. Chen H, Daletos G, Abdel-Aziz MS, Thomy D, Dai H, Brotz-Oesterhelt H, Lin W, Proksch P (2015) Inducing secondary metabolite production by the soil-dwelling fungus Aspergillus terreus through bacterial co-culture. Phytochem Lett 12:35–41CrossRefGoogle Scholar
  28. Cheng YF, Jin W, Mao SY, Zhu WY (2013) Production of citrate by anaerobic fungi in the presence of co-culture methanogens as revealed by 1H NMR spectrometry. Asian-Australas J Anim Sci 26:1416–1423PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cocchietto M, Skert N, Nimis P, Sava G (2002) A review on usnic acid, an interesting natural compound. Naturwissenschaften 89:137–146PubMedCrossRefGoogle Scholar
  30. Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64:1444–1446PubMedCrossRefPubMedCentralGoogle Scholar
  31. da Silva RA, Polonio JC, Costa AT, Santos CM, Rhoden SA, Azevedo JL, Pamphile JA (2018) Bioprospection of culturable endophytic fungi associated with the ornamental plant Pachystachys lutea. Curr Microbiol 75:588–596CrossRefGoogle Scholar
  32. Davies KM, Schwinn KE (2003) Transcriptional regulation of secondary metabolism. Funct Plant Biol 30:913–925CrossRefGoogle Scholar
  33. Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Pietro AD, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430PubMedPubMedCentralCrossRefGoogle Scholar
  34. Denardi-Souza T, Massarolo KC, Tralamazza SM, Badiale-Furlong E (2018) Monitoring of fungal biomass changed by Rhizopus oryzae in relation to amino acid and essential fatty acids profile in soybean meal, wheat and rice. CYTA – J Food 16:156–164CrossRefGoogle Scholar
  35. Dighton J, White JF (2016) The fungal community: its organization and role in the ecosystem, 4th edn. CRC Press Taylor and Francis, Boca Raton, p 597Google Scholar
  36. Dimijian GG (2000) Evolving together: the biology of symbiosis, part 1. Proc (Bayl Univ Med Cent) 13:217–226CrossRefGoogle Scholar
  37. Divakar PK, Crespo A, Wedin M, Leavitt SD, Hawksworth DL, Myllys L, McCune B, Randlane T, Bjerke JW et al (2015) Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi. New Phytol 208:1217–1226PubMedCrossRefPubMedCentralGoogle Scholar
  38. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847PubMedPubMedCentralCrossRefGoogle Scholar
  39. Douglas AE (2010) The symbiotic habit. Princeton University Press, Princeton, p 202Google Scholar
  40. Ebrahim W, El-Neketi M, Lewald LI, Orfali RS, Lin W, Rehberg N, Kalscheuer R, Daletos G, Proksch P (2016) Metabolites from the fungal endophyte Aspergillus austroafricanus in axenic culture and in fungal−bacterial mixed cultures. J Nat Prod 79:914–922PubMedCrossRefPubMedCentralGoogle Scholar
  41. Einarsdóttir E, Groeneweg J, Björnsdóttir G, Harðardottir G, Omarsdóttir S, Ingólfsdóttir K, Ögmundsdóttir H (2010) Cellular mechanisms of the anticancer effects of the lichen compound usnic acid. Planta Med 76:969–974PubMedCrossRefPubMedCentralGoogle Scholar
  42. Eisenreich W, Knispel N, Beck A (2011) Advanced methods for the study of the chemistry and the metabolism of lichens. Phytochem Rev 10:445–456CrossRefGoogle Scholar
  43. Eskin NAM, Shahidi F (2013) Biochemistry of foods, 3rd edn. Academic, Amsterdam, p 584Google Scholar
  44. Falconer RE, Bown JL, White NA, Crawford JW (2008) Modelling interactions in fungi. J R Soc Interface 5:603–615PubMedCrossRefPubMedCentralGoogle Scholar
  45. Fang W, Azimzadeh P, Leger RJ (2012) Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Curr Opin Microbiol 15:232–238PubMedCrossRefPubMedCentralGoogle Scholar
  46. Fillinger S, Elad Y (2016) Botrytis – the fungus, the pathogen and its Management in Agricultural Systems. Springer, Cham, p 486CrossRefGoogle Scholar
