Advertisement

Nanomaterial-Immobilized Biocatalysts for Biofuel Production from Lignocellulose Biomass

  • Richa Salwan
  • Anu Sharma
  • Vivek Sharma
Chapter
  • 28 Downloads
Part of the Clean Energy Production Technologies book series (CEPT)

Abstract

Enzymes are employed in several fields of basic and applied research as biocatalysts in green chemistry, biosensor, nanobioelectronics, biofuel, and pharmaceutical, agricultural, and biotechnological industries. In present scenario, the diminution of fossil fuels gained the attention of researchers for substitute and sustainable renewable energy resources for biofuel production to combat worldwide energy consumption. The enzyme immobilization as biocatalysts for biofuel applications from lignocellulosic biomasses is found to produce highest percentage of bioethanol. The enzyme immobilization is a fundamental tool to reduce the cost and harness their benefits. The stabilization of enzymes using immobilization helps in efficient recovery from the reaction conditions after biocatalysis and hence makes laborious separation steps easy and permits repetitive use of enzymes. Besides this, it offers several other advantages such as stabilization against harsh reaction conditions, thermodynamic and kinetic stability, surface- and volume-confined enzyme environments, ability to design multi-step reaction, and reduced formation of undesired products which makes easy separation of soluble end products than free enzymes. The different methods of enzyme immobilization either involve adsorption or covalent bonding or encapsulation or a combination of different methods. Several types of nanoparticles and nanocomposites are being used for the stabilization of enzymes which retain the enzyme activity even after immobilization. This book chapter will cover the developments in coupled strategies and the deeper knowledge in stabilization of enzymes with special emphasis on the possibilities of nanomaterial coupled immobilization for operational stabilities in biofuel application.

Keywords

Enzymes Stabilization Enhanced activity Cost Applications Nanomaterials 

Notes

Acknowledgment

Authors are thankful to SEED division, DST, GOI for the award of project under Scheme for Young Scientists and Technologists (SEED-TIASN-023-2018).

References

  1. Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7:90CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahmad R, Sardar M (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 4(2):178.  https://doi.org/10.4172/2161-1009.1000178CrossRefGoogle Scholar
  3. Ali M, Winterer M (2010) ZnO nanocrystals: surprisingly alive. Chem Mater 22:85–91CrossRefGoogle Scholar
  4. Alper H, Stephanopoulous G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723CrossRefGoogle Scholar
  5. Andrade LH, Rebelo LP, Netto CGCM, Toma HE (2010) Kinetic resolution of a drug precursor by Burkholderia cepacia lipase immobilized methodologies on superparamagnetic nanoparticles. J Mol Catal B Enzym 66:55–62CrossRefGoogle Scholar
  6. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30(3):512–523.  https://doi.org/10.1016/j.biotechadv.2011.09.005CrossRefPubMedGoogle Scholar
  7. Ansorge-Schumacher MB, Slusarczyk H, Schumers J, Hirtz D (2006) Directed evolution of formate dehydrogenase from Candida boidinii for improved stability during entrapment in polyacrylamide. FEBS J 273:3938–3945CrossRefGoogle Scholar
  8. Antrim RR, Auterinen A-L (1986) A new regenerable immobilized glucose isomerase. Stärke 38:132–137CrossRefGoogle Scholar
  9. Arico AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
  10. Asuri P, Karajanagi SS, Sellitto E, Kim DY, Kane RS, Dordick JS (2006) Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol Bioeng 95:804–811CrossRefGoogle Scholar
  11. Asuri P, Bale SS, Pangule RC, Shah DA, Kane RS, Dordick JS (2007) Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir 23(24):12318–12321.  https://doi.org/10.1021/la702091cCrossRefPubMedGoogle Scholar
  12. Avnir D, Lev O, Livage J (2006) Recent bio-applications of sol-gel materials. J Mater Chem 16:1013–1030CrossRefGoogle Scholar
  13. Babaki M, Youse M, Habibi Z, Mohammadi M, Youse P, Mohammadi J, Brask J (2016) Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t -butanol and blue silica gel contents. 91:196–206.  https://doi.org/10.1016/j.renene.2016.01.053
  14. Balcao VM, Paiva AL, Malcata FX (1996) Bioreactors with immobilized lipases: state of the art. Enzym Microb Technol 18:392–416CrossRefGoogle Scholar
  15. Baskar G, Kumar RN, Melvin XH, Aiswarya R, Soumya S (2016) Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production. Renew Energy 98:23–28.  https://doi.org/10.1016/j.renene.2016.04.035CrossRefGoogle Scholar
  16. Bell G, Halling PJ, Moore BD, Partridge J, Rees DG (1995) Biocatalyst behaviour in low-water systems. Trends Biotechnol 13:468–473CrossRefGoogle Scholar
  17. Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26:566–572CrossRefGoogle Scholar
  18. Bhat RR, Genzer J, Chaney BN, Sugg HW, Liebmann-Vinson A (2003) Controlling the assembly of nanoparticles using surface grafted molecular and macromolecular gradients. Nanotechnology 14:1145–1152CrossRefGoogle Scholar
  19. Bilitewski U (2006) Protein-sensing assay formats and devices. Anal Chim Acta 568:232CrossRefGoogle Scholar
  20. Bisen PS, Sanodiya BS, Thakur GS, Baghed RK, Prasad GB (2010) Biodiesel production with special emphasis on lipase-catalysed transesterification. Biotechnol Lett 32:1019–1030CrossRefGoogle Scholar
  21. Bordini E, Hamdan M, Righetti PG (2000) Probing acrylamide alkylation sites in cysteine-free proteins by matrix-assisted laser desorption/ionisation time-of-flight. Rapid Commun Mass SP 14:840–848CrossRefGoogle Scholar
  22. Bosio VE, Islan GA, Martínez YN, Durán N, Castro GR (2016) Nanodevices for the immobilization of therapeutic enzymes. Crit Rev Biotechnol 36(3):447–464PubMedGoogle Scholar
  23. Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650CrossRefGoogle Scholar
  24. Brandt B, Hidalgo A, Bornscheuer UT (2006) Immobilization of enzymes in microtiter plate scale. J Biotechnol 1:582–587CrossRefGoogle Scholar
  25. Brena BM, Batista-Viera F (2006) Immobilization of enzymes. In: Guisan JM (ed) Methods in biotechnology: immobilization of enzymes and cells. Humana Press Inc, New York, pp 15–30CrossRefGoogle Scholar
