Advertisement

Secondary Metabolites of Mushrooms: A Potential Source for Anticancer Therapeutics with Translational Opportunities

  • Sudeshna Nandi
  • Rimpa Sikder
  • Krishnendu Acharya
Chapter

Abstract

Across the globe cancer is emerging as an overriding source of death raising enduring consequences all through the life period of patients. Chemotherapeutic drugs adopted for cancer therapy have grievous after-effects, and growth of resistance is a major downside for these agents. For decades natural products and medicine have been intimately connected through the usage of conventional medicines. Mushrooms own substantial antiquity of use in conventional medicine with no or minimal side effects. Mushrooms are considered as superfoods due to the presence of bioactive compounds and origin of medical drug and nutraceutical development for enhancing longevity of people. Recently there is an elevated interest found in people for the secondary metabolites of higher fungi in order to explore novel medical substance or lead compounds for cancer treatment. A number of novel fungal metabolites have been extracted from higher fungi which are likely to provide drugs with chemopreventive property. The researches involved the drug discovery from medicinal fungi mainly implicating multifaceted approach. Most of the isolated compounds have exhibited prominent in vitro cytotoxic effects in cancer cell lines from human tissue, and specifically selected compounds were used for in vivo experiments. This chapter cautiously deals with the review of low-molecular-weight compounds obtained from higher fungi with anticancer potential identified so far. In the near future, among these novel compounds many are presumed to enter human clinical trials.

Keywords

Mushrooms Medicinal value Chemotherapy Anticancer Biological activity Low-molecular-weight compounds Cytotoxicity Molecular insight 

References

  1. Akihisa T, Mizushina Y, Ukiya M, Oshikubo M, Kondo S, Kimura Y, Suzuki T, Tai T (2004) Dehydrotrametenonic acid and dehydroeburiconic acid from Poria cocos and their inhibitory effects on eukaryotic DNA polymerase alpha and beta. Biosci Biotechnol Biochem 68:448–450PubMedCrossRefGoogle Scholar
  2. Akihisa T, Nakamura Y, Tagata M, Tokuda H, Yasukawa K, Uchiyama E, Suzuki T, Kimura Y (2007) Anti-inflammatory and anti-tumor-promoting effects of triterpene acids and sterols from the fungus Ganoderma lucidum. Chem Biodivers 4:224–231PubMedCrossRefGoogle Scholar
  3. Arora R, Yates C, Gary BD, McClellan S, Tan M, Xi Y, Reed E, Piazza GA, Owen LB, Dean-Colomb W (2014) Panepoxydone targets NF-kB and FOXM1 to inhibit proliferation, induce apoptosis and reverse epithelial to mesenchymal transition in breast cancer. PLoS One 9(6):e98370PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arpha K, Phosri C, Suwannasai N, Mongkolthanaruk W, Sodngam S (2012) Astraodoric acids A-D: new lanostane triterpenes from edible mushroom Astraeus odoratus and their Mycobacterium tuberculosis H37Ra and cytotoxic activity. J Agric Food Chem 60:9834–9841PubMedCrossRefGoogle Scholar
  5. Awadh Ali NA, Mothana RA, Lesnau A, Pilgrim H, Lindequist U (2003) Antiviral activity of Inonotus hispidus. Fitoterapia 74:483–485PubMedCrossRefGoogle Scholar
  6. Azeem U, Dhingra GS, Shri R (2018) Pharmacological potential of wood inhabiting fungi of genus Phellinus Quél.: an overview. J Pharmacogn Phytochem 7:1161–1171Google Scholar
  7. Baby S, Johnson AJ, Balaji G (2015) Secondary metabolites from Ganoderma. Phytochemistry 114:66–101PubMedCrossRefGoogle Scholar
  8. Batra P, Sharma AK, Khajuria R (2013) Probing Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes): a bitter mushroom with amazing health benefits. Int J Med Mushrooms 15:127–143PubMedCrossRefGoogle Scholar
  9. Berns H, Humar R, Hengerer B, Kiefer FN, Battegay EJ (2000) RACK1 is up-regulated in angiogenesis and human carcinomas. FASEB J 14:2549–2558PubMedCrossRefGoogle Scholar
  10. Besl H, Hoefle G, Jendrny B, Jagers E, Steglich W (1977) Pilzpigmente, XXXI. Farnesylphenole aus Albatrellus-Arten (Basidiomycetes). Chem Ber 110:3770–3776CrossRefGoogle Scholar
  11. Bhattarai G, Lee YH, Lee NH, Lee IK, Yun BS, Hwang PH, Yi HK (2012) Fomitoside-K from Fomitopsis nigra induces apoptosis of human oral squamous cell carcinomas (YD-10B) via mitochondrial signaling pathway. Biol Pharm Bull 35:1711–1719PubMedCrossRefGoogle Scholar
