Fungi in Hypogean Environment: Bioprospection Perspective

  • S. R. Joshi
  • Upashna Chettri


Fungi are ubiquitous in their presence almost similar to bacterial distribution. With regard to the products and metabolites that have been bioprospected and utilized for human welfare, fungi are always the first among the living organisms that have benefitted mankind. The exploration and distribution of fungi from the epigean environment is well known along with the targeted species of interest which have been manipulated for optimizing the production of metabolic by-products. However, when it comes to the hypogean or subterranean habitats, literature on the nature, type, and distribution of fungi is still scarce. Considering the benefits that can be offered by fungi from extreme environments as reported in literature, it becomes more relevant to explore and document fungal diversity from hypogean habitats such as the caves. This niche may provide vistas for discovery of products and metabolites hitherto unknown to mycoscience and mycotechnology.


Caves Hypogean Fungi Diversity Metabolites Bioprospection 


  1. Adetutu EM, Thorpe K, Bourne S, Cao X, Shahsavari E, Kirby G, Ball AS (2011) Phylogenetic diversity of fungal communities in areas accessible and not accessible to tourists in Naracoorte Caves. Mycologia 103(5):959–968PubMedCrossRefGoogle Scholar
  2. Agrawal OP, Dhawan S, Garg KL, Shaheen F, Pathak N, Misra A (1988) Study of biodeterioration of the Ajanta wall paintings. Int Biodeterior 24:121–129CrossRefGoogle Scholar
  3. Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521PubMedCrossRefGoogle Scholar
  4. Banerjee S, Joshi SR (2013) Insights into cave architecture and the role of bacterial biofilm. Proc Natl Acad Sci India, Sect B Biol Sci 83(3):277–290CrossRefGoogle Scholar
  5. Banerjee S, Joshi SR (2014) Ultrastructural analysis of calcite crystal patterns formed by biofilm bacteria associated with cave speleothems. J Microsc Ultrastruc 2(4):217–223Google Scholar
  6. Barton HA (2006) Introduction to cave microbiology: a review for the non-specialists. J Cave Karst Stud 68:43–64Google Scholar
  7. Barton HA, Jurado V (2007) What’s up down there: microbial diversity in starved cave environments. Microbe 2:132–138Google Scholar
  8. Barton HA & Northup DE (2007). Geomicrobiology in cave environments: Past, current, and future perspectives. J Cave Karst Stu 69:163–178.Google Scholar
  9. Barton HA, Luiszer F (2005) Microbial metabolic structure in a sulfidic cave hot spring: potential mechanisms of Biospeleogenesis. J Cave Karst Stud 67:28–38Google Scholar
  10. Barton HA, Taylor MR, Pace NR (2004) Molecular phylogenetic analysis of a bacterial community in an Oligotrophic cave environment. Geomicrobiol J 21:11–20CrossRefGoogle Scholar
  11. Barton HA, Taylor NM, Kreate MP, Springer AC, Oehrle SA, Bertog JL (2007) The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments. Int J Speleol 36:93–104CrossRefGoogle Scholar
  12. Bashyal BP, Wijeratne EMK, Faeth SH, Gunatilaka AAL (2005) Globosumones A-C, cytotoxic orsellinic acid esters from the Sonoran Desert endophytic fungus Chaetomiumglobosum. J Nat Prod 68:724–728PubMedCrossRefGoogle Scholar
  13. Baskar S, Baskar R, Mauclaire L, McKenzie JA (2006) Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr Sci 90:58–64Google Scholar
  14. Baskar S, Baskar R, Lee N, Theophilus PK (2009) Speleothems from Mawsmai and Krem Phyllut caves, Meghalaya, India: some evidences on biogenic activities. Environ Geol 57:1169–1186CrossRefGoogle Scholar
  15. Bastian F, Jurado V, Novakova A, Alabouvette C, Saiz-Jimenez C (2010) The microbiology of Lascaux cave. Microbiology 156:644–652PubMedCrossRefGoogle Scholar