  26. Bryjak J, Trochimczuk AW (2006) Immobilization of lipase and penicillin acylase on hydrophobic acrylic carriers. Enzym Microb Technol 39:573–578CrossRefGoogle Scholar
  27. Buchholz K, Kasche V (1997) Biokatalysatoren und Enzymtechnologie. VCH, Weinheim, pp 166–185Google Scholar
  28. Cabana H, Jones JP, Agathos SN (2009) Utilization of cross-linked laccase aggregates in a perfusion basket reactor for the continuous elimination of endocrine- disrupting chemicals. Biotechnol Bioeng 102:1582–1592CrossRefGoogle Scholar
  29. Cantone S, Ferrario V, Corici L, Ebert C, Fattor D et al (2013) Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev 42:6262–6276CrossRefGoogle Scholar
  30. Caruso F, Mohwald H (1999) Protein multilayer formation on colloids through a stepwise self- assembly technique. J Am Chem Soc 121:6039–6046CrossRefGoogle Scholar
  31. Carvalho NB, Vidal BT, Barbosa AS, Pereira MM, Mattedi S, Freitas LDS, Lima ÁS, Soares CMF (2018, Jun 21) Lipase immobilization on silica xerogel treated with protic ionic liquid and its application in biodiesel production from different oils. Int J Mol Sci. 19(7). pii: E1829.  https://doi.org/10.3390/ijms19071829
  32. Chandel AK, Chandrasekhar G, Silva MB, Silva SSD (2012) The realm of cellulases in biorefinery development. Crit Rev Biotechnol 32:187–202CrossRefGoogle Scholar
  33. Chen RJ, Bangsaruntip S, Drouvalakais KA, Kam NWS, Shim M, Li Y, Kim W, Utz PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci 100:4984–4989CrossRefGoogle Scholar
  34. Chiari M, Righetti PG, Negri A, Ceciliani F, Ronchi S (1992) Preincubation with cysteine prevents modification of sulfhydryl groups in proteins by unreacted acrylamide in a gel. Electrophoresis 13:882–884CrossRefGoogle Scholar
  35. Cho EJ, Jung S, Kim HJ et al (2012) Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem Commun 48:886–888CrossRefGoogle Scholar
  36. Chronopoulou L, Kamel G, Sparago C et al (2011) Structure-activity relationships of Candida rugosa lipase immobilized on polylactic acid nanoparticles. Soft Matter 7:2653–2662CrossRefGoogle Scholar
  37. Colín-Luna JA, Zamora-Rodea EG, González-Brambila MM, Barrera-Calva E, Rosas-Cedillo R, Medina-Mendoza AK, García-Martínez JC (2018) Biodiesel production using immobilized lipase supported on a zirconium-pillared clay. Effect Immobilization Method Intl J Chem Reactor Eng.  https://doi.org/10.1515/ijcre-2017-0260
  38. Cowan DA, Fernandez-Lafuente R (2011) Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzym Microb Technol 2011(49):326–346CrossRefGoogle Scholar
  39. Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P (2005) Metagenomic gene discovery: past, present and future. Trends Biotechnol 23:321–329CrossRefGoogle Scholar
  40. Crespilho FN, GhicaME FM, Nart FC, Oliveira ON, Brett CMA (2006) A strategy for enzyme immobilization on layer-by-layer dendrimer-gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem Commun 8:1665–1670CrossRefGoogle Scholar
  41. Cruz JC, Pfromm PH, Tomich JM, Rezac ME (2010) Conformational changes and catalytic competency of hydrolases adsorbing on fumed silica nanoparticles: I. tertiary structure. Colloid Surf B 79:97–104CrossRefGoogle Scholar
  42. Cui T, Zhang J, Wang J et al (2005) CdS nanoparticles/polymer composite shells on silica nanospheres grown by atom transfer radical polymerization. Adv Funct Mater 15:481–486CrossRefGoogle Scholar
  43. D’Souza SF (1999) Immobilized enzymes in bioprocess. Curr Sci 77:69–79Google Scholar
  44. Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. Biotech 3:1–9Google Scholar
  45. Deshpande A, D’souza SF, Nadkarni GB (1987) Co-immobilization of D- amino acid oxidase and catalase by entrapment of Trigonopsis variabilis in radiation polymerised Polyacrylamide beads. J Biosci 11:137–144CrossRefGoogle Scholar
  46. Diána W (2015) Nanostructured systems for enzyme immobilization. PhD ThesisGoogle Scholar
  47. Ding S, Cargill AA, Medintz IL, Claussen JC (2015) Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr Opin Biotechnol 34:242–250.  https://doi.org/10.1016/j.copbio.2015.04.005CrossRefPubMedGoogle Scholar
  48. Dobryszycki P, Rymarczuk M, Bulai G, Kochman M (1999) Effect of acrylamide on aldolase structure 1. Induction of intermediate states. Biochim Biophys Acta 1431:338–350CrossRefGoogle Scholar
  49. Dordick JS, Kane RS, Asuri P, et al (2012) Enhanced stability of proteins immobilized on nanoparticles. US Patent, 302870Google Scholar
  50. Drager G, Kiss C, Kunz U, Kirschning A (2007) Enzyme-purification and catalytic transformations in a microstructured PASSflow reactor using a new tyrosine-based Ni-NTA linker system attached to a polyvinylpyrrolidinone-based matrix. Org Biomol Chem 5:3657PubMedGoogle Scholar
  51. Drechsler U, Fischer NO, Frankamp BL, Rotello V (2004) Highly efficient biocatalysts via covalent immobilization of Candida rugosa lipase on ethylene glycol modified gold-silica nanocomposites. Adv Mater 16:271CrossRefGoogle Scholar
  52. Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM et al (2003) Activity of Candida rugosa lipase immobilized on Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1685–1686Google Scholar
  53. End N, Schoning KU (2004) Immobilized biocatalysts in industrial research and production. Top Curr Chem 242:273CrossRefGoogle Scholar
  54. English BP, Min W, van Oijen AM, Lee KT, Luo G, Sun H, Cherayil BJ, Kou SC, Xie XS (2006) Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat Chem Biol 2:87CrossRefGoogle Scholar
  55. Fernandes EGR, Queiroz AAAD, Abraham GA, Roman JS (2006) Anti-thrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers. J Mater Sci Mater Med 17:105–111CrossRefGoogle Scholar
  56. Fernandez-Lafuente R (2009) Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzym Microb Technol 45:405–418CrossRefGoogle Scholar
  57. Fernández-Lorente G, Palomo JM, Cabrera Z, GuisánJM F-LR (2007) Specificity enhancement towards hydrophobic substrates by immobilization of lipases by interfacial activation on hydrophobic supports. Enzym Microb Technol 41:565–569CrossRefGoogle Scholar
  58. Figallo E, Cannizzaro C, Gerecht S, Burdick JA, Langer R, Elvassore N et al (2007) Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 7:710–719CrossRefGoogle Scholar