  47. Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487PubMedCrossRefPubMedCentralGoogle Scholar
  48. Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 48:4360–4365PubMedPubMedCentralCrossRefGoogle Scholar
  49. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240PubMedCrossRefPubMedCentralGoogle Scholar
  50. George TS, Dou D, Wang X (2016) Plant–microbe interactions: manipulating signals to enhance agricultural sustainability and environmental security. Plant Growth Regul 80:1–3CrossRefGoogle Scholar
  51. Ghosh S, Chowdhury R, Bhattacharya P (2016) Mixed consortia in bioprocesses: role of microbial interactions. Appl Microbiol Biotechnol 100:4283–4295PubMedCrossRefGoogle Scholar
  52. Giri CC, Zaheer M (2016) Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell Tissue Organ Cult 126:1–18CrossRefGoogle Scholar
  53. Gloer JB (1995) The chemistry of fungal antagonismo and defense. Can J Bot 73:1265–1274CrossRefGoogle Scholar
  54. Goel M, Dureja P, Rani A, Uniyal PL, Laatsch H (2011) Isolation, characterization and antifungal activity of major constituents of the himalayan lichen Parmelia reticulata Tayl. J Agric Food Chem 59:2299–2307PubMedCrossRefGoogle Scholar
  55. Grayer RJ, Kokubun T (2001) Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 56:253–263PubMedCrossRefGoogle Scholar
  56. Grube M, Berg G (2010) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23:72–85CrossRefGoogle Scholar
  57. Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9:412–424PubMedCrossRefGoogle Scholar
  58. Hajong S, Kumaria S, Tandon P (2013) Compatible fungi, suitable medium, and appropriate developmental stage essential for stable association of Dendrobium chrysanthum. J Basic Microbiol 53:1025–1033PubMedCrossRefPubMedCentralGoogle Scholar
  59. Hertweck C (2009) The biosynthetic logic of Polyketide diversity. Angew Chem Int Ed Engl 48:4688–4716PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hewage RT, Aree T, Mahidol C, Ruchirawat S, Kittakoop P (2014) One strain-many compounds (OSMAC) method for production of polyketides, azaphilones, and an isochromanone using the endophytic fungus Dothideomycete sp. Phytochemistry 108:87–94PubMedCrossRefGoogle Scholar
  61. Ingólfsdóttir K (2002) Usnic acid. Phytochemistry 61:729–736PubMedCrossRefGoogle Scholar
  62. Jiao J, Gai Q-Y, Wang W, Zang Y-P, Niu L-L, Fu Y-J, Wang X (2018) Remarkable enhancement of flavonoid production in a co-cultivation system of Isatis tinctoria L. hairy root cultures and immobilized Aspergillus niger. Ind Crop Prod 112:252–261CrossRefGoogle Scholar
  63. Jin L, Quan C, Hou X, Fan S (2016) Potential pharmacological resources: natural bioactive compounds from marine-derived fungi. Mar Drugs 76:1–25CrossRefGoogle Scholar
  64. Kaasalainen U, Fewer DP, Jokela J, Wahlsten M, Sivonen K, Rikkinen J (2012) Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc Natl Acad Sci U S A 109:5886–5891PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kampa A, Gagunashvili AN, Gulder TA, Morinaka BI, Daolio C, Godejohann M, Miao VP, Piel J, Andrésson Ó (2013) Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses. Proc Natl Acad Sci U S A 110:129–137CrossRefGoogle Scholar
  66. Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol 3:937–947PubMedCrossRefGoogle Scholar
  67. Kim SH, Vujanovic V (2017) Biodegradation and biodetoxification of Fusarium mycotoxins by Sphaerodes mycoparasitica. AMB Express 7:1–9CrossRefGoogle Scholar
  68. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087PubMedCrossRefGoogle Scholar
  69. König CC, Scherlach K, Schroeckh V, Horn F, Nietzsche S, Brakhage AA, Hertweck C (2013) Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus. Chembiochem 14:938–942PubMedCrossRefGoogle Scholar