  16. Bayer EA, Morag E, Lamed R, Yaron S, Shoham Y (1998) Cellulosome structure: four-pronged attack using biochemistry, molecular biology, crystallography and bioinformatics. In: Claeyssens M, Nerinckx W, Piens K (eds) Carbohydrases from Trichoderma reesei and other microorganisms. Royal Society of Chemistry, London, pp 39–65Google Scholar
  17. Belles X (1992) Survival, opportunism and convenience in the processes of cave colonization by terrestrial fauna. Oecol Aquat 10:325–335Google Scholar
  18. Bonugli-Santos RC, Durrant LR, Sette LD (2010) Laccase activity and putative laccase genes in marine-derived basidiomycetes. Fungal Biol 114:863–872PubMedCrossRefGoogle Scholar
  19. Bonugli-Santos RC, dos Santos Vasconcelos MR, Passarini MR et al (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol 6:1–15CrossRefGoogle Scholar
  20. Braams J (1992) Ecological studies of the fungal microflora inhabiting historical sandstone monuments. PhD thesis, University of Oldenburg, Germany, 104 pGoogle Scholar
  21. Butinar L, Sonjak S, Zalar P, Plemenitas A, Gunde-Cimerman N (2005) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48:73–79CrossRefGoogle Scholar
  22. Calaforra JM, Forti P, Fernandez-Cortes A (2007) Speleothems in gypsum caves and their paleoclimatological significance. Environ Geol 53:1099–1105CrossRefGoogle Scholar
  23. Castanier S, Le Metayer-Levrel G, Perthuisot JP (2000) Bacterial roles in the precipitation of carbonate minerals. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Heidelberg, pp 32–39CrossRefGoogle Scholar
  24. Caumartin V (1963) Review of the microbiology of underground environments. Bull Nat Speleol Soc 25:1–14Google Scholar
  25. Chelius MK, Beresford G, Horton H, Quirk M, Selby G, Simpson RT, Horrocks R, Moore JC (2009) Impacts of alterations of organic inputs on the bacterial community within the sediments of Wind Cave, South Dakota, USA. Int J Speleol 38:1–10CrossRefGoogle Scholar
  26. Chi Z, Ma C, Wang P, Li HF (2007) Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour Technol 98:534–538PubMedCrossRefGoogle Scholar
  27. Cole RJ, Kirksey JW, Cutler HG, Davis EE (1974) Toxic effects of oosporein from Chaetomium trilaterale. J Agric Food Chem 22:517–520PubMedCrossRefGoogle Scholar
  28. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cunningham KI, Northup DE, Pollastro RM, Wright WG, LaRock EJ (1995) Bacteria, fungi and biokarst in Lechuguilla cave, Carlsbad Caverns National Park. New Mexico Environ Geol 25:2–8CrossRefGoogle Scholar
  30. D’Souza-Ticlo D, Sharma D, Raghukumar C (2009) A thermostable metal- tolerant laccase with bioremediation potential from a marine-derived fungus. Mar Biotechnol 11:725–737PubMedCrossRefGoogle Scholar
  31. da Costa Souza PN, Grigoletto TLB, Moraes LAB, Abreu LM, Guimaraes LHS, Santos C, Galvao LR, Cardoso G (2016) Production and chemical characterization of pigments in filamentous fungi. Microbiology 162:12–22CrossRefGoogle Scholar
  32. Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the Central Indian Basin. Deep Sea Res 53:14–27CrossRefGoogle Scholar
  33. Danielli HMC, Edington MA (1983) Bacterial calcification in limestone caves. Geomicrobiol J 3:1–16CrossRefGoogle Scholar
  34. De la Rosa JM, Martin-Sanchez PM, Sanchez-Cortes S, Hermosin S, Knicker H, Saiz-Jimenez C (2017) Structure of melanins from the fungi Ochroconis lascauxensis and Ochroconis anomala contaminating rock art in the Lascaux Cave. Sci Rep 7:13441PubMedPubMedCentralCrossRefGoogle Scholar
  35. Demain AL (2014) Valuable secondary metabolites from fungi. In: Martin JF, Garcia-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York, pp 1–15Google Scholar