  12. Bok JW, Lermer L, Chilton J, Klingeman HG, Towers GH (1999) Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry 51:891–898PubMedCrossRefGoogle Scholar
  13. Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32CrossRefGoogle Scholar
  14. Chang KL, Kung ML, Chow NH, Su SJ (2004) Genistein arrests hepatoma cells at G2/M phase: involvement of ATM activation and upregulation of p21waf1/cip1 and Wee1. Biochem Pharmacol 67:717–726PubMedCrossRefGoogle Scholar
  15. Chen NH, Zhong JJ (2011) p53 is important for the anti-invasion of ganoderic acid T in human carcinoma cells. Phytomedicine 18:719–725PubMedCrossRefGoogle Scholar
  16. Chen W, He FY, Li YQ (2006) The apoptosis effect of hispolon from Phellinus linteus (Berkeley & Curtis) Teng on human epidermoid KB cells. J Ethnopharmacol 105:280–285PubMedCrossRefGoogle Scholar
  17. Chen NH, Liu JW, Zhong JJ (2008a) Ganoderic acid me inhibits tumor invasion through down-regulating matrix metalloproteinases 2/9 gene expression. J Pharmacol Sci 108:–212, 216PubMedCrossRefGoogle Scholar
  18. Chen W, Zhao Z, Li L, Wu B, Chen SF, Zhou H, Wang Y, Li YQ (2008b) Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radic Biol Med 45:60–72PubMedCrossRefGoogle Scholar
  19. Chen Y, Chen YC, Lin YT, Huang SH, Wang SM (2010a) Cordycepin induces apoptosis of CGTH W-2 thyroid carcinoma cells through the calcium-calpain-caspase 7-PARP pathway. J Agric Food Chem 58:11645–11652PubMedCrossRefGoogle Scholar
  20. Chen NH, Liu JW, Zhong JJ (2010b) Ganoderic acid T inhibits tumor invasion in vitro and in vivo through inhibition of MMP expression. Pharmacol Rep 62:150–163PubMedCrossRefGoogle Scholar
  21. Chen YC, Chang HY, Deng JS, Chen JJ, Huang SS, Lin IH, Kuo WL, Chao W, Huang GJ (2013) Hispolon from Phellinus linteus induces G0/G1 cell cycle arrest and apoptosis in NB4 human leukaemia cells. Am J Chin Med 41:1439–1457PubMedCrossRefGoogle Scholar
  22. Chen Y, Peng GF, Han XZ, Wang W, Zhang GQ, Li X (2015) Apoptosis prediction via inhibition of AKT signaling pathway by neogrifolin. Int J Clin Exp Pathol 8:1154–1164PubMedPubMedCentralGoogle Scholar
  23. Chen HP, Zhao ZZ, Li ZH, Huang Y, Zhang SB, Tang Y, Yao JN, Chen L, Isaka M, Feng T, Liu JK (2018) Anti-proliferative and anti-inflammatory lanostane triterpenoids from the polish tdible mushroom Macrolepiota procera. J Agric Food Chem 66:3146–3154PubMedCrossRefGoogle Scholar
  24. Cheng CR, Yue QX, Wu ZY, Song XY, Tao SJ, Wu XH, Xu PP, Liu X, Guan SH, Guo DA (2010) Cytotoxic triterpenoids from Ganoderma lucidum. Phytochemistry 71:1579–1585PubMedCrossRefGoogle Scholar
  25. China PR (1986) Dictionary of traditional Chinese medicine. Jiangsu New Medical College (eds). Shanghai Scientific, Shanghai, pp 2191–2193Google Scholar
  26. Choi YH, Lee WH, Park KY, Zhang L (2000) p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn J Cancer Res 91:164–173PubMedPubMedCentralCrossRefGoogle Scholar
  27. De Silva DD, Rapior S, Fons F, Bahkali AH, Hyde KD (2012) Medicinal mushrooms in supportive cancer therapies: an approach to anticancer effects and putative mechanisms of action- a review. Fungal Divers 55:1–35CrossRefGoogle Scholar
  28. De Silva DD, Rapior S, Sudarman E, Stadler M, Xu J, Alias SA, Hyde KD (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62:1–40CrossRefGoogle Scholar
  29. Debbab A, Aly AH, Proksch P (2011) Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers 49:1–12CrossRefGoogle Scholar
  30. Debbab A, Aly AH, Proksch P (2012) Endophytes and associated marine derived fungi-ecological and chemical perspectives. Fungal Divers 57:45–83CrossRefGoogle Scholar
  31. Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Meta 2:303–336Google Scholar
  32. Didukh M, Wasser SP, Nevo E (2004) Impact of the family Agaricaceae (Fr.) Cohn on nutrition and medicine, Volz A (ed). ARG Ganter Verlag KG, Konigstein, GermanyGoogle Scholar
  33. Ding JH, Li ZH, Feng T, Liu JK (2018) A new cadinane sesquiterpenoid from cultures of the basidiomycete Panus conchatus. Nat Prod Res 32:2333–2337PubMedCrossRefPubMedCentralGoogle Scholar
  34. Du YC, Wu TY, Chang FR, Lin WY, Hsu YM, Cheng FT, Lu CY, Yen MH, Tsui YT, Chen HL, Hou MF, Lu MC, Wu YC (2012) Chemical profiling of the cytotoxic triterpenoid-concentrating fraction and characterization of ergostane stereo-isomer ingredients from Antrodia camphorata. J Pharm Biomed Anal 58:182–192PubMedCrossRefPubMedCentralGoogle Scholar