  59. Fornera S, Bauer T, Schlüter AD, Walde P (2012a) Simple enzyme immobilization inside glass tubes for enzymatic cascade reactions. J Mater Chem 22:502–511CrossRefGoogle Scholar
  60. Fornera S et al (2012b) Sequential immobilization of enzymes in microfluidic channels for cascade reactions. ChemPlusChem 77:98–101CrossRefGoogle Scholar
  61. Frenkel-Mullerad H, Avnir D (2005) Sol-gel materials as efficient enzyme protectors: preserving the activity of phosphatases under extreme pH conditions. J Am Chem Soc 27(2005):8077–8081CrossRefGoogle Scholar
  62. Fu J, Reinhold J, Woodbury NW (2011) Peptide-modified surfaces for enzyme immobilization. PLoS One 6:e18692CrossRefPubMedPubMedCentralGoogle Scholar
  63. Fuentes M, Mateo C, Fernández-Lafuente R, Guisán JM (2006) Detection of polyclonal antibody against any area of the protein-antigen using immobilized protein- antigens: the critical role of the immobilization protocol. Biomacromolecules 7:540–544CrossRefGoogle Scholar
  64. Gaberc-Porekar V, Menart V (2001) Perspectives of immobilized-metal affinity chromatography: a review. J Biochem Biophys Methods 49:335–360CrossRefGoogle Scholar
  65. Ganesan A, Moore BD, Kelly SM et al (2009) Optical spectroscopic methods for probing the conformational stability of immobilised enzymes. Chem Phys Chem 10:1492–1499CrossRefGoogle Scholar
  66. Gao SL, Wang YJ, Diao X et al (2010) Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida rugosa lipase in SBA-15. Bioresour Technol 101:3830–3837CrossRefGoogle Scholar
  67. Gardimalla HMR, Mandal D, Stevens PD, Yen M, Gao Y (2005) Superparamagnetic nanoparticle-supported enzymatic resolution of racemic carboxylates. Chem Commun 37:4432–4434CrossRefGoogle Scholar
  68. Garvey M, Klose H, Fischer R et al (2013) Cellulases for biomass degradation: comparing recombinant cellulose expression platforms. Trends Biotechnol 31:581–589CrossRefGoogle Scholar
  69. Gebreyohannes AY, Dharmjeet M, Swusten T, Mertens M, Verspreet J, Verbiest T, Courtin CM, Vankelecom IFJ (2018) Simultaneous glucose production from cellulose and fouling reduction using a magnetic responsive membrane reactor with superparamagnetic nanoparticles carrying cellulolytic enzymes. Bioresour Technol 263:532–540.  https://doi.org/10.1016/j.biortech.2018.05.002CrossRefPubMedGoogle Scholar
  70. Georgelin T, Maurice V, Malezieux B et al (2010) Design of multifunctionalized g-Fe2O3@SiO2 core-shell nanoparticles for enzymes immobilization. J Nanopart Res 12:675–680CrossRefGoogle Scholar
  71. Ginet N, Pardoux R, Adryanczyk G, Garcia D, Brutesco C, Pignol D (2011) Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One 6(6):e21442.  https://doi.org/10.1371/journal.pone.0021442CrossRefPubMedPubMedCentralGoogle Scholar
  72. Grosová Z, Rosenberg M, Rebros M, Sipocz M, Sedlácková B (2008) Entrapment of beta-galactosidase in polyvinylalcohol hydrogel. Biotechnol Lett 30:763–767CrossRefGoogle Scholar
  73. Guncheva M, Tashev E, Zhiryakova D, Tosheva T, Tzokova N (2011) Immobilization of lipase from Candida rugosa on novel phosphorous-containing polyurethanes: application in wax ester synthesis. Process Biochem 46:923–930CrossRefGoogle Scholar
  74. Gupta MN, Kaloti M, Kapoor M, Solanki K (2011) Nanomaterials as matrices for enzyme immobilization. Artif Cells Blood Substit Biotechnol 39(2):98–109.  https://doi.org/10.3109/10731199.2010.516259CrossRefGoogle Scholar
  75. Hama S, Yamaji H, Fukumizu T et al (2007) Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 34:273–278CrossRefGoogle Scholar
  76. Hamachi I, Fujita A, Kunitake T (1994) Enhanced N-demethylase activity of cytochrome C bound to a phosphate-bearing synthetic bilayer membrane. J Am Chem Soc 116:8811–8812CrossRefGoogle Scholar
  77. Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468CrossRefGoogle Scholar
  78. Hartmann M, Kostrov X (2013) Immobilization of enzymes on porous silicas-benefits and challenges. Chem Soc Rev 42:6277–6289CrossRefGoogle Scholar
  79. Hernandez K, Fernandez-Lafuente R (2016) LCA studies comparing alkaline and immobilized enzyme catalyst processes for biodiesel production under Brazilian conditions. Enzym Microb Technol 2011(48):107–122Google Scholar
  80. Herricks TE, Kim SH, Kim J, Li D, Kwak JH, Grate JW, Kim SH, Xia Y (2005) Direct fabrication of enzyme-carrying polymer nanofibers by electrospinning. J Mater Chem 14:3241–3245CrossRefGoogle Scholar
  81. Ho L-F, Li S-Y, Lin S-C, Hsu W-H (2004) Integrated enzyme purification and immobilization processes with immobilized metal affinity adsorbents. Process Biochem 39:1573–1581CrossRefGoogle Scholar
  82. Ho KM, Mao X, Gu L, Li P (2008) Facile route to enzyme immobilization: core–shell nanoenzyme particles consisting of well-defined poly (methyl methacrylate) cores and cellulase shells. Langmuir 24:11036–11042CrossRefGoogle Scholar
  83. Huang XJ, Chen PC, Huang F et al (2011) Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B Enzym 70:95–100CrossRefGoogle Scholar
  84. Hudson S, Cooney J, Magner E (2008) Proteins in mesoporous silicates. Angew Chem Int Ed Eng 47:8582–8594CrossRefGoogle Scholar
  85. Hung SW, Hwang JK, Tseng F, Chang JM, Chen CC, Chieng CC (2006) Molecular dynamics simulation of the enhancement of cobra cardiotoxin and E6 protein binding on mixed self-assembled monolayer molecules. Nanotechnology 17:S8–S13CrossRefGoogle Scholar
  86. Husain Q (2017) Nanomaterials as novel supports for the immobilization of amylolytic enzymes and their applications: a review. Biocatalysis 3(1):37–53.  https://doi.org/10.1515/boca-2017-0004CrossRefGoogle Scholar
  87. Husain Q, Ansari SA, Alam F, Azam A (2011) Immobilization of Aspergillus oryzae β-galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. Int J Biol Macromol 49:37–43CrossRefGoogle Scholar
  88. Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13:49–61CrossRefGoogle Scholar
  89. Igor Alberto Peñarrubia Fernandez, De-Hua Liu, Jinsong Zhao (2016) LCA studies comparing alkaline and immobilized enzyme catalyst processes for biodiesel production under Brazilian conditions. Conserv Recycl 119:117–127.  https://doi.org/10.1016/j.resconrec.2016.05.009CrossRefGoogle Scholar
  90. Iyer PV, Ananthnarayan L (2008) Enzyme stability and stabilization-aqueous and non-aqueous environment. Process Biochem 43(10):1019–1032.  https://doi.org/10.1016/j.procbio.2008.06.004