  70. Kowalski M, Hausner G, Piercey-normore MD (2011) Bioactivity of secondary metabolites and thallus extracts from lichen fungi. Mycoscience 52:413–418CrossRefGoogle Scholar
  71. Kroymann J (2011) Natural diversity and adaptation in plant secondary metabolism. Curr Opin Plant Biol 14:246–251PubMedCrossRefGoogle Scholar
  72. Kümmritz S, Louis M, Haas C, Oehmichen F, Gantz S, Delenk H, Steudler S, Bley T, Steingroewer J (2016) Fungal elicitors combined with a sucrose feed significantly enhance triterpene production of a Salvia fruticosa cell suspension. Appl Microbiol Biotechnol 100:7071–7082PubMedCrossRefGoogle Scholar
  73. Kurosawa K, Ghiviriga I, Sambandan TG, Lessard PA, Barbara JE, Rha C, Sinskey AJ (2008) Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J Am Chem Soc 130:1126–1127PubMedCrossRefGoogle Scholar
  74. Li J, Wang J, Li J, Liu D, Li H, Gao W, Li J, Liu S (2015) Aspergillus niger enhance bioactive compounds biosynthesis as well as expression of functional genes in adventitious roots of Glycyrrhiza uralensis Fisch. Appl Biochem Biotechnol 178:576–593PubMedCrossRefGoogle Scholar
  75. Li J, Liu S, Wang J, Li J, Liu D, Li J, Gao W (2016) Fungal elicitors enhance ginsenosides biosynthesis, expression of functional genes as well as signal molecules accumulation in adventitious roots of Panax ginseng CA Mey. J Biotechnol 239:106–114PubMedCrossRefGoogle Scholar
  76. Ligon BL (2004) Penicillin: its discovery and early development. Semin Pediatr Infect Dis 15:52–57PubMedCrossRefGoogle Scholar
  77. Lima GS, Rocha AM, Santos GF, Silva AF, Marriel IE, Takahashi JA (2018a) Metabolic response of Aspergillus sydowii to OSMAC modulation produces acetylcholinesterase inhibitors. Phytochem Lett 24:39–45CrossRefGoogle Scholar
  78. Lima MTNS, dos Santos LB, Bastos RW, Nicoli JR, Takahashi JA (2018b) Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi. Braz J Microbiol 49:169–176PubMedCrossRefPubMedCentralGoogle Scholar
  79. Liu X, Ashforth E, Ren B, Song F, Dai H, Liu M, Wang J, Xie Q, Zhang L (2010) Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J Antibiot 63:415–422PubMedCrossRefGoogle Scholar
  80. Luo H, Li C, Kim JC, Liu Y, Jung JS, Koh YJ, Hur J-S (2013) Biruloquinone, an acetylcholinesterase inhibitor produced by lichen-forming fungus Cladonia macilenta. J Microbiol Biotechnol 23:161–166PubMedCrossRefGoogle Scholar
  81. Magan N, Aldred D (2007) Why do fungi produce mycotoxins? In: Dijksterhuis J, Samson RA (eds) Food mycology: a multifaceted approach to Fungi and food. CRC Press, Boca Raton, pp 121–133Google Scholar
  82. Manojlović N, Ranković B (2012) Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine 19:1166–1172PubMedCrossRefGoogle Scholar
  83. Marcet-Houben M, Gabaldón T (2016) Horizontal acquisition of toxic alkaloid synthesis in a clade of plant associated fungi. Fungal Genet Biol 86:71–80PubMedPubMedCentralCrossRefGoogle Scholar
  84. Marmann A, Aly A, Lin W, Wang B, Proksch P (2014) Co-cultivation – a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12:1043–1065PubMedPubMedCentralCrossRefGoogle Scholar
  85. Melo MG, dos Santos JP, Serafini MR, Caregnato FF, Pasquali MA, Rabelo TK, da Rocha RF, Jr Quintans L, Araújo AA, da Silva FA, Moreira JC, Gelain DP (2011) Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite. Toxicol In Vitro 25:462–468PubMedCrossRefGoogle Scholar
  86. Minty JJ, Singer ME, Scholz SA, Bae C-H, Ahn J-H, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. PNAS 110:14592–14597PubMedCrossRefGoogle Scholar
  87. Molnár K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch C 65:157–173PubMedCrossRefGoogle Scholar