  35. El Bohi KM, Sabik L, Muzandu K, Shaban Z, Soliman M, Ishizuka M, Kazusaka A, Fujita S (2005) Antigenotoxic effect of Pleurotus cornucopiae extracts on the mutagenesis of Salmonella typhimurium TA98 elicited by benzo[a]pyrene and oxidative DNA lesions in V79 hamster lung cells. Jpn J Vet Res 52:163–172PubMedPubMedCentralGoogle Scholar
  36. Erkel G, Anke T, Sterner O (1996) Inhibition of NF-kappa B activation by panepoxydone. Biochem Biophys Res Commun 226:214–221PubMedCrossRefPubMedCentralGoogle Scholar
  37. Erkel G, Wisser G, Anke T (2007) Influence of the fungal NF-kB inhibitor panepoxydone on inflammatory gene expression in MonoMac6 cells. Int Immunopharmacol 7:612–624PubMedCrossRefPubMedCentralGoogle Scholar
  38. Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieud V, Kiss R (2014) Fungal metabolites with anticancer activity. Nat Prod Rep 31:617–627PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ferreira ICFR, Vaz JA, Vasconcelos MH, Martins A (2010) Compounds from wild mushrooms with antitumor potential. Anti Cancer Agents Med Chem 10:424–436CrossRefGoogle Scholar
  40. Figueiredo L, Regis WCB (2017) Medicinal mushrooms in adjuvant cancer therapies: an approach to anticancer effects and presumed mechanisms of action. Figueiredo and Régis Nutrire 42:28CrossRefGoogle Scholar
  41. Friedman M (2015) Chemistry, nutrition, and health-promoting properties of (Lion’s mane) mushroom fruiting bodies and mycelia and their bioactive compounds. J Agr Food Chem 63(32):7108–7123Google Scholar
  42. Gan KH, Kuo SH, Lin C (1998) Steroidal constituents of Ganoderma applanatum and Ganoderma neo-japonicum. J Nat Prod 61:1421–1422Google Scholar
  43. Gao JJ, Min BS, Ahn EM, Nakamura N, Lee HK, Hattori M (2002) New triterpene aldehydes, lucialdehydes A-C, from Ganoderma lucidum and their cytotoxicity against murine and human tumor cells. Chem Pharmacol Bull 50:837–840CrossRefGoogle Scholar
  44. Gao JJ, Hirakawa A, Min BS, Nakamura N, Hattori M (2006) In vivo antitumor effects of bitter principles from the antlered form of fruiting bodies of Ganoderma lucidum. J Nat Med 60:42–48CrossRefGoogle Scholar
  45. Golak IS, Kałużewicz A, Spiżewski T, Siwulski M, Sobieralski K (2018) Bioactive compounds and medicinal properties of oyster mushrooms (Pleurotus sp.). A review Folia Hort 30(2)Google Scholar
  46. Gonindard C, Bergonzi C, Denier C, Sergheraert C, Klaebe A, Chavant L, Hollande E (1997) Synthetic hispidin, a PKC inhibitor, is more cytotoxic toward cancer cells than normal cells in vitro. Cell Biol Toxicol 13:141–153PubMedCrossRefPubMedCentralGoogle Scholar
  47. Handa N, Yamada T, Tanaka R (2010) An unusual lanostane-type triterpenoid, spiroinonotsuoxodiol, and other triterpenoids from Inonotus obliquus. Phytochemistry 71:1774–1779PubMedCrossRefPubMedCentralGoogle Scholar
  48. Haranaka K, Satomi N, Sakurai A, Yasukawa K, Takido M (1987) Antitumor activities of Zyuzen-taiho-to and Cinnamomi cortex. J Med Pharmaceut Soc Wakan-Yaku 4:49–58Google Scholar
  49. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hirata Y, Nakanishi K (1950) Grifolin, an antibiotic from a basidiomycete. J Biol Chem 184:135–143PubMedPubMedCentralGoogle Scholar
  51. Holliday J, Cleaver M (2008) Medicinal value of the cterpillar fungi species of the genus Cordyceps (Fr.) link (ascomycetes)-a review. Int J Med Mushrooms 10:219–234CrossRefGoogle Scholar
  52. Hsu CL, Yu YS, Yen GC (2008) Lucidenic acid B induces apoptosis in human leukemia cells via a mitochondria-mediated pathway. J Agric Food Chem 56:3973–3980PubMedCrossRefPubMedCentralGoogle Scholar
  53. Huang GJ, Deng JS, Huang SS, Hu ML (2011) Hispolon induces apoptosis and cell cycle arrest of human hepatocellular carcinoma Hep3B cells by modulating ERK phosphorylation. J Agric Food Chem 59:7104–7113PubMedCrossRefPubMedCentralGoogle Scholar
  54. Huang HC, Liaw CC, Yang HL, Hseu YC, Kuo HT, Tsai YC, Chien SC, Amagaya S, Chen YC, Kuo YH (2012) Lanostane triterpenoids and sterols from Antrodia camphorata. Phytochemistry 84:177–183PubMedCrossRefPubMedCentralGoogle Scholar
  55. Isaka M, Palasarn S, Srikitikulchai P, Vichai V, Komwijit S (2016) Astraeusins AeL, lanostane triterpenoids from the edible mushroom Astraeus odoratus. Tetrahedron 72:3288–3295CrossRefGoogle Scholar