  91. Ji PJ, Tan HS, Xu X, Feng W (2010) Lipase covalently attached to multiwalled carbon nanotubes as an efficient catalyst in organic solvent. AICHE J 56:3005–3011CrossRefGoogle Scholar
  92. Jia H, Zhu G, Wang P (2003) Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol Bioeng 84:406–414CrossRefGoogle Scholar
  93. Jin Q, Li X, Deng C, Zhang Q, Yi D, Wang X et al (2018) Silica nanowires with tunable hydrophobicity for lipase immobilization and biocatalytic membrane assembly. J Colloid Interface Sci 531:555–563.  https://doi.org/10.1016/j.jcis.2018.07.035CrossRefPubMedGoogle Scholar
  94. Johnson RD, Wang ZG, Arnold FH (1996) Surface site heterogeneity and lateral interactions in multipoint protein adsorption. J Phys Chem 100:5134–5139CrossRefGoogle Scholar
  95. Johnson AK, Zawadzka AM, Deobald LA, Crawford RL, Paszczynski AJ (2008) Novel method for immobilization of enzymes to magnetic nanoparticles. J Nanopart Res 10:1009–1025CrossRefGoogle Scholar
  96. Johnson PA, Park HJ, Driscoll AJ (2011) Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization. Methods Mol Biol 679:183–191CrossRefGoogle Scholar
  97. Jordan BJ, Hong R, Gider B, Hill J, Emrick T, Rotello VM (2006) Stabilization ofα-chymotrypsin at air–water interface through surface binding to gold nanoparticle scaffolds. Soft Matter 2:558–560CrossRefGoogle Scholar
  98. Jun L, Zhou W, Kumbhar J, Wiemann J, Fang J, Carpentier EE et al (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization and magnetic field induced self-assembly. Sol State Chem 159:26–31CrossRefGoogle Scholar
  99. Kaieda M, Samukawa T, Kondo A, Fukuda H (2001) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng 91:12–15CrossRefGoogle Scholar
  100. Karajanagi SS, Vertegel AA, Kane RS, Dordick JS (2004) Structures and functions of enzymes adsorbed onto single walled carbon nanotubes. Langmuir 20:11594–11599CrossRefGoogle Scholar
  101. Karel Hernandez RFL (1980) Control of protein immobilization: coupling immobilization and site-directed mutagenesis. BJOG Int J Obstet Gynaecol 87(11):1015–1021.  https://doi.org/10.1016/j.enzmictec.2010.10.003CrossRefGoogle Scholar
  102. Katchalski-Katzir E (1993) Immobilized enzymes - learning from past successes and failures. Trends Biotechnol 11(11):471–478.  https://doi.org/10.1016/0167-7799(93)90080-SCrossRefPubMedGoogle Scholar
  103. Kennedy JF, Melo EHM (1990) Immobilised enzymes and cells. Chem Eng Prog 86:81–89Google Scholar
  104. Khosla K, Rathour R, Maurya R, Maheshwari N, Gnansounou E, Larroche C, Thakur IS (2017) Biodiesel production from lipid of carbon dioxide sequestrating bacterium and lipase of psychrotolerant Pseudomonas sp. ISTPL3 immobilized on biochar. Bioresour Technol 245(Pt A):743–750.  https://doi.org/10.1016/j.biortech.2017.08.194CrossRefPubMedGoogle Scholar
  105. Kim J, Grate JW (2003) Single-Enzyme nanoparticles armored by a nanometer-scale organic / inorganic network. Nano Lett 3(9):1219–1222.  https://doi.org/10.1021/nl034404bCrossRefGoogle Scholar
  106. Kim BC, Nair S, Kim J, Kwak JH, Grate JW, Kim SH et al (2005a) Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. Nanotechnology 16:S382–S388CrossRefGoogle Scholar
  107. Kim BK, Kim YH, Won K, Chang H, Choi Y, Kong K et al (2005b) Electrical properties of polyaniline nanofibre synthesized with biocatalyst. Nanotechnology 16:1177–1181CrossRefGoogle Scholar
  108. Kim J, Grate JW, Wang P (2006a) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026CrossRefGoogle Scholar
  109. Kim J, Jia H, Wang P (2006b) Challenges in biocatalysis for enzyme based biofuel cells. Biotechnol Adv 24:296–308CrossRefGoogle Scholar
  110. Kim MI, Ham HO, Oh SD, Park HG, Chang HN, Choi SH (2006c) Immobilization of Mucor javanicus lipase on effectively functionalized silica nanoparticles. J Mol Catal B Enzym 39:62–68CrossRefGoogle Scholar
  111. Kim MI, Kim J, Lee J et al (2007) Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: a simple and effective method for enzyme stabilization. Biotechnol Bioeng 96:210–218CrossRefGoogle Scholar
  112. Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646CrossRefGoogle Scholar
  113. Kin MH, Xuepu M, Lianquan G, Li P (2008) Facile route to enzyme immobilization: core–shell nanoenzyme particles consisting of well-defined poly(methyl methacrylate) cores and cellulase shells. Langmuir 24:11036–11042CrossRefGoogle Scholar
  114. Kingsmore SF (2006) Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov 5:310–320CrossRefPubMedPubMedCentralGoogle Scholar
  115. Kirupa Sankar M, Ravikumar R, Naresh Kumar M, Sivakumar U (2018) Development of co-immobilized tri-enzyme biocatalytic system for one-pot pretreatment of four different perennial lignocellulosic biomass and evaluation of their bioethanol production potential. Bioresour Technol 269:227–236.  https://doi.org/10.1016/j.biortech.2018.08.091CrossRefPubMedGoogle Scholar
  116. Klein MP, Nunes MR, Rodrigues RC et al (2012) Effect of the support size on the properties of b-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomacromolecules 13:2456–2464CrossRefGoogle Scholar
  117. Koneracka M, Kopcansky P, Antalmk M, Timko M, Ramchand CN, Lobo D et al (1999) Immobilization of proteins and enzymes to the magnetic particles. J Magn Magn Mater 201:427–430CrossRefGoogle Scholar
  118. Koneracka M, Kopcansky P, Timko M, Ramchand CN (2002) Direct binding procedure of proteins and enzymes to fine magnetic particles. J Magn Mater 252:409–411CrossRefGoogle Scholar
  119. Konwarh R, Karak N, Rai SK, Mukherjee AK (2009) Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology 20:225–235CrossRefGoogle Scholar
  120. Kopp W, da Costa TP, Pereira SC, Jafelicci MJ, Giordano RC, Marques RFC et al (2014) Easily handling penicillin G acylase magnetic cross-linked enzymes aggregates: catalytic and morphological studies. Process Biochem 49:38–46.  https://doi.org/10.1016/j.procbio.2013.09.024CrossRefGoogle Scholar
  121. Kouassi GK, Irudayaraj J, McCarty G (2005) Examination of cholesterol oxidase attachment to magnetic nanoparticles. J Nanobiotechnol 3:1–9CrossRefGoogle Scholar
  122. Krumov N, Perner-Nochta I, Oder S et al (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32:1026–1035CrossRefGoogle Scholar