  88. Mushegian AA, Peterson CN, Baker CM, Pringle A (2011) Bacterial diversity across individual lichens. J Appl Environ Microbiol 77:4249–4252CrossRefGoogle Scholar
  89. Nielsen KF, Holm G, Uttrup LP, Nielsen PA (2004) Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. Int Biodeterior Biodegradation 54:325–336CrossRefGoogle Scholar
  90. Niu J, Arentshorst M, Nair PDS, Dai Z, Baker SE, Frisvad JC Ram AFJ (2015) Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites. G3 6:193–204Google Scholar
  91. Nuetzmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schümann J, Hertweck C, Strauss J, Brakhage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci U S A 108:14282–14287CrossRefGoogle Scholar
  92. Oh DC, Jensen PR, Kauffman CA, Fenical W (2005) Libertellenones A–D: induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorg Med Chem 13:5267–5273PubMedCrossRefGoogle Scholar
  93. Oh DC, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70:515–520PubMedCrossRefGoogle Scholar
  94. Okuyama E, Umeyama K, Yamazaki M, Kinoshita Y, Yamamoto Y (1995) Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta. Planta Med 61:113–115PubMedCrossRefGoogle Scholar
  95. Osbourn A (2010) Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet 26:449–457PubMedCrossRefGoogle Scholar
  96. Paranagama PA, Wijeratne EMK, Gunatilaka AAL (2007) Uncovering biosynthetic potential of plant-associated fungi: effect of culture conditions on metabolite production by Paraphaeosphaeria quadriseptata and Chaetomium chiwersii. J Nat Prod 70:1939–1945PubMedCrossRefGoogle Scholar
  97. Pompilio A, Pomponio S, Di Vincenzo V, Crocetta V, Nicoletti M, Piovano M, Garbarino JA, Di Bonaventura G (2013) Antimicrobial and antibiofilm activity of secondary metabolites of lichens against methicillin-resistant Staphylococcus aureus strains from cystic fibrosis patients. Future Microbiol 8:281–292PubMedCrossRefGoogle Scholar
  98. Punt PJ, Biezen N, Conesa A, Albers A, Mangnus J, Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206PubMedCrossRefGoogle Scholar
  99. Qin Y, Pan X, Kubicek C, Druzhinina I, Chenthamara K, Labbé J, Yuan Z (2017) Diverse plant-associated pleosporalean fungi from saline areas: ecological tolerance and nirogen-status dependent effects on plant growth. Front Microbiol 8:1–14Google Scholar
  100. Quispel A (1951) Some theoretical aspects of symbiosis. Antonie Van Leeuwenhoek 17:69–80PubMedCrossRefGoogle Scholar
  101. Ranković B, Kosanić M (2015) Lichens as a potential source of bioactive secondary metabolites. In: Ranković B (ed) Lichen secondary metabolites. Springer, Cham, pp 1–26Google Scholar
  102. Rayner A (1988) Life in a collectivelessons from the fungi. New Scientist 120:49–53Google Scholar
  103. Reddy RG, Veeraval L, Maitra S, Chollet-Krugler M, Tomasi S, Dévéhat FL-L, Boustie J, Chakravarty S (2016) Lichen-derived compounds show potential for central nervous system therapeutics. Phytomedicine 23:1527–1534PubMedCrossRefGoogle Scholar
  104. Reignault P, Kunz C, Delage N, Moreau E, Vedel R, Hamada W, Bompeix G, Boccara M (2000) Host and symptom-specific pectinase isozymes produced by wild-type strains and pathogenicity-altered transformants of Botrytis cinerea. Mycol Res 104:421–428CrossRefGoogle Scholar
  105. Reignault P, Valette-Collet O, Boccara M (2008) The importance of fungal pectinolytic enzymes in plant invasion, host adaptability and symptom type. Eur J Plant Pathol 120:1–11CrossRefGoogle Scholar
  106. Resende MLV, Salgado SML, Chaves ZM (2003) Espécies ativas de oxigênio na resposta de defesa de plantas a patógenos. Fitopatol Bras 28:123–130CrossRefGoogle Scholar