  56. Ito Y, Arita M, Adachi K, Shibata T, Sawai H, Ohno M (1981) Chirally selective synthesis of sugar moiety of nucleosides by chemicoenzymatic approach: L- and D-riboses, showdomycin, and cordycepin. Nucleic Acids Symp Ser 10:45–48Google Scholar
  57. Ivanova TS, Krupodorova TA, Barshteyn VY, Artamonova AB, Shlyakhovenko VA (2014) Anticancer substances of mushroom origin. Exp Oncol 36:58–66PubMedPubMedCentralGoogle Scholar
  58. Jeong JW, Jin CY, Park C, Hong SH, Kim GY, Jeong YK, Lee JD, Yoo YH, Choi YH (2011) Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol In Vitro 25:817–824PubMedCrossRefPubMedCentralGoogle Scholar
  59. Jiang J, Grieb B, Thyagarajan A, Sliva D (2008) Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NF-κB signaling. Int J Mol Med 21:577–584PubMedPubMedCentralGoogle Scholar
  60. Jiang J, Jedinak A, Sliva D (2011) Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA. Biochem Biophys Res Commun 415:325–329PubMedCrossRefPubMedCentralGoogle Scholar
  61. Jin S, Pang RP, Shen JN, Huang G, Wang J, Zhou JG (2007) Grifolin induces apoptosis via inhibition of PI3K/AKT signaling pathway in human osteosarcoma cells. Apoptosis 12:1317–1326PubMedCrossRefPubMedCentralGoogle Scholar
  62. Johnson BM, Doonan BP, Radwan FF, Haque A (2010) Ganoderic acid DM: an alternative agent for the treatment of advanced prostate cancer. Open Prostate Cancer J 3:78–85CrossRefGoogle Scholar
  63. Joseph TP, Chanda W, Padhiar AA, Batool S, LiQun S, Zhong M, Huang M (2018) A preclinical evaluation of the antitumor activities of edible and medicinal mushrooms: a molecular insight. Integr Cancer Ther 17:200–209PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kadomatsu M, Nakajima S, Kato H, Gu L, Chi Y, Yao J, Kitamura M (2012) Cordycepin as a sensitizer to tumour necrosis factor (TNF)-α-induced apoptosis through eukaryotic translation initiation factor 2α (eIF2α)- and mammalian target of rapamycin complex 1 (mTORC1)-mediated inhibition of nuclear factor (NF)-κB. Clin Exp Immunol 168:325–332PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kanokmedhakul S, Lekphrom R, Kanomedhakul K, Hahnvajanawong C, Bua-art S, Saksirirat W, Prabpai S, Kongsaeree P (2012) Cytotoxic sesquiterpenes from luminescent mushroom Neonothopanus nambi. Tetrahedron 68:8261–8266CrossRefGoogle Scholar
  66. Kawagishi H, Li H, Tanno O, Inoue S, Ikeda S, Ohnishi-Kameyama M, Nagata T (1997) A lanostane-type triterpene from a mushroom Daedalea dickinsii. Phytochemistry 46:959–961CrossRefGoogle Scholar
  67. Kellof GJ, Sigman CC (2000) Intervention and chemoprevention of cancer. CCS Associates, Mountain ViewGoogle Scholar
  68. Kikuchi T, Uchiyama E, Ukiya M, Tabata K, Kimura Y, Suzuki T, Akihisa T (2011) Cytotoxic and apoptosis-inducing activities of triterpene acids from Poria cocos. J Nat Prod 74:137–144PubMedCrossRefGoogle Scholar
  69. Kim H, Hall P, Smith M, Kirk M, Prasain JK, Barnes S, Grubbs C (2004) Chemoprevention by grape seed extract and Genistein in carcinogen- induced mammary cancer in rats is diet dependent. J Nutr 134:3445–3452CrossRefGoogle Scholar
  70. Kim DS, Jeong HJ, Bhat KP, Park SY, Kang SH, Yoo EH, Lee M, Lee HW, Krueger RJ (2000) Aromatse and sulfatase inhibitors from Lepiota americana. Planta Med 66:78–79CrossRefGoogle Scholar
  71. Kim YJ, Park J, Min BS, Shim SH (2011) Chemical constituents from the sclerotia of Inonotus obliquus. J Korean Soc Appl Biol Chem 54:287–294Google Scholar
  72. Kimura Y, Taniguchi M, Baba K (2002) Antitumor and antimetastatic effects on liver of triterpenoid fractions of Ganoderma lucidum: mechanism of action and isolation of an active substance. Anticancer Res 22:3309–3318PubMedGoogle Scholar
  73. Kinge TR, Mih AM (2011) Secondary metabolites of oil palm isolates of Ganoderma zonatum Murill. From Cameroon and their cytotoxicity against five human tumour cell lines. Afr J Biotechnol 10:8440–8447CrossRefGoogle Scholar
  74. Kobori M, Yoshida M, Ohnishi-Kameyama M, Takei T, Shinmoto H (2006) 5alpha, 8alpha-epidioxy-22E-ergosta-6,9(11),22-trien-3betaol from an edible mushroom suppresses growth of HL60 leukemia and HT29 colon adenocarcinoma cells. Biol Pharm Bull 29:755–759PubMedCrossRefGoogle Scholar