  36. Dickson GW, Kirk PW Jr (1976) Distribution of heterotrophic microorganisms in relation to detritivores in Virginia caves (with supplemental bibliography on cave mycology and microbiology). In: Parker BC, Roane MK (eds) The distributional history of the biota of the Southern Appalachians. Part IV Algae and fungi. University Press of Virginia, Charlotteville, pp 205–226Google Scholar
  37. Du L, Yang X, Zhu T, Wang F, Xiao X, Park H, Gu Q (2009) Diketopiperazine alkaloids from a deep ocean sediment derived fungus Penicillium sp. Chem Pharm Bull 57:873–876PubMedCrossRefGoogle Scholar
  38. Dupont J, Jacquet C, Dennetiere B, Lacoste S, Bousta F, Orial G, Cruaud C, Couloux A et al (2007) Invasion of the French Paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia 99:526–533PubMedCrossRefGoogle Scholar
  39. Dyson HJ, James JM (1973) A preliminary study of cave bacteria. J Sydney Speleol Soc 17:221–230Google Scholar
  40. Elyas KK, Mathew A, Sukumaran RK, Ali PPM, Sapna K, Kumar SR et al (2010) Production optimization and properties of beta glucosidases from a marine fungus Aspergillus-SA58. N Biotechn 27:347–351CrossRefGoogle Scholar
  41. Engel AS, Porter ML, Kinkle BK, Kane TC (2001) Ecological assessment and geological significance of microbial communities from cesspool cave, Virginia. Geomicrobiol J 18(3):259–274Google Scholar
  42. Engel AS, Stern LA, Bennett PC (2004) Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology 32:369–372CrossRefGoogle Scholar
  43. Forti P (2001) Biogenic speleothems: an overview. Int J Speleol 30:39–56CrossRefGoogle Scholar
  44. Forti P, Galdenzi S, Sarbu SM (2002) The hypogenic caves: a powerful tool for the study of seeps and their environmental effects. Cont Shelf Res 22:2373–2386CrossRefGoogle Scholar
  45. Gascoine W (1982) The formation of black deposits in some caves of South East Wales. Cave Sci 9:165–175Google Scholar
  46. Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional Biodiversity. BioScience 52:473–481CrossRefGoogle Scholar
  47. Gillieson D (1996) Caves, processes, development, and management. Blackwell, Oxford, p 324Google Scholar
  48. Godinho VM, Gonçalves VN, Santiago IF, Figueredo HM, Vitoreli GA, Schaefer CEGR et al (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596PubMedCrossRefGoogle Scholar
  49. Gomes ECQ, Godinho VM, Silva DAS, De Paula MD, Vitoreli GA, Zani CL et al (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393PubMedCrossRefGoogle Scholar
  50. Goncalves VN, Cantrell CL, Wedge DE, Ferreira MC, Soares MA, Jacob MR et al (2016) Fungi associated with rocks of the Atacama Desert: taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds. Environ Microbiol 18(1):232–245PubMedCrossRefGoogle Scholar
  51. Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631PubMedCrossRefGoogle Scholar
  52. Greif MD, Currah RS (2007) Patterns in the occurrence of saprophytic fungi carried by arthropods caught in traps baited with rotted wood and dung. Mycologia 99:7–19PubMedCrossRefGoogle Scholar
  53. Griffin DW, Gray MA, Lyles MB, Northup DE (2014) The transport of nonindigenous microorganisms into caves by human visitation: a case study at Carlsbad Caverns National Park. Geomicrobiol J 31:175–185CrossRefGoogle Scholar
  54. Groth I, Saiz-Jimenez C (1999) Actinomycetes in Hypogean environments. Geomicrobiol J 16:1–8CrossRefGoogle Scholar
  55. Gunde-Cimerman N, Zalar P, Jeram S (1998) Mycoflora of cave cricket Troglophilus neglectus cadavers. Mycopathologia 141:111–114CrossRefGoogle Scholar
  56. Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitas A (2003) Extremophilic fungi in Arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278CrossRefGoogle Scholar