  107. Romão-Dumaresq AS, Dourado MN, Fávaro LCL, Mendes R, Ferreira A, Araújo WL (2016) Diversity of cultivated fungi associated with conventional and transgenic sugarcane and the interaction between endophytic Trichoderma virens and the host plant. PLoS One 11:e0158974PubMedPubMedCentralCrossRefGoogle Scholar
  108. Roossinck MJ (2005) Symbiosis versus competition in plant virus evolution. Nat Rev Microbiol 3:917–924PubMedCrossRefGoogle Scholar
  109. Sandland GJ, Rodgers JK, Minchella DJ (2007) Interspecific antagonismand virulence in hosts exposed to two parasite species. J Invertebr Pathol 96:43–47PubMedCrossRefGoogle Scholar
  110. Sapp J (1994) Evolution by association: a history of Symbiosis. Oxford University Press, New York, p 272Google Scholar
  111. Scherlach K, Hertweck C (2018) Mediators of mutualistic microbe–microbe interactions. Nat Prod Rep 25:303–308CrossRefGoogle Scholar
  112. Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367CrossRefGoogle Scholar
  113. Schroeckh V, Scherlach K, Nuetzmann HW, Shelest E, Schmid T-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A 106:14558–14563PubMedPubMedCentralCrossRefGoogle Scholar
  114. Seppelt RD, Türk R, Green TGA, Moser G, Pannewitz S, Sancho LG, Schroeter B (2010) Lichen and moss communities of Botany Bay, Granite Harbour, Ross Sea, Antarctica. Antarct Sci 22:691–702CrossRefGoogle Scholar
  115. Shang Z, Salim AA, Capon RJ (2017) Chaunopyran A: co-cultivation of marine mollusk-derived fungi activates a rare class of 2-alkenyl-tetrahydropyran. J Nat Prod 80:1167–1172PubMedCrossRefGoogle Scholar
  116. Shukla V, Joshi GP, Rawat MSM (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9:303–314CrossRefGoogle Scholar
  117. Shwab EK, Keller NP (2008) Regulation of secondary metabolite production in filamentous ascomycetes. Mycol Res 112:225–230PubMedCrossRefGoogle Scholar
  118. Silva GH, Oliveira CM, Teles HL, Pauletti PM, Castro-Gamboa I, Silva DHS, Bolzani VS, Young MCM, Costa-Neto CM, Pfenning LH, Berlinck RGS, Araujo AR (2010) Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperaceae). Phytochem Lett 3:164–167CrossRefGoogle Scholar
  119. Sirrenberg A, Göbel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 131:581–589PubMedCrossRefGoogle Scholar
  120. Solhaug KA, Lind M, Nybakken L, Gauslaa Y (2009) Possible functional roles of cortical depsides and medullary depsidones in the foliose lichen Hypogymnia physodes. Flora – Morphol Distrib Funct Ecol Pl 204:40–48Google Scholar
  121. Spatafora JW, Bushley KE (2015) Phylogenomics and evolution of secondary metabolism in plant-associated fungi. Curr Opin Plant Biol 26:37–44PubMedCrossRefGoogle Scholar
  122. Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Toome-Heller M, Thor G, Mayrhofer H, Johannesson H, McCutcheon JP (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–492PubMedPubMedCentralCrossRefGoogle Scholar
  123. Stierle AA, Stierle DB, Decato D, Priestley ND, Alverson JB, Hoody J, Mcgrath K, Klepacki D (2017) The berkeleylactones, antibiotic macrolides from fungal coculture. J Nat Prod 80:1150–1160PubMedPubMedCentralCrossRefGoogle Scholar
  124. Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188–200PubMedCrossRefGoogle Scholar
  125. Suzuki MT, Parrot D, Berg G, Grube M, Tomasi S (2016) Lichens as natural sources of biotechnologically relevant bacteria. Appl Microbiol Biotechnol 100:583–595PubMedCrossRefGoogle Scholar
  126. Teixeira PJPL, Thomazella DPT, Vidal RO, PFV d P, Reis O, Baroni RM, Franco SF, Mieczkowski P, GAG P, JMC M (2012) The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao. PLoS One 7:e45929PubMedPubMedCentralCrossRefGoogle Scholar