  75. Kozlovskii AG, Zhelifonova VP, Antipova TV (2013) Fungi of the genus Penicillium as producers of physiologically active compounds (review). Appl Biochem Microb 49:1–10CrossRefGoogle Scholar
  76. Kubo K, Aoki H, Naba N (1994) Anti-diabetic activities present in the fruit body of Grifola frondosa (maitake). Biol pharm bull. 17: 1106-1110.Lee IK, Jung JY, Yeom JH, Ki DW, Lee MS, yeo WH & Yun BS (2012). Fomitoside K, a new lanostane triterpene glycoside from the fruiting body of Fomitopsis nigra. Mycobiology 40:76–78Google Scholar
  77. Lee WY, Park Y, Ahn JK, Park SY, Lee HJ (2005) Cytotoxic activity of ergosta-4,6, 8(14),22-tetraen-3-one from the sclerotia of Polyporus umbellatus. Bull Kor Chem Soc 26:1464–1466CrossRefGoogle Scholar
  78. Lee SJ, Moon GS, Jung KH, Kim WJ, Moon SK (2010) C-Jun N-terminal kinase 1 is required for cordycepin-mediated induction of G2/M cell-cycle arrest via p21WAF1 expression in human colon cancer cells. Food Chem Toxicol 48:277–283PubMedCrossRefGoogle Scholar
  79. Lee HJ, Burger P, Vogel M, Friese K, Bruning A (2012) The nucleoside antagonist cordycepin causes DNA double strand breaks in breast cancer cells. Investig New Drugs 30:1917–1925CrossRefGoogle Scholar
  80. Lee HH, Jeong JW, Lee JH, Kim GY, CHEONG J, Jeong YK, Yoo YH, Choi YH (2013a) Cordycepin increases sensitivity of Hep3B human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by inactivating the JNK signaling pathway. Oncol Rep 30:1257–1264PubMedCrossRefGoogle Scholar
  81. Lee HH, Park C, Jeong JW, Kim MJ, Seo MJ, Kang BW, Park JU, Kim GY, Choi BT, Choi YH, Jeong YK (2013b) Apoptosis induction of human prostate carcinoma cells by cordycepin through reactive oxygen species-mediated mitochondrial death pathway. Int J Oncol 42:1036–1044PubMedCrossRefGoogle Scholar
  82. Levin RM, Juan YS, Schuler C, Leggett RE, Lin AD (2012) Medicinal properties of Antrodia Camphorata - a review. Curr Top Nutraceutical Res 10:53–60Google Scholar
  83. Li Y, Mi C (2003) Proliferation inhibition and apoptosis onset in human ovarian carcinoma cell line SKOV3 induced by genistein. Ai Zheng 22:586–591PubMedGoogle Scholar
  84. Li CH, Chen PY, Chang UM, Kan LS, Fang WH, Tsai KS, Lin SB (2005) Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells. Life Sci 77:252–265PubMedCrossRefGoogle Scholar
  85. Li F, Wang Y, Wang X, Li J, Cui H, Niu M (2012) Ganoderic acids suppress growth and angiogenesis by modulating the Nf-kappab signaling pathway in breast cancer cells. Int J Clin Pharmacol Ther 50:712–721PubMedCrossRefGoogle Scholar
  86. Li YB, Liu RM, Zhong JJ (2013) A new ganoderic acid from Ganoderma lucidum mycelia and its stability. Fitoterapia 84:115–122PubMedCrossRefGoogle Scholar
  87. Li F, Zhao C, Wang L (2014) Molecular-targeted agents combination therapy for cancer: developments and potentials. Int J Cancer 134:1257–1269PubMedCrossRefGoogle Scholar
  88. Li X, Wu Q, Xie Y, Ding Y, Du WW, Sdiri M, Yang BB (2015) Ergosterol purified from medicinal mushroom Amauroderma rude inhibits cancer growth in vitro and in vivo by up-regulating multiple tumor suppressors. Oncotarget 6:17832–17846Google Scholar
  89. Liao Z, Cox JD, Komaki R (2007) Radiochemotherapy of esophageal cancer. J Thorac Oncol 2:553–568PubMedCrossRefGoogle Scholar
  90. Liu RM, Zhong JJ (2010) Ganoderic acid Mf and S induce mitochondria mediated apoptosis in human cervical carcinoma HeLa cells. Phytomedicine 18:349–355PubMedCrossRefGoogle Scholar
  91. Liu J, Shiono J, Shimizu K, Kukita A, Kukita T, Kondo R (2009) Ganoderic acid DM: anti-androgenic osteoclastogenesis inhibitor. Bioorg Med Chem Lett 19:2154–2157PubMedCrossRefGoogle Scholar
  92. Liu RM, Li YB, Zhong JJ (2012a) Cytotoxic and pro-apoptotic effects of novel ganoderic acid derivatives on human cervical cancer cells in vitro. Eur J Pharmacol 68:23–33CrossRefGoogle Scholar
  93. Liu RM, Li YB, Zhong JJ (2012b) Ganoderic acid Mk from Ganoderma lucidum mycelia in cervical cancer HeLa cells. Lat Am J Pharm 31:43–50Google Scholar
  94. Liu J, Shimizu K, Tanaka A, ShinobuW OK, Nakamura T, Kondo R (2012c) Target proteins of ganoderic acid DM provides clues to various pharmacological mechanisms. Sci Rep 2:905PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lu TL, Huang GJ, Lu TJ, Wu JB, Wu CH, Yang TC, Iizuka A, Chen YF (2009) Hispolon from Phellinus linteus has antiproliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells. Food Chem Toxicol 47:2013–2021PubMedCrossRefGoogle Scholar
  96. Lung MY, Hsieh CW (2011) Antioxidant property and production of exopolysaccharide from Armillaria mellea in submerged cultures: effect of culture aeration rate. Eng Life Sci 11:482–490CrossRefGoogle Scholar
  97. Manasseh AT, Godwin JTA, Ubleni EE, Borisde OO (2012) Phytochemical properties of Ganoderma applanatum as potential agents in the application of nanotechnology in modern day medical practice. Asian Pac J Trop Biomed 2:580–583CrossRefGoogle Scholar
  98. Mcmorris TC, Kelner MJ, Wang W, Yu J, Estes LA, Taetle R (1996) (Hydroxymethyl) acylfulvene: an illudin derivative with superior antitumor properties. J Nat Prod 59:896–899PubMedCrossRefGoogle Scholar
  99. McMorris TC, Yu J, Lira R, Dawe R, MacDonald JR, Waters SJ, Estes LA, Kelner MJ (2001) Structure-activity of antitumor agent irofulven (hydroxymethylacylfulvene) and analogues. J Org Chem 66:6158–6163PubMedCrossRefGoogle Scholar
  100. Mizuno T (1999a) Bioactive substances in Hericium erinaceus (bull.:Fr.) Pers. (Yamabushitake) and its medicinal utilization. Int J Med Mushrooms 1:105–119CrossRefGoogle Scholar
  101. Mizuno T (1999b) Extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan. Int J Med Mushrooms 1:9–29CrossRefGoogle Scholar
  102. Mizuno T, Zhuang C (1995) Maitake, Grifola frondosa: pharmacological effects. Food Rev Int 11:135–149CrossRefGoogle Scholar
  103. Mizushina Y, Takahashi N, Hanashima L, Koshino H, Esumi Y, Uzawa J, Sugawara F, Sakaguchi K (1997) Lucidenic acid O and lactone, new terpene inhibitors of eukaryotic DNA polymerases from a basidiomycete Ganoderma lucidum. Bioorg Med Chem 7:2047–2052CrossRefGoogle Scholar
  104. Mizushina Y, Iida A, Ohta K, Sugawara F, Sakaguchi K (2000) Novel triterpenoids inhibit both DNA polymerase and DNA topoisomerase. Biochem J 350:757–763PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mizushina Y, Akihisa T, Ukiya M, Murakami C, Kuriyama I, Xu X, Yoshida H, Sakaguchi K (2004) A novel DNA topoisomerase inhibitor: dehydroebriconic acid, one of the lanostane-type triterpene acids from Poria cocos. Cancer Sci 95:354–360PubMedCrossRefGoogle Scholar
  106. Moradali MF, Mostafavi H, Ghods S, Hedjaroude GA (2007) Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol 7:701–724PubMedCrossRefGoogle Scholar
  107. Nakata T, Yamada T, Taji S, Ohishi H, Wada S, Tokuda H, Sakuma K, Tanaka R (2007) Structure determination of inonotsuoxides a and B and in vivo antitumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus. Bioorg Med Chem 15:257–264PubMedCrossRefGoogle Scholar
  108. Nomura M, Takahashi T, Uesugi A, Tanaka R, Kobayashi S (2008) Inotodiol, a lanostane triterpenoid, from Inonotus obliquus inhibits cell proliferation through caspase-3-dependent apoptosis. Anticancer Res 28:2691–2696PubMedGoogle Scholar
  109. Nonaka Y, Ishibashi H, Nakai M, Shibata H, Kiso Y, Abe S (2008) Effects of the antlered form of Ganoderma lucidum on tumor growth and metastasis in cyclophosphamide-treated mice. Biosci Biotechnol Biochem 72:1399–1408PubMedCrossRefGoogle Scholar
  110. Ohsawa T, Yukawa M, Takao C, Murayama M, Bando H (1992) Studies on constituents of fruit body of Polyporus umbellatus and their cytotoxic activity. Chem Pharm Bull 40:143–147PubMedCrossRefGoogle Scholar
  111. Panda AK, Swain KC (2011) Traditional uses and medicinal potential of Cordyceps sinensis of Sikkim. J Ayurveda Integr Med 2:9–13PubMedPubMedCentralCrossRefGoogle Scholar
  112. Park HG, Shim YY, Choi SO, Park WM (2009) New method development for nanoparticle extraction of water-soluble β-(1–3)-D-glucan from edible mushrooms, Sparassis crispa and Phellinus linteus. J Agric Food Chem 57:2147–2154PubMedCrossRefGoogle Scholar
  113. Paterson RRM (2001) Ganoderma- a therapeutic funfal biofactor. Phytochemistry 67:1985–2001CrossRefGoogle Scholar
  114. Paterson RRM (2006) Ganoderma - a therapeutic fungal biofactory. Phytochemistry 67:1985–2001PubMedCrossRefGoogle Scholar
  115. Peng X, Liu J, Xia J, Wang C, Li X, Deng Y, Bao N, Zhang Z, Qiu M (2015) Lanostane triterpenoids from Ganoderma hainanense J. D. Zhao. Phytochemistry 114:137–145PubMedCrossRefGoogle Scholar
  116. Petrova RD, Reznick AZ, Wasser SP, Denchev CM, Nevo E, Mahajna J (2008) Fungal metabolites modulating NF-κB activity: an approach to cancer therapy and chemoprevention (review). Oncol Rep 19:299–308PubMedGoogle Scholar