  57. Guo JP, Zhu CY, Zhang CP, Chu YS, Wang YL, Zhang JX, Wu DK, Zhang KQ, Niu XM (2012) Thermolides, potent nematocidal pks-nrps hybrid metabolites from thermophilic fungus Talaromyces thermophilus. J Am Chem Soc 134:20306–20309PubMedCrossRefGoogle Scholar
  58. Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F (2016) Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Biotechnol 15:147–172CrossRefGoogle Scholar
  59. Hill CA, Forti P (1997) Cave minerals of the world, 2nd edn. Huntsville, Alabama, p 463Google Scholar
  60. Hoeg O (1946) Cyanophyceae and bacteria in calcareous sediments in the interior of limestone caves in Nord-Rana. Norway Nytt Mag Naturvidensk 85:99–104Google Scholar
  61. Howarth FG, Stone FD (1990) Elevated carbon dioxide levels in Bayliss Cave, Australia: implications for the evolution of Obligate Cave species. Pac Sci 44:207–218Google Scholar
  62. Hoyos M, Soler V, Canaveras JC, Sanchez-Moral S, Sanz-Rubio E (1998) Microclimatic characterization of a karstic cave: human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environ Geol 33:231–242CrossRefGoogle Scholar
  63. Huang YL, Locy R, Weete JD (2004) Purification and characterization of an extracellular lipase from Geotrichum marinum. Lipids 39:251–257PubMedCrossRefGoogle Scholar
  64. Hubbard D, Herman J, Bell P (1986) The role of sulfide oxidation in the genesis of Cesspool Cave, Virginia, USA. Proc Int Congr Speleol Barcelona Spain 9:255–257Google Scholar
  65. James JM (1994) Microorganisms in Australian caves and their influence on speleogenesis. In: Sasowsky ID, Palmer MV (eds) Breakthroughs in karst geomicrobiology and redox geochemistry. Karst Waters Institute, Colorado, pp 31–34Google Scholar
  66. Jensen PR, Fenical W (1996) Marine bacterial diversity as a source for novel microbial products. J Ind Microbiol 17:346–351CrossRefGoogle Scholar
  67. Jiang JR, Cai L, Liu F (2017) Oligotrophic fungi from a carbonate cave, with three new species of Cephalotrichum. Mycology 8:164–177CrossRefGoogle Scholar
  68. Jones B (1992) Manganese precipitates in the karst terrain of grand Cayman, British West Indies. Can J Earth Sci. 29:1125–1139CrossRefGoogle Scholar
  69. Jones B (2001) Microbial activity in caves – a geological perspective. Geomicrobiol J 18:345–357CrossRefGoogle Scholar
  70. Jones B, Motyka A (1987) Biogenic structures and micrite in stalactites from grand Cayman Island, British West Indies. Can J Earth Sci 24:1402–1411CrossRefGoogle Scholar
  71. Juan C, Emerson BC (2010) Evolution underground: shedding light on the diversification of subterranean insects. J Biol 9:17PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kambesis P (2007) The importance of cave exploration to scientific research. J Cave Karst Stud 69:46–58Google Scholar
  73. Kinkle B, Kane TC (2000) Chemolithoautotrophic microorganisms and their potential role in subsurface environments. In: Wilkens H, Culver DC, Humpreys WF (eds) Ecosystems of the world 30. Elsevier, Amsterdam, pp 309–318Google Scholar
  74. Kogl F, van Wessem GC (1944) Analysis concerning pigments of fungi XIV. Concerning oosporein, the pigment of Oospora colorans van Beyma. Recl Trav Chim Pays Bas Belg 63:5–24CrossRefGoogle Scholar
  75. Konhauser KO (1997) Bacterial iron mineralization in nature. FEMS Microbiol Rev 20(315):326Google Scholar
  76. Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth Sci Rev 43:91–121CrossRefGoogle Scholar
  77. Krumbein WE (1968) Über den Einfluß der Mikroflora auf die exogene Dynamik (Verwitterung und Krustenbildung). Geol Rundsch 58(2):333–363CrossRefGoogle Scholar