  123. Küchler A, Adamcik J, Mezzenga R, Schlüter AD, Walde P (2015a) Enzyme immobilization on silicate glass through simple adsorption of dendronized polymer-enzyme conjugates for localized enzymatic cascade reactions. RSC Adv 5:44530–44544CrossRefGoogle Scholar
  124. Küchler A, Bleich JN, Sebastian B, Dittrich PS, Walde P (2015b) Stable and simple immobilization of proteinase K inside glass tubes and microfluidic channels. ACS Appl Mater Interfaces 7:25970–25980CrossRefGoogle Scholar
  125. Küchler A, Yoshimoto M, Luginbühl S, Mavelli F, Walde P (2016) Enzymatic reactions in confined environments. Nat Nanotechnol 11(5):409–420.  https://doi.org/10.1038/nnano.2016.54CrossRefPubMedGoogle Scholar
  126. Kumar CV, McLendon GL (1997) Nanoencapsulation of cytochrome c and horseradish peroxidase at the galleries of a-zirconium phosphate. Chem Mater 9:863–870CrossRefGoogle Scholar
  127. Kumar A, Mandal S, Selvakannan PR, Pasricha R, Mandale AB, Sastry M (2003) Fractal gold nanostructures produced by the spontaneous reduction of chloroaurate ions in thermally evaporated hexadecylaniline thin films. Langmuir 9:6277–6282CrossRefGoogle Scholar
  128. Kuroiwa T, Noguchi Y, Nakajima M, Sato S, Mukataka S, Ichikawa S (2008) Production of chitosan oligosaccharides using chitosanase immobilized on amylase coated magnetic nanoparticles. Process Biochem 43:62–69CrossRefGoogle Scholar
  129. Lalonde J, Margolin A (2002) In: Drauz K, Waldmann H (eds) Enzyme catalysis in organic synthesis, vol 1, 2nd edn. Wiley-VCH, Weinheim, pp 163–184CrossRefGoogle Scholar
  130. Lee DG, Ponvel KM, Kim M et al (2009) Immobilization of lipase on hydrophobic nano-sized magnetite particles. J Mol Catal B Enzym 57:62–66CrossRefGoogle Scholar
  131. Lee SM, Jin LH, Kim JH et al (2010) Beta-glucosidase coating on polymer nanofibers for improved cellulosic ethanol production. Bioprocess Biosyst Eng 33:141–147CrossRefGoogle Scholar
  132. Lei CH, Shin YS, Magnuson JK, Fryxell G, Lasure LL, Elliott DC et al (2006) Characterization of functionalized nanoporous supports for protein confinement. Nanotechnology 17:5531–5538CrossRefGoogle Scholar
  133. Li Y, Wang H, Lu J, Chu A, Zhang L, Ding Z et al (2019) Preparation of immobilized lipase by modified polyacrylonitrile hollow membrane using nitrile-click chemistry. Bioresour Technol 274:9–17.  https://doi.org/10.1016/j.biortech.2018.11.075CrossRefPubMedGoogle Scholar
  134. Li SF, Fan YH, Hu RF, Wu WT (2011) Pseudomonas cepacia lipase immobilized onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. J Mol Catal B Enzym 72:40–45CrossRefGoogle Scholar
  135. Lia Y, Schluesenerb HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43:29–41CrossRefGoogle Scholar
  136. Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev 42:6236–6249.  https://doi.org/10.1039/c3cs35511jCrossRefPubMedGoogle Scholar
  137. Lin Y, Jin W, Wang J, Cai Z, Wu S, Zhang GA (2018) Novel method for simultaneous purification and immobilization of a xylanase-lichenase chimera via SpyTag/SpyCatcher spontaneous reaction. Enzym Microb Technol 115:29–36.  https://doi.org/10.1016/j.enzmictec.2018.04.007CrossRefGoogle Scholar
  138. Liu CH, Huang CC, Wang YW et al (2012) Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Appl Energy 100:41–46CrossRefGoogle Scholar
  139. Liu C, Yuan J, Gao H, Liu C (2016) Biodiesel production from waste cooking oil by immobilized lipase on superparamagnetic Fe3O4 hollow sub-microspheres. Biocatal Biotransformation 34(6):283–290.  https://doi.org/10.1080/10242422.2016.1265948
  140. Liu LH, Shih YH, Liu WL, Lin CH, Huang HY (2017) Enzyme immobilized on nanoporous carbon derived from metal-organic framework: a new support for biodiesel synthesis. 10(7):1364–1369.  https://doi.org/10.1002/cssc.201700142
  141. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefPubMedPubMedCentralGoogle Scholar
  142. Malcata FXH, Reyes R, Garcia HS, Hill CG Jr, Amundson CH (1997) Enzym Microb Technol 14:426–446CrossRefGoogle Scholar
  143. Margeot A, Hahn-Hagerdal B, Edlund M et al (2009) New improvements for lignocellulose ethanol. Curr Opin Biotechnol 20:372–380CrossRefGoogle Scholar
  144. Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2:29–37CrossRefGoogle Scholar
  145. Matano Y, Hasunuma T, Kondo A (2013) Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulose- displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour Technol 135:403–409CrossRefGoogle Scholar
  146. Mateo C, Abian O, Fernandez-Lafuente R, Guisan JM (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzym Microb Technol 26:509–515CrossRefGoogle Scholar
  147. Mateo C, Abian O, Bernedo M, Cuenca E, Fuentes M, Fernandez-Lorente G et al (2005) Some special features of glyoxyl supports to immobilize proteins. Enzym Microb Technol 37:456–462CrossRefGoogle Scholar
  148. Mateo C, Palomo JM, Fuentes M, Betancor L, Grazu V, López-Gallego F et al (2006) Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzym Microb Technol 39:274–280CrossRefGoogle Scholar
  149. Mateo C, Grazu V, Palomo JM, Lopez-Gallego F, Fernandez-Lafuente R, Guisan JM (2007a) Immobilization of enzymes on heterofunctional epoxy supports. Nat Protoc 2:1022–1033CrossRefGoogle Scholar
  150. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007b) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40:1451–1463CrossRefGoogle Scholar
  151. Matsunaga T, Kamiya S (1987) Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl Microbiol Biotechnol 26:328–332.  https://doi.org/10.1007/BF00256663CrossRefGoogle Scholar
  152. Mehta RV, Upadhyay RV, Charles SW, Ramchand CN (1997) Direct binding of protein to magnetic particles. Biotechnol Tech 11:493–496CrossRefGoogle Scholar
  153. Mehrasbi MR, Mohammadi J, Peyda M, Mohammadi MM (2017) Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renew Energy 101:593–602. https://doi.org/10.1016/j.renene.2016.09.022CrossRefGoogle Scholar
  154. Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Soderlund H et al (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864–11865CrossRefGoogle Scholar
  155. Montes T, Grazú V, López-Gallego F, Hermoso JA, García JL, Manso I et al (2007) Genetic modification of the penicillin G acylase surface to improve its reversible immobilization on ionic exchangers. Appl Environ Microbiol 73:312–319CrossRefPubMedPubMedCentralGoogle Scholar