  117. Pillai TG, Nair CKK, Janardhanan KK (2010) Enhancement of repair of radiation induced DNA strand breaks in human cells by Ganoderma mushroom polysaccharides. Food Chem 19:1040–1043CrossRefGoogle Scholar
  118. Pleszczyńska M, Lemieszek MK, Siwulski M, Wiater A, Rzeski W, Szczodrak J (2017) Fomitopsis betulina (formerly Piptoporus betulinus): the Iceman’s polypore fungus with modern biotechnological potential. World J Microbiol Biotechnol 33:83PubMedPubMedCentralCrossRefGoogle Scholar
  119. Popovic V, Zivkovic J, Davidovic S, Stevanovic M, Stojkovic D (2013) Mycotherapy of Cancer: an update on cytotoxic and antitumor activities of mushrooms, bioactive principles and molecular mechanisms of their action. Curr Top Med Chem 13:2791–2806PubMedCrossRefGoogle Scholar
  120. Poucheret P, Fons F, Rapior S (2006) Biological and pharmacological activity of higher fungi: 20-year retrospective analysis. Mycologie 27:311–333Google Scholar
  121. Quang DN, Hashimoto T, Asakawa Y (2006) Inedible mushrooms: a good source of biologically active substances. Chem Rec 6:79–99PubMedCrossRefGoogle Scholar
  122. Rao A, Coan A, Welsh JE, Barclay WW, Koumenis C, Cramer SD (2004) Vitamin D receptor and p21/WAF1 are targets of genistein and 1,25-dihydroxyvitamin D3 in human prostate cancer cells. Cancer Res 64:2143–2147PubMedCrossRefGoogle Scholar
  123. Rao YK, Fang SH, Wu WS, Tzeng YM (2010) Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator’s production and human cancer cell proliferation. J Ethnopharmacol 131:363–367PubMedCrossRefGoogle Scholar
  124. Sanodiya BS, Thakur GS, Baghel RK, Prasad GBKS, Bisen PS (2009) Ganoderma lucidum: A Potent Pharmacological Macrofungus. Curr Pharm Biotechnol 10:717–742PubMedCrossRefGoogle Scholar
  125. Sharma JR, Das K, Mishra D (2013) The genus Inonotus and its related species in India. Mycosphere 4:809–818CrossRefGoogle Scholar
  126. Shervington A, Lu C (2008) Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Investig 26:535–542CrossRefGoogle Scholar
  127. Silva S, Martins S, Karmali A, Rosa E (2012) Production, purification and characterisation of polysaccharides from Pleurotus ostreatus with antitumour activity. J Sci Food Agric 92:1826–1832PubMedCrossRefGoogle Scholar
  128. Sporn MB, Suh N (2002) Chemoprevention of cancer. Carcinogenesis 21:524–530Google Scholar
  129. Suarez-Arroyo IJ, Loperena-Alvarez Y, Rosario-Acevedo R, Martínez-Montemayor MM (2017) Ganoderma spp.: a promising adjuvant treatment for breast cancer – a review. Molecules 4:15:1–23PubMedPubMedCentralCrossRefGoogle Scholar
  130. Sun Y, Zhao Z, Feng Q, Xu Q, Lu L, Liu JK, Zhang L, Wu B, Li YQ (2013) Unusual spirodecane sesquiterpenes and a fumagillol analogue from Cordyceps ophioglossoides. Helv Chim Acta 96:76–84CrossRefGoogle Scholar
  131. Takaku T, Kimura Y, Okuda H (2001) Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action. J Nutr 131:1409–1413PubMedCrossRefGoogle Scholar
  132. Tan WC, Kuppusamy UR, Phan CW, Tan YS, Raman J, Anuar AM, Sabaratnam V (2015) Ganoderma neo-japonicum Imazeki revisited: domestication study and antioxidant properties of its basidiocarps and mycelia. Sci Rep 5:12515PubMedPubMedCentralCrossRefGoogle Scholar
  133. Tang W, Liu JW, Zhao WM, Wei DZ, Zhong JJ (2006) Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci 80:205–211PubMedCrossRefPubMedCentralGoogle Scholar
  134. Thomas H, Coley HM (2003) Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10:159–165PubMedCrossRefPubMedCentralGoogle Scholar
  135. Vrkoc J, Budesinsky M, Dolejs L (1977) Phenolic meroterpenoids from the basidiomycete Albatrellus ovinus. Phytochemistry 16:1409–1411CrossRefGoogle Scholar
  136. Wang CJ, Chau CF, Hsich YS, Yang SF, Yen GC (2008) Lucidenic acid inhibits PMA-induced invasion of human hepatoma cells through inactivating MAPK/ERK signal transduction pathway and reducing binding activities of NF-κB and AP-1. Carcinogenesis 29:147–156CrossRefGoogle Scholar
  137. Wang S, Bao L, Zhao F, Wang Q, Li S, Ren J, Li L, Wen H, Guo L, Liu H (2013) Isolation, identification and bioactivity of monoterpenoids and sesquiterpenoids from the mycelia of edible mushroom Pleurotus cornucopiae. J Agric Food Chem 61:5122–5129PubMedCrossRefPubMedCentralGoogle Scholar
  138. Wasser SP (2011) Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89:1323–1332PubMedCrossRefPubMedCentralGoogle Scholar
  139. Wasser SP (2014) Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biom J 37:345–356Google Scholar
  140. Watanabe K, Shuto T, Sato M, Onuki K, Mizunoe S, Suzuki S, Sato T, Koga T, Suico MA, Kai H, Ikeda T (2011) Lucidenic acids-rich extract from antlered form of Ganoderma lucidum enhances TNFα induction in THP-1 monocytic cells possibly via its modulation of MAP kinases p38 and JNK. Biochem Biophys Res Commun 408:18–24PubMedCrossRefPubMedCentralGoogle Scholar
  141. Weng CJ, Chau CF, Chen KD, Chen DH, Yen GC (2007) The antiinvasive effect of lucidenic acids isolated from a new Ganoderma lucidum strain. Mol Nutr Food Res 51:1472–1477PubMedCrossRefPubMedCentralGoogle Scholar
  142. Wong YY, Moon A, Duffin R, Barthet-Barateig A, Meijer HA, Clemens MJ, de Moor CH (2010) Cordycepin inhibits protein synthesis and cell adhesion through effects on signal transduction. J Biol Chem 285:2610–2621PubMedCrossRefPubMedCentralGoogle Scholar
  143. Wu SJ, Leu YI, Chen CH, Chao CH, Shen DY, Chan HH, Lee EJ, Wu TS, Wang YH, Shen YC, Qian K, Bastow KF, Lee KH (2010) Camphoratins A-J, potent cytotoxic and anti-inflammatory triterpenoids from fruiting body of Taiwanofungus camphoratus. J Nat Prod 73:1756–1762PubMedPubMedCentralCrossRefGoogle Scholar
  144. Wu GS, Lu JJ, Guo JJ, Li YB, TanW DYY, Zhong ZF, Xu ZT, Chen XP, Wang YT (2012) Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells. Fitoterapia 83:408–414PubMedCrossRefGoogle Scholar
  145. Xu TT, Beelman RB, Lambert JD (2012) The cancer preventive effects of edible mushrooms. Anti-cancer Agent Me 12:1255–1263CrossRefGoogle Scholar
  146. Yasukawa K, Yu S-Y, Takido M (1996) Inhibitory effect of oral administration of Rikkunshito on tumor promotion in two-stage carcinogenesis in mouse skin. Journal of Traditional Medicines 13:180–184Google Scholar
  147. Yazawa Y, Yokota M, Sugiyama K (2000) Antitumor promoting effect of an active component of polyporus, ergosterol and related compounds on rat urinary bladder carcinogenesis in a short-term test with concanavalin a. Biol Pharm Bull 23:1298–1302PubMedCrossRefGoogle Scholar
  148. Ye M, Liu JK, Lu ZX, Zhao Y, Liu SF, Li LL, Tan M, Weng XX, Li W, Cao Y (2005) Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens inhibits tumor cell growth by inducing apoptosis in vitro. FEBS Lett 579:3437–3443PubMedCrossRefGoogle Scholar
  149. Yeh CT, Rao YK, Yao CJ, Yeh CF, Li CH, Chuang SE, Luong JH, Lai GM, Tzeng YM (2009) Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells. Cancer Lett 285:73–79PubMedCrossRefGoogle Scholar
  150. Yin X, Feng T, Li ZH, Dong ZJ, Li Y, Liu JK (2013) Highly oxygenated meroterpenoids from fruiting bodies of the mushroom Tricholoma terreum. J Nat Prod 76:1365–1368PubMedCrossRefGoogle Scholar
  151. Yoshiji H, Kuriyama S, Ways DK, Yoshii J, Miyamoto Y, Kawata M, Ikenaka Y, Tsujinoue H, Nakatani T, Shibuya M, Fukui H (1999) Protein kinase C lies on the signaling pathway for vascular endothelial growth factor-mediated tumor development and angiogenesis. Cancer Res 59:4413–4418PubMedGoogle Scholar
  152. Zaidman B, Yassin M, Mahajana J, Wasser SP (2005) Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol 67:453–468PubMedCrossRefPubMedCentralGoogle Scholar
  153. Zhang Z, Liu RN, Tang QJ, Zhang JS, Yang Y, Shang XD (2015) A new diterpene from the fungal mycelia of Hericium erinaceus. Phytochem Lett 11:151–156CrossRefGoogle Scholar
  154. Zhao YY, Chao X, Zhang Y, Lin RC, Sun WJ (2010) Cytotoxic steroids from Polyporus Umbellatus. Planta Med 76:1755–1758PubMedCrossRefPubMedCentralGoogle Scholar
  155. Zhao YY, Shen X, Chao X, Ho CC, Cheng XL, Zhang Y, Lin RC, Du KJ, Luo WJ, Chen JY (2011) Ergosta-4, 6, 8 (14), 22-tetraen-3-one induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Biochim Biophys Acta 1810:384–390PubMedCrossRefPubMedCentralGoogle Scholar
  156. Zhou L, Shi P, Chen NH, Zhong JJ (2011) Ganoderic acid Me induces apoptosis through mitochondria dysfunctions in human colon carcinoma cells. Process Biochem 46:219–225CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sudeshna Nandi
    • 1
  • Rimpa Sikder
    • 1
  • Krishnendu Acharya
    • 1
  1. 1.Molecular and Applied Mycology and Plant Pathology Laboratory, Department of BotanyUniversity of CalcuttaKolkataIndia

Personalised recommendations