  78. Kumaresan D, Wischer D, Stephenson J, Hillebrand-Voiculescu A, Murrell JC (2014) Microbiology of Movile Cave-A Chemolithoautotrophic ecosystem. Geomicrobiol J 31:186–193CrossRefGoogle Scholar
  79. Lee D, Lee JH, Cai XF, Shin JC, Lee K, Hong YS, Lee JJ (2005) Fungal metabolites, sorbicillinoid polyketides and their effects on the activation of peroxisome proliferator-activated receptor c. J Antibiot (Tokyo) 58:615–620CrossRefGoogle Scholar
  80. Leys BR, Watts CH, Cooper SJ, Humphreys WF (2003) Evolution of subterranean diving beetles (Coleoptera: dytiscidae: hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–2834PubMedGoogle Scholar
  81. Liu W, Gu Q, Zhu W, Cui C, Fan G (2005) Dihydrotrichodimerol and tetrahydrotrichodimerol, two new bisorbicillinoids, from a marine derived Penicillium terrestre. J Antibiot (Tokyo) 58:621–624CrossRefGoogle Scholar
  82. Lu ZY, Lin ZJ, Wang WL, Du L, Zhu TJ, Fang YC, Gu QQ, Zhu WM (2008) Citrinin dimers from the halotolerant fungus Penicillium citrinum B-57. J Nat Prod 71:543–546PubMedCrossRefGoogle Scholar
  83. Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic Fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488PubMedPubMedCentralCrossRefGoogle Scholar
  84. Malard F, Gibert J (1997) Stygobitic fauna of the north Montpellierains karsts with special emphasis on the Lez karst system. From first annual top ten list of endangered karst ecosystems. Karst Waters Institute, Charles TownGoogle Scholar
  85. Man B, Wang H, Xiang X, Wang R, Yun Y, Gong L (2015) Phylogenetic diversity of culturable fungi in the Heshang Cave, Central China. Front Microbiol 6:1158PubMedPubMedCentralCrossRefGoogle Scholar
  86. Man B, Wang H, Yun Y, Xiang X, Wang R, Duan Y, Cheng X (2018) Diversity of fungal communities in Heshang Cave of Central China revealed by mycobiome-sequencing. Front Microbiol 9:1400PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mao BZ, Huang C, Yang GM, Chen YZ, Chen SY (2010) Separation and determination of bioactivity of oosporein from Chaetomium cupreum. Afr J Biotechnol 9:5955–5961Google Scholar
  88. Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28:300–307PubMedCrossRefGoogle Scholar
  89. Martinez A, Asencio AD (2009) Distribution of cyanobacteria at the Gelada Cave (Spain) by physical parameters. J Cave Karst Stud 72:11–20CrossRefGoogle Scholar
  90. Min KH (1988) Fungus flora of Seongrya cave in Korea. Trans Mycol Soc Jpn 29:479–487Google Scholar
  91. Mohamed R, Jong PL, Kamziah AK (2014) Fungal inoculation induces agarwood in young Aquilaria malaccensis trees in the nursery. J For Res 25(1):201–204CrossRefGoogle Scholar
  92. Mohapatra BR, Banerjee UC, Bapuji M (1998) Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp. J Biotechnol 60(1–2):113–117CrossRefGoogle Scholar
  93. Moore GW (1981) Manganese deposition in limestone caves. In: Beck BF (ed) Proceedings of the Eighth International Congress of Speleology. Georgia Southwestern College, Americus, pp 642–645Google Scholar
  94. Mulec J (2008) Microorganisms in hypogen: examples from Slovenian karst caves. Acta Carsologica 37:153–160Google Scholar
  95. Nagahama T, Nagano Y (2012) Cultured and uncultured fungal diversity in deep-sea environments. In: Raghukumar C (ed) Biology of marine fungi. Progress in molecular and subcellular biology. Springer, Berlin, pp 173–187Google Scholar
  96. Nagano Y, Nagahama T (2012) Fungal diversity in deep-sea extreme environments. Fungal Ecol 5:463–471CrossRefGoogle Scholar
  97. Nieves-Rivera AM, Santos-Flores CJ, Dugan FM, Miller TE (2009) Guanophilic fungi in three caves of southwestern Puerto Rico. Int J Speleol 38:61–70CrossRefGoogle Scholar