  156. Moser BR (2011) Biodiesel production, properties, and feedstocks. In: Tomes D, Lakshmanan P, Sonstad D (eds) Biofuels. Springer, New York, pp 285–347CrossRefGoogle Scholar
  157. Murillo G, Ali SS, Sun J, Yan Y, Bartoccie P, El-Zawawy N, Azab M, He Y, Fantozzi F (2019) Ultrasonic emulsification assisted immobilized Burkholderia cepacia lipase catalyzed transesterification of soybean oil for biodiesel production in a novel reactor design SC. Renew Energy 135:1025–1034.  https://doi.org/10.1016/j.renene.2018.12.080CrossRefGoogle Scholar
  158. Murty VR, Bhat J, Muniswaran PKA (2002) Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnol Bioprocess Eng 7:57–66CrossRefGoogle Scholar
  159. Naresh S, Shuit SH, Kunasundari B, Peng YH, Qi HN, Teoh YP (2018) Immobilization of cellulase from Bacillus subtilis UniMAP-KB01 on multi-walled carbon nanotubes for biofuel production. IOP Conf Ser: Mater Sci Eng 318.  https://doi.org/10.1088/1757-899X/318/1/012008
  160. Nelson JM, Griffin EG (1916) Adsorption of Invertase. J Am Chem Soc 38:1109–1115CrossRefGoogle Scholar
  161. Ngo TPN, Li A, Tiew KW, Li Z (2013) Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour Technol 145:233–239CrossRefPubMedPubMedCentralGoogle Scholar
  162. Ni Y, Cao X, Wu G, Hu G, Yang Z, Wei X (2007) Preparation, characterization and property study of zinc oxide nanoparticles via a simple solution-combusting method. Nanotechnology 18:155–161Google Scholar
  163. Ottolina G, Carrea G, Riva S, Sartore L, Veronese FM (1992) Effect of the enzyme form on the activity, stability and enantioselectivity of lipoprotein lipase in toluene. Biotechnol Lett 14:947–952CrossRefGoogle Scholar
  164. Öztürk B (2001) Immobilization of lipase from Candida rugosa on hydrophobic and hydrophilic supports. (Master thesis). İzmir Institute of Technology, TurkeyGoogle Scholar
  165. Palazzo G, Colafemmina G, Guzzoni Iudice C, Mallardi A (2014) Three immobilized enzymes acting in series in layer by layer assemblies: exploiting the trehalase-glucose oxidase-horseradish peroxidase cascade reactions for the optical determination of trehalose. Sensors Actuators B 202:217–223CrossRefGoogle Scholar
  166. Palocci C, Chronopoulou L, Venditti I, Cernia E, Diociaiuti M, Fratoddi I, Russo MV (2007) Lipolytic enzymes with improved activity and selectivity upon adsorption on polymeric nanoparticles. Biomacromolecules 8:3047–3053CrossRefGoogle Scholar
  167. Palomo JM (2009) Modulation of enzymes selectivity via immobilization. Curr Org Synth 6:1–14CrossRefGoogle Scholar
  168. Palomo JM, Fernandez-Lorente G, Mateo C, Ortiz C, Fernandez-Lafuente R, Guisan JM (2002) Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzym Microb Technol 31:775–783CrossRefGoogle Scholar
  169. Palomo JM, Filice M, Fernandez-Lafuente R, Terreni M, Guisan JM (2007) Regioselective hydrolysis of different peracetylated β-monosaccharides by immobilized lipases from different sources. Key role of the immobilization. Adv Synth Catal 349:1969–1976CrossRefGoogle Scholar
  170. Pavlidis IV, Vorhaben T, Gournis D et al (2012a) Regulation of catalytic behaviour of hydrolases through interactions with functionalised carbon-based nanomaterials. J Nanopart Res 14:842CrossRefGoogle Scholar
  171. Pavlidis IV, Vorhaben T, Tsoufis T et al (2012b) Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour Technol 115:164–171CrossRefGoogle Scholar
  172. Persichetti RA, Clair NLS, Griffith JP, Navia MA, Margolin AL (1995) Cross-linked enzyme crystals (CLECs) of Thermolysin in the synthesis of peptides. J Am Chem Soc 117:2732–2737CrossRefGoogle Scholar
  173. Petros RA, Desimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 8:615–627.  https://doi.org/10.1038/nrd2591CrossRefGoogle Scholar
  174. Phadtare S, Kumar A, Vinod VP, Dash C, Palaskar DV, Rao M et al (2003) Direct assembly of gold nanoparticle “shells” on polyurethane microsphere “cores” and their application as enzyme immobilization templates. Chem Mater 15:1944–1949CrossRefGoogle Scholar
  175. Phadtare S, Vinod VP, Mukhopadhyay K, Kumar A, Rao M, Chaudhari RV et al (2004) Immobilization and biocatalytic activity of fungal protease on gold nanoparticle-loaded zeolite microspheres. Biotechnol Bioeng 85:629–637CrossRefPubMedPubMedCentralGoogle Scholar
  176. Pimentel MCB, Leao ABF, Melo EHM, Ledingham WM, Lima-Filho JL, Sivewright M (2007) Immobilization of Candida rugosa lipase on magnetized dacron: kinetic study. Art Cell Blood Substit Biotechnol 35:221–235CrossRefGoogle Scholar
  177. Pišvejcová A, Rossi C, Hušáková L, Křen V, Riva S, Monti D (2006) β-1,4-Galactosyltransferase-catalyzed glycosylation of sugar derivatives: modulation of the enzyme activity by α-lactalbumin, immobilization and solvent tolerance. J Mol Catal B Enzym 39:98–104CrossRefGoogle Scholar
  178. Polizzi KM, Bommarius AS, Broering JM, Chaparro-Riggers JF (2007) Stability of biocatalysts. Curr Opin Chem Biol 11:220–225CrossRefGoogle Scholar
  179. Prakasham RS, Sarala DG, Rajya LK, Subba R (2007) Novel synthesis of ferric impregnated silica nanoparticles and their evaluation as a matrix for enzyme immobilization. J Phys Chem C 111:3842–3847CrossRefGoogle Scholar
  180. Puri M, Abraham RE, Barrow CJ (2012) Biofuel production: prospects, challenges and feedstock in Australia. Renew Sust Energ Rev 16:6022–6031CrossRefGoogle Scholar
  181. Rai M et al (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol Rev 5(2):231–250CrossRefGoogle Scholar
  182. Rao SV, Anderson KW, Bachas LG (1998) Oriented immobilization of proteins. Microchim Acta 128:127–143Google Scholar
  183. Rao A, Sathiavelu A, Mythili S (2017) Mini review on nanoimmobilization of lipase and cellulase for biofuel production. Biofuel 7269(July).  https://doi.org/10.1080/17597269.2017.1348187
  184. Rempel A, de Souza SF, Margarites AC, Astolfi AL, Steinmetz RLR, Kunz A, Treichel H, Colla LM (2019, Sep) Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: an energy efficient approach. Bioresour Technol 288:121588.  https://doi.org/10.1016/j.biortech.2019.121588CrossRefPubMedGoogle Scholar
  185. Richter O, Hoffmann H, Kraushaar-Czarnetzki B (2008) Effect of the rotor shape on the mixing characteristics of a continuous flow Taylor-vortex reactor. Chem Eng Sci 63:3504–3513CrossRefGoogle Scholar
  186. Robinson PJ, Dunnill P, Lilly MD (1973) The properties of magnetic supports in relation to immobilized enzyme reactors. Biotechnol Bioeng 15:603–606CrossRefGoogle Scholar
  187. Rodrigues RC, Berenguer-Murcia A, Fernandez- Lafuente R (2011) Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv Synth Catal 353:2216–2238CrossRefGoogle Scholar
  188. Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42(15):6290–6307.  https://doi.org/10.1039/c2cs35231aCrossRefPubMedGoogle Scholar
  189. Rodrigues ÉF, Ficanha AMM, Dallago RM, Treichel H, Reinehr CO, Machado TP, Nunes GB, Colla LM (2017) Production and purification of amylolytic enzymes for saccharification of microalgal biomass. Bioresour Technol 225:134–141.  https://doi.org/10.1016/j.biortech.2016.11.047CrossRefPubMedGoogle Scholar
  190. Rostro-Alanis MJ, Mancera-Andrade EI, Patiño MBG, Arrieta-Baez D, Cardenas B, Martinez-Chapa SO, Saldívar RP (2016) Nanobiocatalysis: nanostructured materials -a mini-review. Biocatalysis 2:1–24CrossRefGoogle Scholar
  191. Rozenberga BA, Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci 33:40–112CrossRefGoogle Scholar
  192. Rubin-Pitel SB, Zhao H (2006) Recent advances in biocatalysis by directed enzyme evolution. Comb Chem High-Throughput Screen 9:247–257CrossRefGoogle Scholar
  193. Rusetski AN, Ruuge EK (1990) Magnetic fluid as a possible drug carrier for thrombosis treatment. J Magn Magn Mater 85:299–302CrossRefGoogle Scholar
  194. Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8:1775–1789CrossRefGoogle Scholar
  195. Saifuddin N, Raziah AZ, Junizah AR (2013) Carbon nanotubes: a review on structure and their interaction with proteins. J Chem 18:18. Article ID 676815Google Scholar
  196. Saiyed ZM, Telang SD, Ramchand CN (2003) Application of magnetic techniques in the field of drug discovery and biomedicine. Biomagn Res Technol 1:2–8CrossRefPubMedPubMedCentralGoogle Scholar
  197. Saiyed ZM, Sharma S, Godawat R, Telang SD, Ramchand CN (2007) Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles (Fe3O4). J Biotechnol 131(3):240–244.  https://doi.org/10.1016/j.jbiotec.2007.06.017CrossRefPubMedGoogle Scholar
  198. Sánchez-Ramírez J, Martínez-Hernández JL, Segura-Ceniceros P, López G, Saade H, Medina-Morales MA, Ramos-González R, Aguilar CN, Ilyina A (2017) Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst Eng 40(1):9–22.  https://doi.org/10.1007/s00449-016-1670-1CrossRefPubMedGoogle Scholar
  199. Sastry M, Rao M, Ganesh KN (2002) Electrostatic assembly of nanoparticles and biomacromolecules. Acc Chem Res 35:847–855CrossRefGoogle Scholar
  200. Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75:955–962CrossRefGoogle Scholar
  201. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolt M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268.  https://doi.org/10.1038/35051736CrossRefGoogle Scholar
  202. Schmitke JL, Wescott CR, Klibanov AM (1996) The mechanistic dissection of the plunge in enzymatic activity upon transition from water to anhydrous solvents. J Am Chem Soc 118:3360–3365CrossRefGoogle Scholar
  203. Schuler C, Caruso F (2000) Preparation of enzyme multilayers on colloids for biocatalysis. Macromol Rapid Commun 21:750–753CrossRefGoogle Scholar
  204. Shah S, Solanki K, Gupta MN (2007) Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes. Chem Cent J 1:30CrossRefPubMedPubMedCentralGoogle Scholar
  205. Shang W, Nuffer JH, Dordick JS, Siegel RW (2007) Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett 7:1991–1995CrossRefGoogle Scholar
  206. Sharp CA, Howell SA, Jobe J (2000) The effect of biodiesel fuels on transient emissions from modern diesel engines, Part II, unregulated emissions and chemical characterization. SAE Technical Paper. No. 2000-01-1968Google Scholar
  207. Shaw SY, Chen YJ, Ou JJ, Ho L (2006) Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles. Enzym Microb Technol 39:1089–1095CrossRefGoogle Scholar
  208. Sheelu G, Kavitha G, Fadnavis NW (2008) Efficient immobilization of Lecitase in Gelatin hydrogel and degumming of rice bran oil using a spinning basket reactor. J Am Oil Chem Soc 85:739–748CrossRefGoogle Scholar
  209. Sheldon RA (2007a) Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts. Biochem Soc Trans 35:1583–1587CrossRefGoogle Scholar
  210. Sheldon RA (2007b) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307CrossRefGoogle Scholar
  211. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235CrossRefGoogle Scholar
  212. Shim M, Kam NWS, Chem RJ, Li Y, Dai H (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288CrossRefGoogle Scholar
  213. Silman IH, Katchalski E (1966) Water-insoluble derivatives of enzymes, antigens, and antibodies. Annu Rev Biochem 35:873–908CrossRefGoogle Scholar
  214. Singh V, Sardar M, Gupta MN (2013) Immobilization of enzymes by bioaffinity layering. In: Immobilization of enzymes and cells, 3rd edn. Springer/Humana Press, TotawaGoogle Scholar
  215. Siqueira JR Jr, Caseli L, Crespilho FN, Zucolotto V, Oliveira ON Jr (2010) Immobilization of biomolecules on nanostructured films for biosensing. Biosens Bioelectron 25:1254–1263CrossRefGoogle Scholar
  216. Srivastava A, Prasad AR (2000) Triglycerides-based diesel fuels. Renew Sust Energ Rev 4:111–133CrossRefGoogle Scholar
  217. Stoytcheva M, Monstero G, Toscano L, Gochev V, Valdez B (2011) The immobilized lipases in biodiesel production. In: Stoytcheva M (ed) Biodiesel – feed- stocks and processing technologies. InTech, Rijeka, pp 397–410CrossRefGoogle Scholar
  218. Temporini C, Bonomi P, Serra I, Tagliani A, Bavaro T, Ubiali D et al (2010) Characterization and study of the orientation of immobilized enzymes by tryptic digestion and HPLC-MS: design of an efficient catalyst for the synthesis of cephalosporins. Biomacromolecules 11:1623–1632CrossRefGoogle Scholar
  219. Terreni M, Pagani G, Ubiali D, Fernández-Lafuente R, Mateo C, Guisán JM (2001) Modulation of penicillin acylase properties via immobilization techniques: one-pot chemo enzymatic synthesis of Cephamandole from Cephalosporin C. Bioorg Med Chem Lett 11:2429–2432CrossRefGoogle Scholar
  220. Thanh LT, Oitsu K, Sadanaga Y et al (2011) A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel. Bioresour Technol 101:639–645CrossRefGoogle Scholar
  221. Tischer W (1992) In: Finn RK et al (eds) Biotechnology focus 3: fundamentals, applications, information. Hanser, Munich, pp 237–259Google Scholar
  222. Tischer W, Kasche V (1999) Immobilized enzymes: crystals or carriers? Trends Biotechnol 17(8):326–335.  https://doi.org/10.1016/S0167-7799(99)01322-0CrossRefPubMedGoogle Scholar
  223. Troitsky VI, Berzina TS, Pastorino L, Bernasconi E, Nicolini C (2003) A new approach to the de- position of nanostructured biocatalytic films. Nanotechnology 14:597–602CrossRefGoogle Scholar
  224. Turner NJ (2009) Directed evolution drives the next generation of biocatalysts. Nat Chem Biol 5:567–573CrossRefGoogle Scholar
  225. Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT (2014) Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem Rev 114:11083–11130CrossRefGoogle Scholar
  226. Verma ML, Barrow CJ, Puri M (2013) Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97:23–39CrossRefGoogle Scholar
  227. Verma ML, Puri M, Barrow CJ (2014) Recent trends in nanomaterials immobilised enzymes for biofuel production, vol 8551, pp 1–12.  https://doi.org/10.3109/07388551.2014.928811CrossRefGoogle Scholar
  228. Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807CrossRefGoogle Scholar
  229. Vianello F, Zennaro L, Di Paolo ML, Rigo A, Malacarne C et al (2000) Preparation, morphological characterization, and activity of thin films of horseradish peroxidase. Biotechnol Bioeng 68:488–495CrossRefGoogle Scholar
  230. Wang P (2006) Nanoscale biocatalyst systems. Curr Opin Biotechnol 17:574–579CrossRefGoogle Scholar
  231. Wang L, Jiang R (2011) Reversible His-tagged enzyme immobilization on functionalized carbon nanotubes as nanoscale biocatalyst. Methods Mol Biol 743:95–106CrossRefGoogle Scholar
  232. Wang P, Sergeeva MV, Lim L, Dordick JS (1997) Biocatalytic plastics as active and stable materials for biotransformations. Nat Biotechnol 15:789–793CrossRefGoogle Scholar
  233. Wang X, Dou P, Zhao P et al (2009) Immobilization of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production. ChemSusChem 2:947–950CrossRefGoogle Scholar
  234. Wang X, Liu X, Zhao C et al (2011a) Biodiesel production in packed-bed reactors using lipase-nanoparticle biocomposite. Bioresor Technol 102:6352–6355CrossRefGoogle Scholar
  235. Wang X, Liu X, Yan X et al (2011b) Enzyme-nanoporous gold biocomposite: excellent biocatalyst with improved biocatalytic performance and stability. PLoS One 6:e24207CrossRefPubMedPubMedCentralGoogle Scholar
  236. Wang X, Qin X, Li D, Yang B, Wang Y (2017) One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase. Bioresour Technol 235:18–24.  https://doi.org/10.1016/j.biortech.2017.03.086CrossRefPubMedGoogle Scholar
  237. Watanabe Y, Shimmada Y, Sugihara A et al (2000) Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc 77:355–360CrossRefGoogle Scholar
  238. White CA, Kennedy JF (1980) Popular matrices for enzyme and other immobilizations. Enzym Microb Technol 2:82–90CrossRefGoogle Scholar
  239. Willner I, Baron R, Willer B (2006) Growing metal nanoparticles by enzymes. Adv Mater 18:1109–1120CrossRefGoogle Scholar
  240. Wong LS, Khan F, Micklefield J (2009) Selective covalent protein immobilization: strategies and applications. Chem Rev 109(9):4025–4053.  https://doi.org/10.1021/cr8004668CrossRefPubMedGoogle Scholar
  241. Xie W, Ma N (2009) Immobilised lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuel 23:1347–1353CrossRefGoogle Scholar
  242. Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenergy 34:890–896CrossRefGoogle Scholar
  243. Xin BJ, Si SF, Xing GW (2010) Protease immobilization on γ-Fe2O3/Fe3O4 magnetic nanoparticles for the synthesis of oligopeptides in organic solvents. Chem Asian J 5:1389–1394.  https://doi.org/10.1002/asia.200900696CrossRefPubMedGoogle Scholar
  244. Xu J, Zeng F, Wu S, Liu X, Hou C, Tong Z (2007) Gold nanoparticles bound on microgel particles and their application as an enzyme support. Nanotechnology 18:265–273Google Scholar
  245. Yamashita I (2001) Fabrication of a two-dimensional array of nanoparticles using ferritin molecule. Thin Solid Films 393:12–18CrossRefGoogle Scholar
  246. Yang Z, Si S, Zhang C (2008) Magnetic single-enzyme nanoparticles with high activity and stability. Biochem Biophys Res Commun 367:169–175.  https://doi.org/10.1016/j.bbrc.2007.12.113CrossRefPubMedGoogle Scholar
  247. Yim TJ, Kim DY, Karajanagi SS, Lu TM, Kane R, Dordick JS (2003) Silicon nanocolumns as novel nanostructured supports for enzyme immobilization. J Nanosci Nanotechnol 3:479–482CrossRefGoogle Scholar
  248. Yiu HHP, Keane MA (2012) Enzyme-magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. J Chem Technol Biotechnol 87:583–594CrossRefGoogle Scholar
  249. Yiu HHP, Wright PAJ (2005) Enzymes supported on ordered mesoporous solids: a special case of an inorganic–organic hybrid. Mater Chem 15:3690–3700CrossRefGoogle Scholar
  250. Yong Y, Bai Y-X, Li Y-F, Lin L, Cui Y-J et al (2008) Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity. Process Biochem 43:1179–1185CrossRefGoogle Scholar
  251. Yu LT, Banerjee IA, Gao XY et al (2005) Fabrication and application of enzyme-incorporated peptide nanotubes. Bioconjug Chem 16:1484–1487CrossRefPubMedPubMedCentralGoogle Scholar
  252. Zhang K, Diehl MR, Tirrell DA (2005) Artificial polypeptide scaffold for protein immobilization. J Am Chem Soc 127:10136–10137CrossRefGoogle Scholar
  253. Zhao B, Liu X, Jiang Y, Zhou L, He Y, Gao J (2014) Immobilized lipase from Candida sp. 99-125 on hydrophobic silicate: characterization and applications. Appl Biochem Biotechnol 173(7):1802–1814.  https://doi.org/10.1007/s12010-014-0967-2CrossRefPubMedGoogle Scholar
  254. Zhao X, Qi F, Yuan C, Du W, Liu D (2015) Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization. Renew Sust Energ Rev 44:182–197.  https://doi.org/10.1016/j.rser.2014.12.021CrossRefGoogle Scholar
  255. Zhao K, Cao X, Di Q, Wang M, Cao H, Deng L et al (2017) Synthesis, characterization and optimization of a two-step immobilized lipase. Renew Energy 103:383–387.  https://doi.org/10.1016/j.renene.2016.11.035CrossRefGoogle Scholar
  256. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Richa Salwan
    • 1
  • Anu Sharma
    • 2
  • Vivek Sharma
    • 2
  1. 1.College of Horticulture and ForestryHamirpurIndia
  2. 2.University Centre for Research and DevelopmentChandigarh UniversityChandigarhIndia

Personalised recommendations