  127. Teles APC, Ataliba GS, Takahashi JA (2012) Modulation of Paecilomyces lilacinus antimicrobial metabolite production by co-culturing with Salmonella typhimurium. Nat Prod Res (Print) 27:1598–1601CrossRefGoogle Scholar
  128. Tortora GJ, Funke BR, Case CL (2012) Microbiologia, 10th edn. Artmed, Porto Alegre, p 934Google Scholar
  129. van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162PubMedCrossRefGoogle Scholar
  130. Varol M, Türk A, Candan M, Tay T, Koparal AT (2016) Photoprotective activity of vulpinic and gyrophoric acids toward ultraviolet b-induced damage in human keratinocytes. Phytother Res 30:9–15PubMedCrossRefGoogle Scholar
  131. Vijayakumar CS, Viswanathan S, Reddy MK, Parvathavarthini S, Kundu AB, Sukumar E (2000) Anti-inflammatory activity of (+)-usnic acid. Fitoterapia 71:564–566PubMedCrossRefGoogle Scholar
  132. Vining LC (1992) Secondary metabolism, inventive evolution and biochemical diversity – a review. Gene 115:135–140PubMedCrossRefGoogle Scholar
  133. Wang Y-Y, Liu B, Zhang X-Y, Zhou Q-M, Zhang T, Li H, Yu Y-F, Zhang X-L, Hao X-Y, Wang M, Wang L, Wei J-C (2014) Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota). BMC Genomics 15:34PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wei Q, Wang H, Chen Z, Lv Z, Xie Y, Lu F (2013) Profiling of dynamic changes in the microbial during the soy sauce fermentation process. Appl Microbiol Biotechnol 97:9111–9119PubMedCrossRefGoogle Scholar
  135. Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897PubMedCrossRefGoogle Scholar
  136. Xiang Y, Herman T, Hartman GL (2014) Utilizing soybean milk to culture soybean pathogens. Adv Microbiol 4:126–132CrossRefGoogle Scholar
  137. Xiong S, Huang C (2018) Synergistic strategies of predominant toxins in snake venoms. Toxicol Lett 287:142–154PubMedCrossRefGoogle Scholar
  138. Yamamoto Y, Mizuguchi R, Yamada Y, Yamamoto O (1985) Tissue cultures of Usnea rubescens and Ramalina yasudae and production of usnic acid in their cultures. Agric Biol Chem 49:3347–3348Google Scholar
  139. Yang Y, Nguyen TT, Jeong M-H, Crişan F, Yu YH, Ha H-H, Choi KH, Jeong HG, Jeong TC, Lee KY, Kim KK, Hur JS, Kim H (2016) Inhibitory activity of (+)-usnic acid against non-small cell lung cancer cell motility. PLoS One 11:e0146575PubMedPubMedCentralCrossRefGoogle Scholar
  140. Yılmaz M, Türk AÖ, Tay T, Kıvanç M (2004) The antimicrobial activity of extracts of the lichen cladonia foliacea and its (−)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Z Naturforsch C 59:249–254PubMedCrossRefPubMedCentralGoogle Scholar
  141. Yin W, Keller NP (2011) Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol 49:329–339PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zhang C, Qi J, Cao Y (2014) Synergistic effect of yeast-bacterial co-culture on bioremediation of oil-contaminated soil. Biorem J 18:136–146CrossRefGoogle Scholar
  143. Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64PubMedPubMedCentralCrossRefGoogle Scholar
  144. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333PubMedCrossRefGoogle Scholar
  145. Zuck KM, Shipley S, Newman DJ (2011) Induced production of N-formyl alkaloids from Aspergillus fumigatus by co-culture with Streptomyces peucetius. J Nat Prod 74:1653–1657PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Geane Pereira de Oliveira
    • 1
  • Bruna de Almeida Martins
    • 1
  • Matheus Thomaz Nogueira Silva Lima
    • 2
  • Jacqueline Aparecida Takahashi
    • 1
    Email author
  1. 1.Department of Chemistry, Exact Sciences InstituteUniversidade Federal de Minas GeraisBelo Horizonte-MGBrazil
  2. 2.Department of Food Science, Faculty of PharmacyUniversidade Federal de Minas GeraisBelo Horizonte-MGBrazil

Personalised recommendations