  98. Niu S, Fan ZW, Xie CL, Liu Q, Luo ZH, Liu G, Yang XW (2017) Spirograterpene a, a tetracyclic spiro-diterpene with a fused 5/5/5/5 ring system from the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475. J Nat Prod 80:2174–2177PubMedCrossRefGoogle Scholar
  99. Northup DE, Lavoie KH (2001) Geomicrobiology of caves: a review. Geomicrobiology 18:199–220CrossRefGoogle Scholar
  100. Northup DE, Reysenbach AL, Pace NR (1997) Microogranisms and speleothems. In: Hill C, Forti P (eds) Cave minerals of the world. Speleological Society, Huntsville, pp 261–266Google Scholar
  101. Novakova A (2009) Microscopic fungi isolated from the Domica Cave system (Slovak Karst National Park, Slovakia). A review. Int J Speleol 38(1):71–82CrossRefGoogle Scholar
  102. Novakova A, Hubka V, Saiz-Jimenez C, Kolarik M (2012) Aspergillus baeticus sp. nov. and Aspergillus thesauricus sp. nov., two species in section Usti from Spanish caves. Int J Syst Evol Microbiol 62:2778–2785PubMedCrossRefGoogle Scholar
  103. Ogorek R, Lejman A, Matkowski K (2014) Influence of the external environment on airborne fungi isolated from a cave. Pol J Environ Stud 23(2):435–440Google Scholar
  104. Ogorek R, Dylag M, Kozak M, Visnovska Z, Tancinova D, Lejman A (2015) Fungi isolated and quantified from bat guano and air in Harmanecka and Driny Caves (Slovakia). J Cave Karst Stud 78(1):41–49CrossRefGoogle Scholar
  105. Ogorek R, Pusz W, Zagozdzon PP, Kozak B, Bujak H (2017) Abundance and diversity of psychrotolerant cultivable mycobiota in winter of a former aluminous shale mine. Geomicrobiol J 34:823–833CrossRefGoogle Scholar
  106. Onofri S (1999) Antarctic microfungi. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic, Dordrecht, pp 323–336CrossRefGoogle Scholar
  107. Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21CrossRefGoogle Scholar
  108. Peck SB (1986) Bacterial deposition of iron and manganese oxides in North American caves. NSS Bull 48:26–30Google Scholar
  109. Peng J, Zhang XY, Tu ZC, Xu XY, Qi S-H (2013) Alkaloids from the deep-sea-derived fungus Aspergillus westerdijkiae DFFSCS013. J Nat Prod 76:983–987PubMedCrossRefGoogle Scholar
  110. Poulson TL, Lavoie KH (2000) The trophic basis of subsurface ecosystems. In: Wilkins H, Culver DC, Humphreys WF (eds) Subterranean ecosystems, Ecosystems of the World 30. Elsevier Press, Amsterdam, pp 231–249Google Scholar
  111. Poulson TL, White WB (1969) The cave environment. Science 165:971–981PubMedCrossRefGoogle Scholar
  112. Provencio PP, Polyak VJ (2001) Iron-oxide-rich filaments: possible fossil bacteria in Lechuguilla cave, New Mexico. Geomicrobiol J 18:297–309CrossRefGoogle Scholar
  113. Raghukumar C, Muraleedharan U, Gaud VR, Mishra R (2004) Xylanases of marine fungi of potential use for biobleaching of paper pulp. J Ind Microbiol Biotechnol 31:433–441PubMedCrossRefGoogle Scholar
  114. Ranta HM (1990) Effect of simulated acid rain on quantity of epiphytic microfungi on Scots pine (Pinus sylvestris L.) needles. Environ Pollut 67:349–359PubMedCrossRefGoogle Scholar
  115. Ribera I, Fresneda J, Bucur R, Izquierdo A, Vogler AP, Salgado JM et al (2010) Ancient origin of a Western Mediterranean radiation of subterranean beetles. BMC Evol Biol 10:29PubMedPubMedCentralCrossRefGoogle Scholar
  116. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47:179–214CrossRefGoogle Scholar
  117. Ritz K, Young IM (2004) Interactions between soil structure and fungi. Mycologist 18:52–59CrossRefGoogle Scholar
  118. Rivadeneyra MA, Delgado R, Delgado G, Del Moral A, Ferrer MR, Ramos-Cormenza A (1993) Precipitation of carbonate by Bacillus sp. isolated from saline soils. Geomicrobiol J 11:175–184CrossRefGoogle Scholar
  119. Rogers BW, Williams KM (1982) Mineralogy of Lilburn Cave, Kings Canyon National Park, California. NSS Bull 44:23–31Google Scholar
  120. Romero A (2011) The evolution of cave life: new concepts are challenging conventional ideas about life underground. Am Sci 99:144–151CrossRefGoogle Scholar
  121. Rutherford JM, Huang LH (1994) A study of fungi of remote sediments in West Virginia caves and a comparison with reported species in the literature. NSS Bull 56:38–45Google Scholar
  122. Saiz-Jimenez C (2012) Microbiological and environmental issues in show caves. World J Microbiol Biotechnol 28:2453–2464PubMedCrossRefGoogle Scholar
  123. Sarbu SM, Kinkle BK, Vlasceanu L, Kane TC, Popa R (1994) Microbiological characterization of a sulfide-rich groundwater ecosystem. Geomicrobiol J 12:175–182CrossRefGoogle Scholar
  124. Sarbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based cave ecosystem. Science 272:1953–1955PubMedCrossRefGoogle Scholar
  125. Schabereiter-Gurtner C, Saiz-Jimenez C, Pinar G, Lubitz W, Rolleke S (2002) Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo cave, Spain, and on its Paleolithic paintings. Environ Microbiol 4:392–400PubMedCrossRefGoogle Scholar
  126. Selbmann L, Egidi E, Isola D, Onofri S, Zucconi Z, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, Lantieri A, Compagno R, Tigini V, Varese G (2013) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst 147:237–246CrossRefGoogle Scholar
  127. Shapiro J, Prinjle A (2010) Anthropogenic influences on the diversity of Fungi isolated from caves in Kentucky and Tennessee. Am Midl Nat 163:76–86CrossRefGoogle Scholar
  128. Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanova L, Padgett D et al (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67CrossRefGoogle Scholar
  129. Shiomi N, Yasuda T, Inoue Y, Kusumoto N, Iwasaki S, Katsuda T, Katoh S (2004) Characteristics of neutralization of acids by newly isolated fungal cells. J Biosci Bioeng 97:54–58PubMedCrossRefGoogle Scholar
  130. Shu YZ, Ye Q, Li H, Kadow KF, Hussain RA, Huang S, Gustavson DR, Lowe SE, Chang LP et al (1997) Orevactaene, a novel binding inhibitor of HIV-1 rev protein to Rev response element (RRE) from Epicoccum nigrum WC47880. Bioorg Med Chem Lett 7:2295–2298CrossRefGoogle Scholar
  131. Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124CrossRefGoogle Scholar
  132. Sustr V, Elhottova D, Kristufek V, Lukesova A, Novakova A, Tajovsky K, Triska J (2005) Ecophysiology of the cave isopod Mesoniscus graniger (Frivaldszky 1865) (Crustacea: Isopoda). Eur J Soil Biol 41:69–75CrossRefGoogle Scholar
  133. Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C et al (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microb Ecol 63:73–83CrossRefGoogle Scholar
  134. Upadhyay P, Shrivastava R, Agrawal PK (2016) Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 6:15PubMedPubMedCentralCrossRefGoogle Scholar
  135. Vanderwolf KJ, Malloch D, McAlpine DF, Forbes GJ (2013) A world review of fungi, yeasts, and slime molds in caves. Int J Speleol 42:77–96CrossRefGoogle Scholar
  136. Vaugan MJ, Maier RM, Pryor BM (2011) Fungal communities on speleothem surfaces in Kartchner caverns, Arizona, USA. Int J Speleol 40:65–77CrossRefGoogle Scholar
  137. Velmurugan N, Lee YS (2012) Enzymes from marine fungi: current research and future prospects. In: Jones EBG (ed) Marine Fungi and Fungal-like Organisms, Marine and fresh water botany. Walter de Gruyter, Berlin, pp 441–474Google Scholar
  138. Walochnik J, Mulec J (2009) Free-living amoebae in carbonate precipitating microhabitats of karst caves and a new vahlkampfiid amoeba, Allovahlkampfia spelaea gen. nov., sp. nov. Acta Protozool 48:25–33Google Scholar
  139. Wang J, Wei X, Qin X, Tian X, Liao L, Li K, Zhou X, Yang X, Wang F, Zhang T et al (2016a) Antiviral merosesquiterpenoids produced by the Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J Nat Prod 79:59–65PubMedCrossRefGoogle Scholar
  140. Wang J, He W, Huang X, Tian X, Liao S, Yang B, Wang F, Zhou X, Liu Y (2016b) Antifungal new oxepine-containing alkaloids and xanthones from the deep-sea-derived fungus Aspergillus versicolor SCSIO 05879. J Agric Food Chem 64:2910–2916PubMedCrossRefGoogle Scholar
  141. Went FE (1969) Fungi associated with stalactite growth. Science 166:385–386PubMedCrossRefGoogle Scholar
  142. Wojtczak G, Breuil C, Yamuda J, Saddler JN (1987) A comparision of the thermostability of cellulose from various thermophilic fungi. Appl Miocrobiol Biotechnol 27:82–87Google Scholar
  143. Wu G, Ma H, Zhu T, Li J, Gu Q, Li D (2012) Penilactones A and B, two novel polyketides from Antarctic deepsea derived fungus Penicillium crustosum PRB-2. Tetrahedron 68:9745–9749CrossRefGoogle Scholar
  144. Xu X, Zhang X, Nong X, Wei X, Qi S (2015) Oxindole alkaloids from the fungus Penicillium commune DFFSCS026 isolated from deep-sea-derived sediments. Tetrahedron 71:610–615CrossRefGoogle Scholar
  145. Yang YL, Liao WY, Liu WY, Liaw CC, Shen CN, Huang ZY, Wu SH (2009) Discovery of new natural products by intact-cell mass spectrometry and LC-SPE-NMR: malbranpyrroles, novel polyketides from thermophilic fungus Malbranchea sulfurea. Chem Eur J 15:11573–11580PubMedCrossRefGoogle Scholar
  146. Yoder JA, Benoit JB, Christensen BS, Croxall TJ, Hobbs HH III (2009) Entomopathogenic fungi carried by the cave orb weaver spider, Meta ovalis (Araneae, Tetragnathidae), with implications for mycoflora transfer to cave crickets. J Cave Karst Stud 71:116–120Google Scholar
  147. Zalar P, de Hoog GS, Schroers HJ, Crous PW, Groenewald JZ, Gunde-Cimerman N (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zalar P, Frisvad JC, Gunde-Cimerman N, Varga J, Samson RA (2008) Four new species of Emericella from the Mediterranean region of Europe. Mycologia 100:779–795PubMedCrossRefGoogle Scholar
  149. Zamora JRC (1977) Isolation of Histoplasma capsulatum from the air in the Aguas Buenas caves, Aguas Buenas, Puerto Rico. Mycopathologia 60:163–165CrossRefGoogle Scholar
  150. Zhang T, Victor TR, Rajkumar SS, Li X, Okoniewski JC et al (2014) Mycobiome of the bat White nose syndrome affected caves and mines reveals diversity of Fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyces) destructans. PLoS One 9(9):e108714PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zhang ZF, Liu F, Zhou X, Liu XZ, Liu SJ, Cai L (2017) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 39:1–31PubMedPubMedCentralCrossRefGoogle Scholar
  152. Zhang X, Li SJ, Li JJ, Liang ZZ, Zhao CQ (2018a) Novel natural products from Extremophilic Fungi. Mar Drugs 16:194PubMedCentralCrossRefPubMedGoogle Scholar
  153. Zhang ZF, Zhao P, Cai L (2018b) Origin of cave Fungi. Front Microbiol 9:1407PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zhou JP, Gu YQ, Zou CS, Mo MH (2007) Phylogenetic diversity of bacteria in an earth-cave in Guizhou province southwest of China. J Microbiol 45:105–112PubMedGoogle Scholar
  155. Zhou H, Li L, Wu C, Kurtan T, Mandi A, Liu Y, Gu Q, Zhu T, Guo P, Li D (2015) Penipyridones a–f, pyridone alkaloids from Penicillium funiculosum. J Nat Prod 79(1783):1790Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. R. Joshi
    • 1
  • Upashna Chettri
    • 1
  1. 1.Microbiology Laboratory, Department of Biotechnology and BioinformaticsNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations