Green Synthesis Approach to Fabricate Nanomaterials

  • Ramchander Merugu
Part of the Clean Energy Production Technologies book series (CEPT)


Nanotechnology can overcome many technical hurdles due to their unique properties and small size compared to macrosize particles. Carbon and graphene are the major nanomaterial sources that are widely explored. They are widely produced by chemical, physical, and biological methods. Compared to the chemical and physical methods which are energy intensive, green approaches are economical and eco-friendly. Chemical synthesis includes the use of metal precursors and reducing agents which are generally toxic and non-eco-friendly. To prevent agglomeration of the synthesized nanoparticles, capping agents are also required. Physical methods are energy intensive and have many disadvantages. Biological methods do not require capping agents as the biomolecules present in it can act as capping agents. Different methods of synthesis using plants, microorganisms like bacteria and fungi, actinomycetes, algae, viral particles, and biomolecules have been reviewed in this chapter. Green fabrications have its own advantages and cover a lot of scope for potential applications in the future. The toxicity of the nanomaterial when it is released into the environment is the only cause of concern which needs to be researched further. In this chapter, various methods of fabrication of nanomaterials using biological methods are discussed in the light of existing literature.


Synthesis Characterization Biological methods Plant based Microbial based Green synthesis Bacterial Fungal Biomolecules 



I would also like to show my gratitude to my teachers Prof. S.M. Reddy, Emeritus Professor, Kakatiya University, and Prof. S. Girisham, Kakatiya University, for sharing their pearls of wisdom with me during the writing of this chapter. I am immensely grateful to Prof. Katta Narasimha Reddy, former Vice-Chancellor, Mahatma Gandhi University, for encouraging me to write this chapter.


  1. Abdeen S, Geo S, Sukanya S, Praseetha PK, Dhanya RP (2014) Biosynthesis of Silver nanoparticles from Actinomycetes for therapeutic applications. Int J Nano Dimens 5:155–162Google Scholar
  2. Abdelsalam E, Samer M, Attia YA, Abdel-Hadi MA, Hassan HE, Badr Y (2016) Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renew Energy 87:592–598CrossRefGoogle Scholar
  3. Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7(1):90CrossRefPubMedPubMedCentralGoogle Scholar
  4. Acharyulu NPS, Dubey RS, Swaminadham V, Kalyani RL, Kollu P, Pammi SVN (2014) Green synthesis of CuOnanoparticles using Phyllanthus amarus leaf extract and their antibacterial activity against multidrug resistancebacteria. Int J Eng Res Technol 3:639–641Google Scholar
  5. Aenishanslins NAO, Saona LA, Duran-Toro VM, Monras JP, Bravo DM, Donoso JMP (2014) Use of titanium dioxidenanoparticles biosynthesized by Bacillus mycoides inquantum dot sensitized solar cells. Microb Cell Factories 13:90Google Scholar
  6. Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 3:1231–1234. Scholar
  7. Ahmad R, Sardar M (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 4:2Google Scholar
  8. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19(8):3550–3553CrossRefGoogle Scholar
  9. Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Colloids Surf B Biointerfaces 81:81–86CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ahmed S, Annu SAC, Ikram S (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B 166:272–284CrossRefPubMedPubMedCentralGoogle Scholar
  11. Aljabali AAA, Barclay JE, Lomonossoff GP, Evans DJ (2010) Virus templated metallic nanoparticles. Nanoscale 2:2596–2600CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ankamwar B (2010) Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. E-J Chem 7:1334–1339CrossRefGoogle Scholar
  13. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30(3):512–523CrossRefGoogle Scholar
  14. Armendariz V, Herrera I, Peralta-Videa JR et al (2004) Size controlled goldnanoparticle formation by Avena sativa biomass: use of plants innanobiotechnology. J Nanoparticle Res 6:377–382CrossRefGoogle Scholar
  15. Asha A, Sivaranjani T, Thirunavukkarasu P, Asha S (2016) Green synthesis of silver nanoparticle from different plants – a review. Int J Pure Appl Biosci 4(2):118–124CrossRefGoogle Scholar
  16. Awwad AM, Albiss BA, Salem NM (2015) Antibacterial activity of synthesized copper oxide nanoparticles using Malva sylvestris leaf extract. SMU Med J 2:91–101Google Scholar
  17. Baesman SM, Bullen TD, Dewald J, Zhang D, Curran S, Islam FS et al (2007) Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Appl Environ Microbiol 73(7):2135–2143CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bai H, Zhang Z, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28(14):1135–1139CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bai HJ, Zhang ZM, Guo Y, Yang GE (2009a) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B: Biointerfaces 70(1):142–146CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bai H, Zhang Z, Guo Y, Jia W (2009b) Biological synthesis of size-controlled cadmium sulfide nanoparticles usingimmobilized Rhodobacter sphaeroides. Nanoscale Res Lett 4:717–723CrossRefPubMedPubMedCentralGoogle Scholar
  21. Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. J Biochem Biophys 48:331–335Google Scholar
  22. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88–92CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128:11958–11963CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bao S-J, Lei C, Xu M-W, Cai C-J, Jia D-Z (2012) Environment-friendly biomimetic synthesis of TiO2 nanomaterials for photocatalytic application. Nanotechnology 23(20):205601. Scholar
  25. Bar H, Bhui DK, Sahoo GP et al (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp.
  26. Basha JS, Anand RB (2011) Role of nanoadditive blended biodiesel emulsion fuel on the working characteristics of a diesel engine. J Renew Sust Energy 3(2):023106CrossRefGoogle Scholar
  27. Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141(2):876–887CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bhat R, Sharanabasava VG, Deshpande R, Shetti U, Sanjeev G, Venkataraman A (2013) Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. J Photochem Photobiol B: Biol 125:63–69CrossRefGoogle Scholar
  29. Canakci M, Van Gerpen J (2001) Tran Asae 44:1429–1436Google Scholar
  30. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632CrossRefGoogle Scholar
  31. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as anew generation nanoproduct in biomedical applications. Trends Biotechnol 28:580–588CrossRefGoogle Scholar
  32. Chandran SP, Chaudhary M, Pasricha R et al (2006) Synthesis of gold nanotrianglesand silver nanoparticles using aloe vera plant extract. Biotechnol Prog 22(2):577–583CrossRefPubMedPubMedCentralGoogle Scholar
  33. Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16:307–325CrossRefGoogle Scholar
  34. Chauhan R, Kumar A, Abraham J (2013) A biological approach to the synthesis of Silver nanoparticles with streptomyces sp JAR1 and its antimicrobial activity. Sci Pharm 81:607–621. 148CrossRefPubMedPubMedCentralGoogle Scholar
  35. Chen AA, Derfus AM, Khetani SR, Bhatia SN (2005) Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res 33:1–8CrossRefGoogle Scholar
  36. Chen J, Saggar JK, Corey P, Thompson LU (2009) Flaxseed and pure secoisolariciresinol diglucoside, but not flaxseed hull, reduce human breast tumor growth (MCF-7) in athymic mice. J Nutr 139(11):2061–2066CrossRefPubMedPubMedCentralGoogle Scholar
  37. Chen G, Li M, Li F, Sun S, Xia D (2010) Protein-mediated synthesis of nanostructured titania with different polymorphs at room temperature. Adv Mater 22(11):1258–1262CrossRefPubMedPubMedCentralGoogle Scholar
  38. Cherian E, Dharmendirakumar M, Baskar G (2015) Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chin J Catal 36(8):1223–1229CrossRefGoogle Scholar
  39. Chitturi KL, Garimella S, Marapaka AK, Kudle KR, Merugu R (2018) Single pot green synthesis, characterization, antitumor antibacterial, antioxidant activity of bimetallic silver and copper nanoparticles using fruit pulp of palmyra fruit. J Bionanosci 12(2):284–289CrossRefGoogle Scholar
  40. Cho EJ et al (2012) Co-immobilization of three cellulases on Audoped magnetic silica nanoparticles for the degradation of cellulose. Chem Commun 48:886–888CrossRefGoogle Scholar
  41. Correa-Llantén DN, Muñoz-Ibacache SA, Castro ME, Muñoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microb Cell Fact 12(1):75CrossRefPubMedPubMedCentralGoogle Scholar
  42. Cunningham DP, Lundie LL Jr (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59(1):7–14CrossRefPubMedPubMedCentralGoogle Scholar
  43. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  44. Das S, Das A, Guha A (2008) Adsorption behavior of mercury on functionalized Aspergillus versicolor mycelia: Atomic force microscopic study. Langmuir 25:360–366CrossRefGoogle Scholar
  45. Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 34:615–619CrossRefPubMedPubMedCentralGoogle Scholar
  46. Datta A, Patra C, Bharadwaj H, Kaur S, Dimri N et al (2017) Green synthesis of zinc oxide nanoparticles using parthenium hysterophorus leaf extract and evaluation of their antibacterial properties. J Biotechnol Biomater 7:271. Scholar
  47. Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3. Biotech 3(1):1–9Google Scholar
  48. Davidian T, Guihaume N, Iojoiu E, Provendier H, Mirodatos C (2006) Hydrogen production from crude pyrolysis oil by a sequential catalytic process. Appl Catal B Environ 73(1–2):116–127Google Scholar
  49. Dehkhoda AM, West AH, Ellis N (2010) Biochar based solid acid catalyst for biodiesel production. Appl Catal A General 382(2):197–204CrossRefGoogle Scholar
  50. Deng X, Fang Z, Liu Y, Yu CL (2011) Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy 36:777–784CrossRefGoogle Scholar
  51. Deplanche K, Macaskie LE (2008) Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng 99(5):1055–1064CrossRefPubMedPubMedCentralGoogle Scholar
  52. Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd (0) nanoparticles by bioreduction of Pd (II) using Escherichia coli mutant strains. Microbiology 156(9):2630–2640CrossRefPubMedPubMedCentralGoogle Scholar
  53. Deshpande PK, Upputuri N, Gothalwal R, Merugu R (2018) In vitro dissolution studies and enhanced antimicrobial activity of some antibiotics loaded with copper and silver nanoparticles in polyvinyl alcohol films. J Bionanosci 12(4):569–573CrossRefGoogle Scholar
  54. Dhanalakshmi T, Rajendran S (2012) Arch Appl Sci Res 4:1289–1293Google Scholar
  55. Dhandapani P, Maruthamuthu S, Rajagopal G (2012) Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. J Photochem Photobiol B110:43–49CrossRefGoogle Scholar
  56. Dinçer A, Telefoncu A (2007) Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B: Enzym 45(1–2):10–14CrossRefGoogle Scholar
  57. Dobrucka R (2017) Synthesis of titanium dioxide nanoparticles using echinacea purpurea herba. Iran J Pharm Res 16:756–762PubMedPubMedCentralGoogle Scholar
  58. Dorosti N, Jamshidi F (2016) Plant-mediated gold nanoparticles by Dracocephalum kotschyi as anticholinesterase agent: synthesis, characterization, and evaluation of anticancer and antibacterial activity. J Appl Biomed 14(3):235–245CrossRefGoogle Scholar
  59. Dubey M, Bhadauria S, Kushwah BS (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (Safeda) leaf. Dig J Nanomater Biostruct 4:537–543Google Scholar
  60. Duran N, Marcato PD, Alves O, Souza GI, Esposito E (2005) J Nanobiotechnol. 3:8CrossRefGoogle Scholar
  61. Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90(5):1609–1624CrossRefPubMedPubMedCentralGoogle Scholar
  62. Eggert H, Greaker M (2014) Promoting second generation biofuels: does the first generation pave the road? Energies 7(7):4430–4445CrossRefGoogle Scholar
  63. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH et al (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:1–10CrossRefGoogle Scholar
  64. Engelmann W, Aldrovandi A, Berger Filho AG (2013) Prospects for the regulation of nanotechnology applied to food and biofuels. Vigilância Sanitária em Debate 1(4):110–121Google Scholar
  65. Enumula SS, Koppadi KS, Babu Gurram VR, Burri DR, Rao Kamaraju SR (2017) Sust Energy Fuels 1:644–651CrossRefGoogle Scholar
  66. El-Kassas HY, El-Sheekh MM (2014) Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pac J Cancer Prev 15(15):4311–4317CrossRefPubMedPubMedCentralGoogle Scholar
  67. Farag AA, El-shafei A, Ibrahim HM, Asker MS (2016) Influence of bacterial cellulose for synthesis and application of titanium dioxide nanoparticles compared with sol-gel method. Int J Life Sci Res 4(1):69–75Google Scholar
  68. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311(5760):506–508CrossRefPubMedPubMedCentralGoogle Scholar
  69. Feynman in 1959: In December of 1959, Richard Feynman gave a talk called “There’s Plenty of Room at the Bottom” at an annual meeting of the American Physical Society at CaltechGoogle Scholar
  70. Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ganzoury MA, Allam NK (2015) Impact of nanotechnology on biogas production: a mini-review. Renew Sust Energy Rev 50:1392–1404CrossRefGoogle Scholar
  72. Gardea-Torresdey JL, Parsons J, Gomez E, Peralta-Videa J, Troiani H, Santiago P, Yacaman M (2002) Nano Lett 2:397–401CrossRefGoogle Scholar
  73. Gardy J, Hassanpour A, Lai X, Ahmed MH, Rehan M (2017) Biodiesel production from used cooking oil using a novel surface functionalised TiO2 nano-catalyst. Appl Catal B Environ 207:297–310CrossRefGoogle Scholar
  74. Gardy J, Osatiashtiani A, Céspedes O, Hassanpour A, Lai X, Lee AF, Wilson K, Rehan M (2018) A magnetically separable SO4/Fe-AlTiO2 solid acid catalyst for biodiesel production from waste cooking oil. Appl Catal B Environ 234:268–278CrossRefGoogle Scholar
  75. Gates BC (2000) Supported metal cluster catalysts. J Mol Catal A Chem 163:55–65CrossRefGoogle Scholar
  76. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1):132–140CrossRefGoogle Scholar
  77. Ghidan AY, Al-Antary TM, Awwad A (2016) Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: effect on green peach Aphid. Environ Nanotechnol Monit Manag 6:95–98Google Scholar
  78. Ghodake G, Deshpande N, Lee Y, Jin E (2010) Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf B Biointerfaces 75:584–589CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ghosh S, Nitnavare R, Dewle A, Tomar GB, Chippalkatti R, More P et al (2015) Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities. Int J Nanomed 10:7477Google Scholar
  80. Glusker J, Katz A, Bock C (1999) Rigaku J 16(2):8–16. 44Google Scholar
  81. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M (2014) Biogenic synthesis of metal nanoparticlesfrom actinomycetes: Biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98:8083–8097CrossRefPubMedPubMedCentralGoogle Scholar
  82. Gopinath K, Shanmugam VK, Gowri S, Senthilkumar V, Kumaresan S, Arumugam A (2014) Antibacterial activityof ruthenium nanoparticles synthesized using Gloriosasuperba L. leaf extract. J Nanostruct Chem 4:83CrossRefGoogle Scholar
  83. Gorzny ML, Walton AS, Evans SD (2010) Synthesis of high-surface-area platinum nanotubes using a viraltemplate. Adv Funct Mater 20:1295–1300CrossRefGoogle Scholar
  84. Govender Y, Riddin T, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31:95–100CrossRefPubMedPubMedCentralGoogle Scholar
  85. Govender Y, Riddin TL, Gericke M, Whiteley CG (2010) On the enzymatic formation of platinum nanoparticles. J Nanopart Res 12(1):261–271CrossRefGoogle Scholar
  86. Gruen LC (1975) Biochim Biophys Acta 386:270–274CrossRefPubMedPubMedCentralGoogle Scholar
  87. Gunalan S, Sivaraj R, Rajendran V (2012a) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci 22:693–700CrossRefGoogle Scholar
  88. Gunalan S, Sivaraj R, Venckatesh R (2012b) Aloe barbadensismiller mediated green synthesis of mono-disperse copperoxide nanoparticles optical properties. Spectrochim Acta Part A 97:1140–1144CrossRefGoogle Scholar
  89. Guan Q, Li Y, Chen Y, Shi Y, Gu J, Li B et al (2017) Sulfonated multi-walled carbon nanotubes for biodiesel production through triglycerides transesterification. RSC Adv 7(12):7250–7258CrossRefGoogle Scholar
  90. Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled nano tubes by laser vaporization. Chem Phys Lett 243(1–2):49–54CrossRefGoogle Scholar
  91. Gupta J, Agarwal M (2016) Preparation and characterization of CaO nanoparticle for biodiesel production. 2nd International Conference on Emerging Technologies. American Institute of Physics, JaipurGoogle Scholar
  92. Gurunathan S, Raman J, Malek SNA, John PA, Vikineswary S (2013) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomed 8:4399Google Scholar
  93. Gusseme DB, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, Uyttendaele M, Verstraete W, Boon N (2010) Biogenic silver for disinfection of water contaminated with viruses. Appl Environ Microbiol 76:1082–1087CrossRefPubMedPubMedCentralGoogle Scholar
  94. Harris AT, Bali R (2008) J Nanoparticle Res 10:691–695CrossRefGoogle Scholar
  95. Hassan MHJ, Abul Kalam M (2013) An overview of biofuel as a renewable energy source: development and challenges. 5th BSME International Conference on Thermal Engineering. Proc Eng 56:39–53CrossRefGoogle Scholar
  96. Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticleformation in plants: limits on accumulation. J Nanoparticle Res 11:1453–1463CrossRefGoogle Scholar
  97. Hazeri N, Tavanai H, Moradi AR (2012) Production and properties of electrosprayed sericin nanopowder. Sci Technol Adv Mater 13:035010. (7pp)CrossRefPubMedPubMedCentralGoogle Scholar
  98. He Y, Du Z, Ma S, Cheng S, Jiang S, Liu Y et al (2016) Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus Longan Lour. peel extract. Nanoscale Res Lett 11(1):300–4317CrossRefPubMedPubMedCentralGoogle Scholar
  99. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18CrossRefPubMedPubMedCentralGoogle Scholar
  100. Herrera-Becerra R, Zorrilla C, Rius JL, Ascencio JA (2008) Electron microscopy characterization of biosynthesized iron oxide nanoparticles. Appl Phys A Mater Sci Process 91:241–246CrossRefGoogle Scholar
  101. Hess SK, Schunck NS, Goldbach V, Ewe D, Kroth PG, Mecking S (2017) J Am Chem Soc 139:13487–13491CrossRefPubMedPubMedCentralGoogle Scholar
  102. Ho M, Mao X, Gu L, Li P (2008) Facile route to enzyme immobilization: coreshell nanoenzyme particles consisting of well-defined poly(methyl methacrylate) cores and cellulase shells. Langmuir 24:11036–11042CrossRefGoogle Scholar
  103. Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russell DA, Sodeau JR (1995) Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol 163(2):143–147CrossRefPubMedPubMedCentralGoogle Scholar
  104. Hu S, Guan Y, Wang Y, Han H (2011) Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Appl Energy 88(8):2685–2690CrossRefGoogle Scholar
  105. Huang Q, Li D, Sun Y et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 1:1Google Scholar
  106. Hunter WJ, Manter DK (2008) Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr Microbiol 57:83–88CrossRefPubMedPubMedCentralGoogle Scholar
  107. Hussain ST, Ali SA, Bano A, Mahmood T (2011) Use of nanotechnology for the production of biofuels from butchery waste. International Journal of Physical Sciences 6(31):7271–7279Google Scholar
  108. Imran M, Rani A (2015) Recent advances in the synthesis and stabilization of nickel and nickeloxide nanoparticles: a green adeptness. Int J Anal Chem 2:1–14Google Scholar
  109. Jahn MK, Haderlein SB, Meckenstock RU (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol 71(6):3355–3358CrossRefPubMedPubMedCentralGoogle Scholar
  110. Jain, Pradeep (2004) Silver nanoparticle-coated polyurethane foam as antibacterial water filter. Biotechnol Bioeng 90(1):59–63CrossRefGoogle Scholar
  111. Jalill RDA, Nuaman RS, Abd AN (2016) Biological synthesis of titanium dioxide nanoparticles by curcuma longa plant extract and study its biological properties. World Sci News 49(2):204–222Google Scholar
  112. Jayalakshmi, Yogamoorthi A (2014) Green synthesis of copper oxide nanoparticles using aqueous extract of flowers of Cassia alata and particles characterisation. Int J Nanomat Biostruct 4:66–71Google Scholar
  113. Jayaseelana C, Rahumana AA, Kirthi AV, Marimuthua S, Santhoshkumara T, Bagavana A et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonashydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta Part A 90:78–84CrossRefGoogle Scholar
  114. Jennifer K, Peter VH (2006) Nanotechnology in agriculture and food production. Woodrow Wilson International Center, Washington, DCGoogle Scholar
  115. Jha AK, Prasad K (2010) Green synthesis of silver nanoparticles using cycas leaf. Int J Green Nanotechnol Phys Chem 1:110–117CrossRefGoogle Scholar
  116. Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20:385601CrossRefPubMedPubMedCentralGoogle Scholar
  117. Joerger R, Klaus T, Olsson E, Granqvist CG (1999) Spectrally selective solar absorber coatings prepared by a biomimetic technique. Proc Soc Photo-Opt Instrum Eng 3789:2–7Google Scholar
  118. Johnson RL, Johnson GOB, Nurmi JT, Tratnyek PG (2009) Natural organic matter enhanced mobility of nano zerovalent iron. Environ Sci Technol 43(14):5455–5460CrossRefPubMedPubMedCentralGoogle Scholar
  119. Kalaiselvi A, Roopan SM, Madhumitha G, Ramalingam C, Elango G (2015) Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochim Acta Part A 135:116–119CrossRefGoogle Scholar
  120. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62(29):4411–4413CrossRefGoogle Scholar
  121. Kandel K (2013) Multitasking mesoporous nanomaterials for biorefinery applications Graduate Theses and Dissertations. 13214.Google Scholar
  122. Karthik L, Kumar G, Vishnu-Kirthi A, Rahuman AA, Rao VB (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37:261–267CrossRefPubMedPubMedCentralGoogle Scholar
  123. Kashefi K, Lovley DR (2000) Reduction of Fe (III), Mn (IV), and toxic metals at 100 C by Pyrobaculum islandicum. Appl Environ Microbiol 66(3):1050–1056CrossRefPubMedPubMedCentralGoogle Scholar
  124. Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67(7):3275–3279CrossRefPubMedPubMedCentralGoogle Scholar
  125. Kasthuri J, Veerapandian S, Rajendiran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B Biointerfaces 68:55–60CrossRefPubMedPubMedCentralGoogle Scholar
  126. Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:133–137CrossRefPubMedPubMedCentralGoogle Scholar
  127. Kesavan V, Sivanand PS, Chandrasekaran S, Koltypin Y, Gedanken A (1999) Angew Chem Int Ed 38:3521CrossRefGoogle Scholar
  128. Kesavan V, Dhar D, Koltypin Y, Perkas N, Palchik O, Gedanken A, Chandrasekaran S (2001) Nanostructured amorphous metals, alloys, and metal oxides as new catalysts for oxidation. Pure Appl Chem 73(1):85–91CrossRefGoogle Scholar
  129. Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65(11):4734–4740CrossRefPubMedPubMedCentralGoogle Scholar
  130. Khan SA, Ahmad A (2013) Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Mater Res Bull 48:4134–4138CrossRefGoogle Scholar
  131. Khan YA, Singh BR, Ullah R, Shoeb M, Naqvi AH, Abidi SM (2015) Anthelmintic effect of biocompatible zinc oxide nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a neglected parasite of Indian water buffalo. PLoS One 10:e0133086CrossRefPubMedPubMedCentralGoogle Scholar
  132. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  133. Kidwai M, Bansal V, Saxena A, Shankar R, Mozumdar S (2006) Ni nano particles: an efficient green catalyst for chemo selective reduction of aldehydes. Tetrahed Lett 47(25):4161–4165CrossRefGoogle Scholar
  134. Kim KH, Lee OK, Lee EY (2018) Nano-immobilized biocatalysts for biodiesel production from renewable and sustainable resources. Catalysts 8(2):68CrossRefGoogle Scholar
  135. Kimura T, Miyazawa T, Nishikawa J, Kado S, Okumura K, Miyao T, Naito S, Kunimori K, Tomishige K (2006) Development of Ni catalysts for tar removal by steam gasification of biomass. Appl Catal B-Environ 68:160–170CrossRefGoogle Scholar
  136. Kimura R, Rokkaku T, Takeda S, Senba M, Mori N (2013) Cytotoxic effects of fucoidan nanoparticles against osteosarcoma. Mar Drugs 11(11):4267–4278CrossRefPubMedPubMedCentralGoogle Scholar
  137. Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19(1):15–20CrossRefPubMedPubMedCentralGoogle Scholar
  138. Kobayashi M, Tomita S, Sawada K, Shiba K, Yanagi H, Yamashita I, Uraoka Y (2012) Chiral meta-molecules consisting of gold nanoparticles and genetically engineered tobacco mosaic virus. Opt Express 20:24856–24863CrossRefPubMedPubMedCentralGoogle Scholar
  139. Kondamudi N, Mohapatra SK, Misra M (2008) Spent coffee grounds as a versatile source of green energy. J Agric Food Chem 56:11757–11760CrossRefPubMedPubMedCentralGoogle Scholar
  140. Kondamudi N, Mohapatra SK, Misra M (2011) Appl Catal A-General 393:36–43CrossRefGoogle Scholar
  141. Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007a) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53(1):186–192CrossRefGoogle Scholar
  142. Konishi Y, Ohno K, Saitoh N et al (2007b) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128(3):648–653CrossRefPubMedPubMedCentralGoogle Scholar
  143. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588CrossRefPubMedPubMedCentralGoogle Scholar
  144. Koyyati R, Nagati V, Merugu R, Manthurpadigya P (2013) Biological synthesis of silver nanoparticles using Raphanus sativus var. longipinnatus leaf extract and evaluation of their antioxidant and antibacterial activity. Int J Med Pharma Sci 3(4):89–100Google Scholar
  145. Koyyati R, babu Nagati V, Nalvothula R, Merugu R, Kudle KR, Marx P, Padigya PRM (2014) Antibacterial activity of silver nanoparticles synthesized using Amaranthus viridis twig extract. Int J Res Pharm Sci 5(1):32–39Google Scholar
  146. Krishnaraj C, Jagan EG, Rajasekar S et al (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 1:1Google Scholar
  147. Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran MD, Kalaichelvan PT (2014) Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol Rep 4:42–49CrossRefGoogle Scholar
  148. Krumov N, Oder S, Perner-Nochta I, Angelov A, Posten C (2007) Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. J Biotechnol 132:481–486CrossRefPubMedPubMedCentralGoogle Scholar
  149. Kudle KR, Donda MR, Merugu R, Prashanthi Y, Rudra MP (2013a) Microwave assisted green synthesis of silver nanoparticles using Stigmaphyllon littorale leaves their characterization and anti-microbial activity. Int J Nanomater Biostruct 3(1):13–16Google Scholar
  150. Kudle KR, Donda MR, Rudra MP, Merugu R (2013b) Synthesis of silver nanoparticles using the medicinal plant Allmania nodiflora and evaluation of its anti microbial activities. Int J Res Pharm Sci 4(4):504Google Scholar
  151. Kudle KR, Donda MR, Merugu R, Prashanthi Y, Kudle MR, Rudra MP (2013c) Green synthesis of silver nanoparticles using water soluble gum of Sterculia foetida and evaluation of its antimicrobial activity. Int J Res Pharm Sci 4(4):563–568Google Scholar
  152. Kudle KR, Donda MR, Merugu R, Prashanthi Y, Rudra MP (2014a) Investigation on the cytotoxicity of green synthesis and characterization of silver nanoparticles using Justicia adhatoda Leaves on human epitheloid carcinoma cells and evaluation of their antibacterial activity. Int J Drug Dev Res 6(1):0975–9344Google Scholar
  153. Kudle KR, Kudle MR, Prashanthi Y, Merugu R, Rudra MP (2014b) Silver nanoparticles synthesis, stabilization and characterization by different concentrations of Acacia senegal (l.) willd. Extract and Evaluation of their antibacterial activity. Int J Pharmacogn Phytochem Res 6(2):210–212Google Scholar
  154. Kumar R, Lal S (2014) Synthesis of organic nanoparticles and their applications in drug delivery and food nanotechnology: A Review. J Nanomater Mol Nanotechnol 3:4CrossRefGoogle Scholar
  155. Kumar M, Sharma MP (2014) Potential assessment of microalgal oils for biodiesel production: a review. J Mater Environ Sci 3:757–766Google Scholar
  156. Kumar SA, Ansary AA, Ahmad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3:190–194CrossRefGoogle Scholar
  157. Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, Balabanyan VU, Voronina TA, Trofimov SS, Kreuter J, Gelperina S, Begley D, Alyautdin RN (2009) Brain targeting of nerve growth factor using poly (butyl cyanoacrylate) nanoparticles. J Drug Target 17(8):564–574CrossRefPubMedPubMedCentralGoogle Scholar
  158. Labrenz M, Druschel GK, Thomsen-Ebert T et al (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290(5497):1744–1747CrossRefPubMedPubMedCentralGoogle Scholar
  159. Lee EJ, Lim KH (2014) Polyelectrolyte complexes of chitosan self-assembled with fucoidan: an optimum condition to prepare their nanoparticles and their characteristics. Korean J Chem Eng 31:664–675CrossRefGoogle Scholar
  160. Lee EJ, Lim KH (2015) Formation of chitosan-fucoidan nanoparticles and their electrostatic interactions: quantitative analysis. J Biosci Bioeng 121:73–83CrossRefPubMedPubMedCentralGoogle Scholar
  161. Lee SW, Mao C, Flynn C, Belcher AM (2002) Ordering of quantum dots using genetically engineeredviruses. Science 296:892–895. 128CrossRefPubMedPubMedCentralGoogle Scholar
  162. Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev 43(22):7887–7916CrossRefPubMedPubMedCentralGoogle Scholar
  163. Lee KD, Nagajyothi PC, Sreekanth TVM, Park S (2015) Eco-friendly synthesis of gold nanoparticles (AuNPs) using Inonotus obliquus and their antibacterial, antioxidant and cytotoxic activities. J Ind Eng Chem 26:67–72CrossRefGoogle Scholar
  164. Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)–chloride complex. Environ Sci Technol 40:6304–6309CrossRefGoogle Scholar
  165. Lestari S, Simakova I, Tokarev A, Maki-Arvela P, Eranen K, Murzin DY (2008) Synthesis of biodiesel via deoxygenation of stearic acid over supported Pd/C catalyst. Catal Lett 122:247–251CrossRefGoogle Scholar
  166. Li N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294CrossRefGoogle Scholar
  167. Liangwei D, Huang M, Xu Q, Zhang J (2015) Direct electrochemistry and Electrocatalysis of Hemoglobin immobilized on eggshell membrane modified glassy carbon electrode. Asian J Chem 27(1)Google Scholar
  168. Liao J, Mangold MA, Grunder S, Mayor M, Schönenberger C, Calame M (2008) Interlinking au nanoparticles in 2D arrays via conjugated dithiolated molecules. New J Phys 10(6):065019CrossRefGoogle Scholar
  169. Liao H, Chen D, Yuan L, Zheng M, Zhu Y, Liu X (2010) Immobilized cellulase by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose. Carbohydr Polym 82(3):600–604CrossRefGoogle Scholar
  170. Lie Y, Jia S, Wu Q, Ran J, Zhang W, Wu S (2011) Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Catal Commun 12:717–720CrossRefGoogle Scholar
  171. Liu X, He H, Wang Y, Zhu S (2007) Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catal Commun 8(7):1107–1111CrossRefGoogle Scholar
  172. Liu X, He H, Wang Y, Zhu S, Piao X (2008) Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87(2):216–221CrossRefGoogle Scholar
  173. Lo HM, Chiu HY, Lo SW, Lo FC (2012) Effects of micro-nano and non micro-nano MSWI ashes addition on MSW anaerobic digestion. Bioresour Technol 114:90–94CrossRefPubMedPubMedCentralGoogle Scholar
  174. Löfstedt J, Dahlstrand C, Orebom A, Meuzelaar G, Sawadjoon S, Galkin MV, Agback P, Wimby M, Corresa E, Mathieu Y, Sauvanaud L, Eriksson S, Corma A, Samec JSM (2016) ChemSusChem 9:1392CrossRefPubMedPubMedCentralGoogle Scholar
  175. Love AJ, Makarov VV, Yaminsky IV, Kalinina NO, Taliansky ME (2014) The use of tobacco mosaic virus and cowpea mosaic virus for the production of novel metal nanomaterials. Virology 449:133–139CrossRefPubMedPubMedCentralGoogle Scholar
  176. Lupoi and Smith (2011) Biotechnol Bioeng 108:2835–2843CrossRefPubMedPubMedCentralGoogle Scholar
  177. Lioyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64:4607–4609Google Scholar
  178. Maensiri S, Laokul P, Klinkaewnarong J, Phokha S, Promarak V, Seraphin S (2008) Indium oxide (In2O3). Indium oxide nanoparticles using Aloe vera plant extract: synthesis and optical properties. J. Optoelectron Adv Mater 10:161–165Google Scholar
  179. Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green Biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed Sargassum muticumaqueous extract. Molecules 18:5954–5964CrossRefPubMedPubMedCentralGoogle Scholar
  180. Mahmood T, Hussain ST (2010) Nanobiotechnology for the production of biofuels from spent tea. Afr J Biotechnol 9(6):858–868CrossRefGoogle Scholar
  181. Mahmood T, Hussain ST, Malik SA (2010) New nanomaterial and the process for the production of biofuel from metal hyper accumulator water hyacinth. Afr J Biotechnol 9(16):2381–2391Google Scholar
  182. Mahto TK, Jain R, Chandra S, Roy D, Mahto V, Sahu SK (2016) Single step synthesis of sulfonic group bearing graphene oxide: a promising carbo-nano material for biodiesel production. J Environ Chem Eng 4(3):2933–2940CrossRefGoogle Scholar
  183. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Green nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae 6:35–44CrossRefPubMedPubMedCentralGoogle Scholar
  184. Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Jobitha GDG, Annadurai G (2013) Bactericidal activity of bio mediated silver nanoparticles synthesized by Serratia nematodiphila. Drug Invent Today 5(2):119–125CrossRefGoogle Scholar
  185. Maliszewska I, Szewczyk K, Waszak K (2009) Biological synthesis of silver nanoparticles. J Phys Conf Ser 146.
  186. Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T (2008) Environ Sci Technol 42(5):1766–1772CrossRefPubMedPubMedCentralGoogle Scholar
  187. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol 69:485–492CrossRefPubMedPubMedCentralGoogle Scholar
  188. Manisha DR, Ramchander M, Prashanthi Y, Pratap MPR (2014a) Phototrophic bacteria mediated synthesis, characterisation and antibacterial activity of silver nanoparticles. Nanosci Nanotechnol Int J 4(2):20–24Google Scholar
  189. Manisha DR, Merugu R, Vijaybabu AR, Pratap Rudra MP (2014b) Microwave assisted biogenic synthesis of silver nanoparticles using dried seed extract of Coriandrum sativum, characterization and antimicrobial activity. Int J Chem Tech Res 6:3957–3961Google Scholar
  190. Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim S (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Research International 2013:9. Article ID 287638, 9 pagesGoogle Scholar
  191. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G, Iverson B, Belcher AM (2003) Viralassembly of oriented quantum dot nanowires. Proc Natl Acad Sci USA 100:6946–6951CrossRefPubMedPubMedCentralGoogle Scholar
  192. Marimuthu S, Rahuman AA, Jayaseelan C, Kirthi AV, Santhoshkumar T, Velayutham K, Bagavan A, Kamaraj C, Elango G, Iyappan M (2013) Acaricidal activity of synthesized titanium dioxide nanoparticles using calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pac J Trop Med 6(9):682–688CrossRefPubMedPubMedCentralGoogle Scholar
  193. Martone G, Faiella V, Antonucci M, Giordano MZ (2011) The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix. Compos Scie Technol 71(8):1117–1123., ElsevierCrossRefGoogle Scholar
  194. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, FernandezLafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463CrossRefGoogle Scholar
  195. Merzlyak A, Lee SW (2006) Phage as template for hybrid materials and mediators for nanomaterials synthesis. Curr Opin Chem Biol 10:246–252CrossRefPubMedPubMedCentralGoogle Scholar
  196. Misson M, Zhang H, Jin B (2015) Nanobiocatalyst advancements and bioprocessing applications. J R Soc Interface 12:20140891CrossRefPubMedPubMedCentralGoogle Scholar
  197. Mittal AK, Kaler A, Banerjee UC (2012) Free radical scavenging and antioxidant activity ofsilvernanoparticles synthesized from flower extract of Rhododendron dauricum. Nano Biomed Eng 4:118–124CrossRefGoogle Scholar
  198. Mittal AK, Bhaumik J, Kumar S, Banerjee UC (2014a) Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. J Colloid Interface Sci 415:39–47CrossRefPubMedPubMedCentralGoogle Scholar
  199. Mittal AK, Kumar S, Banerjee UC (2014b) Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J Colloid Interface Sci 431:194–199CrossRefPubMedPubMedCentralGoogle Scholar
  200. Mochochoko T, Oluwafemi OS, Jumbam DN, Songca SP (2013) Green synthesisof silver nanoparticles using cellulose extracted from an aquaticweed; water hyacinth. Carbohydr Polym 98:290–294CrossRefPubMedPubMedCentralGoogle Scholar
  201. Mondal S, Roy N, Laskar RA et al (2011) Biogenic synthesis of Ag, Au andbimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids Surf B Biointerfaces 82:497–504CrossRefPubMedPubMedCentralGoogle Scholar
  202. Mookan RSM, Senthilkumar HV, Ravichandran B et al (2014a) Transesterification of castor oil using nano-sized iron catalyst for the production of biodiesel. J Chem Pharm Sci 2:108–112. 97Google Scholar
  203. Mookan RKA, Sundaresan M, Velan P (2014b) Biodiesel production from pongamia pinnata oil using synthesized iron nanocatalyst. Int J Chem Tech Res 6:4511–4516Google Scholar
  204. Mude N, Ingle A, Gade A, Rai M (2009) Synthesis of silver nanoparticles usingcallus extract of Carica papaya—a first report. J Plant Biochem Biotechnol 18:83–86CrossRefGoogle Scholar
  205. Murahashi ST, Oda Y, Naota T (1992) J Am Chem Soc 114:7913CrossRefGoogle Scholar
  206. Nadeem M, Abbasi BH, Younas M, Ahmad W, Khan T (2017) A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chem Lett Rev 10(4):216–227CrossRefGoogle Scholar
  207. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energy Rev 14(2):578–597CrossRefGoogle Scholar
  208. Naikaa HR, Lingarajua K, Manjunathb K, Kumar D, Nagarajuc SD, Nagabhushanae H (2015) Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Univ Sci 9:7–12CrossRefGoogle Scholar
  209. Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2(4):293–298. View at Publisher ·View at Google Scholar · View at ScopusCrossRefGoogle Scholar
  210. Nakkala JR, Mata R, Bhagat E, Sadras SR (2015) Green synthesis of silver and gold nanoparticles from Gymnema sylvestre leaf extract: study of antioxidant and anticancer activities. J Nanopart Res 17(3):151CrossRefGoogle Scholar
  211. Nalvolthula R, Merugu R, Rudra MP (2015a) Phytochemical analysis, synthesis, antitumor and antimicrobial activity of silver nanoparticles using flower extracts of Ixora coccinea. Int J Chem Tech Res 7:2374. 80.504-511Google Scholar
  212. Nalvolthula R, Merugu R, Alwala J, Rudra MP (2015b) Cytotoxicity of biologically synthesized silver nanoparticles from Citrus lemon against some cell lines. Int J Pharm Tech Res 8:691–695Google Scholar
  213. Nalvothula R, Nagati VB, Koyyati R, Merugu R, Padigya PRM (2014) Biogenic synthesis of silver nanoparticles using Tectona grandis leaf extract and evaluation of their antibacterial potential. Int J Chem Tech Res 6(1):293–298Google Scholar
  214. Nangia Y, Wangoo N, Goyal N, Shekhawat G, Suri CR (2009) A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microb Cell Factories 8(1):39CrossRefGoogle Scholar
  215. Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of goldnanoparticles. Mater Lett 62:4588–4590CrossRefGoogle Scholar
  216. Nasrollahzadeha M, Sajadib SM, Vartoonia AR, Khalajc M (2015) Green synthesis of Pd/Fe3O4 nanoparticles using Euphorbia condylocarpa M. bieb root extract and theircatalytic applications as magnetically recoverable and stable recyclable catalysts for the phosphine-free Sonogashira and Suzuki coupling reactions. J Mol Catal A 396:31–39CrossRefGoogle Scholar
  217. Nestor ARV, Mendieta VS, Lopez MAC, Espinosa RMG, Lopez MAC (2008) J.a.a. AlatorreSolventless synthesis and optical properties of au and ag nanoparticles using Camiellia sinensis extract. Mater Lett 62:3103–3105CrossRefGoogle Scholar
  218. Ngo TPN, Li A, Tiew KW, Li Z (2013) Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour Technol 145:233–239CrossRefPubMedPubMedCentralGoogle Scholar
  219. Nitta SK, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14:1629–1654CrossRefPubMedPubMedCentralGoogle Scholar
  220. Njagi HH, Stafford L, Genuino H, Galindo HM, Collins JB et al (2011) Biosynthesis of iron and silver nanoparticles atroom temperature using aqueous sorghum bran extracts Eric C. Langmuir 27:264–271CrossRefPubMedPubMedCentralGoogle Scholar
  221. Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44(6):1112–1120CrossRefGoogle Scholar
  222. Ovsejevi K, Manta C, Batista-Viera F (2013) Reversible covalent immobilization of enzymes via disulfide bonds. Methods Mol Biol 1051:89–116CrossRefPubMedPubMedCentralGoogle Scholar
  223. Padala G, Nageshwari B, Kudle KR, Dathar V, Merugu R (2019) Toddy mediated synthesis of Ag-Ni bimetallic nanoparticles and their biological evaluation. IJGHC, December 2018 –February 2019. Sec A: Green Chem 8(1):000–000. Scholar
  224. Padalkar S, Schroeder K, Won Y, Jang H, Stanciu L (2012) Biotemplated silica and titania nanowires: synthesis, characterization and potential applications. J Nanosci Nanotechnol 12(1):227–235CrossRefPubMedPubMedCentralGoogle Scholar
  225. Padil V, Thekkae V, Černík M (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 8:889PubMedCentralGoogle Scholar
  226. Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6(7):507CrossRefGoogle Scholar
  227. Pandey G, Madhuri S, Mandloi AK (2012) PI Arch 12:1–4Google Scholar
  228. Panigaj M, Reiser J (2016) Aptamer guided delivery of nucleic acid-based nanoparticles. DNA RNA Nanotechnol 2:42–52CrossRefGoogle Scholar
  229. Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) J Nanopart Res 6(4):411–414. 39CrossRefGoogle Scholar
  230. Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5(5):1. Scholar
  231. Patra JK, Baek K-H (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:12. Article ID 417305, 12 pagesCrossRefGoogle Scholar
  232. Patumsawad S (2011) 2nd generation biofuels: technical challenge and R&D opportunity in Thailand. J Sustain Energy Environ (Special Issue) 1:47–50Google Scholar
  233. Peng B, Yao Y, Zhao C, Lercher J a (2012) Towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts. Ang Chem 124(9):2072–2075CrossRefGoogle Scholar
  234. Philip D (2011) Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochim Acta A 78:327–331CrossRefGoogle Scholar
  235. Philip D, Unni C (2011) Extracellular biosynthesis of gold and silver nanoparticlesusing Krishna tulsi (Ocimum sanctum) leaf. Phys E Low Dimens Syst Nanostruct 43:1318–1322CrossRefGoogle Scholar
  236. Philipse P, Maas D (2002) Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir 18(25):9977–9984. View at Publisher · ViewCrossRefGoogle Scholar
  237. Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B Biointerfaces 74:309–316CrossRefPubMedPubMedCentralGoogle Scholar
  238. Pinheiro AC, Bourbon AI, Cerqueira MA, Maricato É, Nunes C, Coimbra MA, Vicente AA (2014) Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydr Polym 115:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  239. Poinern GEJ, Shah M, Chapman P, Fawcett D (2013a) Green biosynthesis of silver nanocubes using the leaf extracts from Eucalyptus macrocarpa. Nano Bull 2:1–7Google Scholar
  240. Poinern GEJ, Le X, Chapman P, Fawcett D (2013b) Green biosynthesis of gold nanometre scale plate using the leaf extracts from an indigenous Australian plant Eucalyptus macrocarpa. Gold Bull 46:165–173CrossRefGoogle Scholar
  241. Pósfai M, Moskowitz BM, Arató B et al (2006) Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1. Earth Planet Sci Lett 249(3–4):444–455CrossRefGoogle Scholar
  242. Prakasham RS, Buddana SK, Yannam SK, Guntuku GS (2012) Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 22:614–621CrossRefPubMedPubMedCentralGoogle Scholar
  243. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B Biointerfaces 82:152–159CrossRefPubMedPubMedCentralGoogle Scholar
  244. Priyadharshini RI, Prasannaraj G, Geetha N, Venkatachalam P (2014) Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl Biochem Biotechnol 174(8):2777–2790CrossRefPubMedPubMedCentralGoogle Scholar
  245. Prozorov T, Mallapragada SK, Narasimhan B, Wang L, Palo P, Nilsen-Hamilton M et al (2007) Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv Funct Mater 17(6):951–957CrossRefGoogle Scholar
  246. Pum D, Sleytr UB (1999) Trends Biotechnol 17:8CrossRefGoogle Scholar
  247. Qiu F, Li Y, Yang D, Li X, Sun P (2011) Heterogeneous solid base nanocatalyst: preparation, characterization and application in biodiesel production. Bioresour Technol 102(5):4150–4156CrossRefGoogle Scholar
  248. Qu J, Luo C, Hou J (2011) Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) plants. IET Micro Nano Lett 6:174–176CrossRefGoogle Scholar
  249. Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath SY, Venkataraman A (2009) Biosynthesisof stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant Guava (Psidium guajava) leaf extract. Nanobiotechnology 5:34–41CrossRefGoogle Scholar
  250. Raghunandan D, Bedre MD, Basavaraja S et al (2010) Rapid biosynthesisof irregular shaped gold nanoparticles from macerated aqueousextracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf B Biointerfaces 79:235–240CrossRefPubMedPubMedCentralGoogle Scholar
  251. Rai M, Yadav A (2008) A Gade Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28:277–284CrossRefPubMedPubMedCentralGoogle Scholar
  252. Rai A, Singh A, Ahmad A, Sastry M (2006) Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 22(2):736–741CrossRefPubMedPubMedCentralGoogle Scholar
  253. Rajasree SR, Suman TY (2012) Extracellular biosynthesis of gold nanoparticles using a gram negative bacterium Pseudomonas fluorescens. Asian Pac J Trop Dis 2(2):S796–S799CrossRefGoogle Scholar
  254. Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta Part A: Mol Biomol Spectrosc 112:384–387CrossRefGoogle Scholar
  255. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57CrossRefGoogle Scholar
  256. Ramesh P, Rajendran A, Shisundaram MM (2014) Green synthesis of zinc oxide nanoparticles using flower extractcassia. J Nanosci Nanotechnol 2:41–45Google Scholar
  257. Ramezani F, Ramezani M, Talebi S (2010) Mechanistic aspects of biosynthesis of nanoparticles by several microbes. Nano 10(12–14):1–7Google Scholar
  258. Ramimoghadam D, Bagheri S, Bee S, Hamid A (2014) Biotemplated synthesis of anatase titanium dioxidenanoparticles via lignocellulosic waste material. Bio Med Res Int 2014:205636Google Scholar
  259. Ren Y, Rivera JG, He L, Kulkarni H, Lee DK, Messersmith PB (2011) Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol 11(1):63CrossRefPubMedPubMedCentralGoogle Scholar
  260. Renugadevi K, Inbakandan D, Bavanilatha M, Poornima V (2012) Cissus quadrangularis assisted biosynthesis of silver nanoparticles with antimicrobial and anticancer potentials. Int J Pharm Biol Sci 3(3):437–445Google Scholar
  261. Riddin TL, Govender Y, Gericke M, Whiteley CG (2009) Two different hydrogenase enzymes from sulphate reducing bacteria are responsible for the bioreductive mechanism of platinum into nanoparticles. Enzym Microb Technol 45:267–273CrossRefGoogle Scholar
  262. Roden EE, Lovley DR (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59(3):734–742Google Scholar
  263. Roopan SM, Bharathi A, Prabhakarn A, Rahuman AA, Velayutham K, Rajakumar G, Padmaja R, Lekshmi M, Madhumitha G (2012) Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using annona squamosa peel extract. Spectrochim Acta Part A 98:86–90CrossRefGoogle Scholar
  264. Royston E, Ghosh A, Kofinas P, Harris MT, Culver JN (2008) Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir 24:906–912. 185CrossRefPubMedPubMedCentralGoogle Scholar
  265. Sadhasivam S, Shanmugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B: Biointerfaces 81(1):358–362CrossRefPubMedPubMedCentralGoogle Scholar
  266. Sahdev P, Ochyl LJ, Moon JJ (2014) Biomaterials for nanoparticle vaccine delivery systems. Pharma Res 31:2563–2582CrossRefGoogle Scholar
  267. Saifuddin N, Wong CW, Yasumira AAN (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6(1):61–70CrossRefGoogle Scholar
  268. Saikat Mandal P, Selvakannan R, Phadtare S, Renu P, Sastry M (2002) J Chem Sci 114:513–520. 42CrossRefGoogle Scholar
  269. Sakai S, Liu Y, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K (2010) Production of butyl-biodiesel using lipase physically-adsorbed onto electrospun polyacrylonitrile fibers. Bioresour Technol 101(19):7344–7349CrossRefPubMedPubMedCentralGoogle Scholar
  270. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46(12):2560–2566CrossRefGoogle Scholar
  271. Sanghi R, Verma P (2009) A facile green extracellular biosynthesisof CdS nanoparticles by immobilized fungus. Chem Eng J 155:886–891CrossRefGoogle Scholar
  272. Sankar R, Rizwana K, Shivashangari KS, Ravikumar V (2014) Ultra-rapid photocatalytic activity of zadirachta indica engineered colloidal titanium dioxide nanoparticles. Appl Nanosci 5:731–736CrossRefGoogle Scholar
  273. Santhoshkumar T, Rahuman AA, Rajakumar G et al (2011) Synthesis of silvernanoparticles using Nelumbo nucifera leaf extract and its larvicidal activityagainst malaria and filariasis vectors. Parasitol Res 108:693–702CrossRefPubMedPubMedCentralGoogle Scholar
  274. Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV, Kim SK (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 7(12):968–976CrossRefPubMedPubMedCentralGoogle Scholar
  275. Sathishkumar J, Narendhirakannan RT (2011) Dig J Nanomater Biostruct 6:961Google Scholar
  276. Sathishkumar M, Sneha K, Yun YS (2009) Palladium nanocrystals synthesis using Curcuma longa tuber extract. Int J Mater Sci 4:11–17Google Scholar
  277. Sathishkumar M, Krishnamurthy S, Yun YS (2010) Bioresour Technol 101:7958CrossRefPubMedPubMedCentralGoogle Scholar
  278. Satyanarayana RA, Chen C, Jean J et al (2010) Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J Nanosci Nanotechnol 10(10):6567–6574CrossRefGoogle Scholar
  279. Satyavani K, Ramanathan T, Gurudeekan S (2011) Green synthesis of silver nanoparticles using stem dried callus extract of bitter apple (Citrullus colocynthis). Dig J Nanomater Biostruct 6:1019–1024Google Scholar
  280. Senthilkumar SR, Sivakumar T (2014) Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int J Pharm Sci 6:461–465Google Scholar
  281. Sewell SL, Wright DW (2006) Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from cylindrotheca F Usiformis. Chem Mater 18(13):3108–3113CrossRefGoogle Scholar
  282. Shah R, Oza G, Pandey S, Sharon M (2012) Biogenic fabrication of gold nanoparticles using Halomonas salina. J Microbiol Biotechnol Res 2:485–492Google Scholar
  283. Shahverdi R, Minaeian S, Shahverdi HR, Jamalifar H, Nohi A (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923. View at Publisher · View at Google ScholarCrossRefGoogle Scholar
  284. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurateions by geranium leaves and its endophytic fungus yields goldnanoparticles of different shapes. J Mater Chem 13:1822CrossRefGoogle Scholar
  285. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, andbimetallic Au core Ag shell nanoparticles using Neem (Azadirachtaindica) leaf broth. J Colloid Interface Sci 1:1Google Scholar
  286. Shankar SS, Rai A, Ahmad A, Sastry M (2005) Controlling the optical propertiesof lemongrass extract synthesized gold nanotriangles and potentialapplication in infrared-absorbing optical coatings. Chem Mater 17:566–572CrossRefGoogle Scholar
  287. Sidra HSG, Mahmood T, Nawaz U et al (2016) Biodiesel production by using CaOAl2O3 nano catalyst. Int J Eng Res Sci 2:2395–6992Google Scholar
  288. Sindhura KS, Prasad TNVKV, Selvam PP, Hussain OM (2013) Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes. Appl Nanosci 1:1–9Google Scholar
  289. Singh P (2016) Biosynthesis of titanium dioxide nanoparticles and their antibacterial property. World Acad Sci Eng Technol Int J Chem Mol Nucl Mater Metall Eng 10(2):275–278Google Scholar
  290. Singh N, Naraa S (2013) Biological synthesis and characterization of lead sulfide nanoparticles using bacterial isolatesfrom heavy metal rich sites. Int J Agric Food Sci Technol 4:16–23Google Scholar
  291. Singh BR, Singh O (2012) In: Khan DS (ed) Global trends of fossil fuel reserves and climate change in the 21st century, fossil fuel and the environment. ISBN: 978-953-51-0277-9CrossRefGoogle Scholar
  292. Singh A, Talat M, Singh D, Srivastava ON (2010) J Nanopart Res 12:1667–1675CrossRefGoogle Scholar
  293. Singh P, Kim Y, Zhang D, Yang D (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599CrossRefGoogle Scholar
  294. Singh J, Singh N, Rathi A et al (2017a) Facile approach to synthesize andcharacterization of silver nanoparticles by using mulberry leaves extractin aqueous medium and its application in antimicrobial activity. J Nanostruct 7:134–140Google Scholar
  295. Singh H, Du J, Yi TH (2017b) Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: anticancer and antibacterial activities. Artif Cells, Nanomed Biotechnol 45(7):1310–1316CrossRefGoogle Scholar
  296. Sintubin L, Verstraete W, Boon N (2012) Biotechnol Bioeng 109:2422–2436CrossRefPubMedPubMedCentralGoogle Scholar
  297. Sivakumar P, Sankaranarayanan S, Renganathan S et al (2013) Studies on sono-chemical biodiesel production using smoke deposited nano mgo catalyst. Bull Chem React Eng Cataly 8:89–96Google Scholar
  298. Sivaranjani V, Philominathan P (2016) Synthesize of titanium dioxide nanoparticles using moringa oleifera leaves and evaluation of wound healing activity. Wound Med 12:1–5CrossRefGoogle Scholar
  299. Son S, Lee S, Chung Y, Kim S, Hyeon T (2002) The first intramolecular Pauson–Khand reaction in water using aqueous colloidal cobalt nano particles as catalysts. Organ Lett 4:277–279CrossRefGoogle Scholar
  300. Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164CrossRefPubMedPubMedCentralGoogle Scholar
  301. Soni N, Prakash S (2011) Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotechnol 2(1):112–121Google Scholar
  302. Soundarrajan C, Sankari A, Dhandapani P, Maruthamuthu S, Ravichandran S, Sozhan G, Palaniswamy N (2012) Bioprocess Biosyst Eng 35:827–833CrossRefPubMedPubMedCentralGoogle Scholar
  303. Spring H, Schleifer KH (1995) Appl Micribiol 18:147Google Scholar
  304. Steinmetz NF, Shah SN, Barclay JE, Rallapalli G, Lomonossoff GP, Evans DJ (2009) Virus-templated silica nanoparticles. Small 5(7):813–816CrossRefPubMedPubMedCentralGoogle Scholar
  305. Stellwagen DR, van der Klis F, van Es DS, de Jong KP, Bitter JH (2013) Functionalized carbon nanofibers as solid-acid catalysts for transesterification. ChemSusChem 6(9):1668–1672CrossRefPubMedPubMedCentralGoogle Scholar
  306. Suarez PAZ, Moser BR, Sharma BK, Erhan SZ (2009) Comparing the lubricity of biofuels obtained from pyrolysis and alcoholysis of soybean oil and their blends with petroleum diesel. Fuel 88:1143–1147CrossRefGoogle Scholar
  307. Suganya A, Murugan K, Kovendan K, Mahesh Kumar P, Hwang JS (2013) Parasitol Res 112:1385–1397CrossRefPubMedPubMedCentralGoogle Scholar
  308. Sukanya MK, Saju KA, Praseetha PK, Sakthivel G (2013) Therapeutic potential of biologically reduced silver nanoparticles from Actinomycete cultures. J Nanosci 2013:940719CrossRefGoogle Scholar
  309. Sulaiman GM, Mohammed WH, Marzoog TR, Al-Amiery AAA, Kadhum AAH, Mohamad AB (2013) Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac J Trop Biomed 3(1):58–63CrossRefPubMedPubMedCentralGoogle Scholar
  310. Sundrarajan M, Bama K, Bhavani M, Jegatheeswaran S, Ambika S, Sangili A, Nithya P, Sumathi R (2017) Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. J Photochem Photobiol B 171:117–124. Scholar
  311. Sunkar S, Nachiyar CV (2012) Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2(12):953–959CrossRefPubMedPubMedCentralGoogle Scholar
  312. Sutradhar P, Saha M (2016) Green synthesis of zinc oxide nanoparticles using tomato (Lycopersiconesculentum) extract and its photovoltaic application. J Exp Nanosci 11(5):314–327CrossRefGoogle Scholar
  313. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2013) Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 19:29–43CrossRefGoogle Scholar
  314. Tan YN, Lee JY, Wang DI (2010) J Am Chem Soc 132(16):5677–5686CrossRefPubMedPubMedCentralGoogle Scholar
  315. Thamilselvi V, Radha KV (2013) Synthesis of silver nanoparticles from Pseudomonas putida NCIM 2650 in silver nitrate supplemented growth medium and optimization using response surface methodology. Dig J Nanomater Biostruct 8(3):1101–1111Google Scholar
  316. Tran DT, Chen CL, Chang JS (2012) Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. J Biotechnol 158(3):112–119CrossRefPubMedPubMedCentralGoogle Scholar
  317. Trindade SC (2011) Nanotech biofuels and fuel additives. In: Dos Santos Bernardes MA (ed) Biofuel’s engineering process technology. IntechOpen, Rijeka, pp 103–114Google Scholar
  318. Tsai and Meyer (2014) Enzymatic cellulose hydrolysis: enzyme reusability and visualization of β-glucosidase immobilized in calcium alginate. Molecules 19:19390–19406CrossRefPubMedPubMedCentralGoogle Scholar
  319. Vainshtein M, Belova N, Kulakovskaya T, Suzina N, Sorokin V (2014) Synthesis of magnetosensitive iron-containing nanoparticles by yeasts. J Ind Microbiol Biotechnol 41(4):657–663CrossRefPubMedPubMedCentralGoogle Scholar
  320. Valodkar M, Rathore PS, Jadeja RN, Thounaojam M, Devkar RV, Thakore S (2012) J Hazard Mater 201:244–249CrossRefPubMedPubMedCentralGoogle Scholar
  321. Veerasamy R, Xin TZ, Gunasagaran S et al (2010) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15:113–120CrossRefGoogle Scholar
  322. Velayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C, Bagavan A, Kirthi AV, Kamaraj C, Zahir AA (2012) Evaluation of catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles Against Hippobosca Maculata and Bovicola Ovis. Parasitol Res 111(6):2329–2337. Scholar
  323. Velmurugan P, Shim J, You Y, Choi S, Kamala-Kannan S, Lee KJ, Kim HJ, Oh BT (2010) Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals. J Hazard Mater 182:317–324CrossRefPubMedPubMedCentralGoogle Scholar
  324. Velmurugan P, Lee SM, Iydroose M, Lee KJ, Oh BT (2013) Appl Microbiol Biotechnol 7:361–368CrossRefGoogle Scholar
  325. Venkatesan B, Subramanian V, Tumala A, Vellaichamy E (2014) Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity. Asian Pac J Trop Med 7:S294–S300CrossRefGoogle Scholar
  326. Venugopal K, Rather HA, Rajagopal K, Shanthi MP, Sheriff K, Illiyas M et al (2017) Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J Photochem Photobiol B: Biol 167:282–289CrossRefGoogle Scholar
  327. Verma ML, Barrow CJ, Puri M (2013a) Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97(1):23–39CrossRefGoogle Scholar
  328. Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013b) Immobilization of ß-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour Technol 135:2–6CrossRefGoogle Scholar
  329. Verziu M, Cojocaru B, Hu J, Richards R, Ciuculescu C, Filip P, Parvulescu VI (2008) Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chem 10(4):373–381CrossRefGoogle Scholar
  330. Wang HW, Covarrubias J, Prock H, Wu XR, Wang DH, Bossmann SH (2015) J Phys Chem C 119:26020–26028CrossRefGoogle Scholar
  331. Wang T, Zhang D, Dai L, Chen Y, Dai X (2016) Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge. Sci Rep 6:25857CrossRefPubMedPubMedCentralGoogle Scholar
  332. Wei X, Luo M, Li W et al (2012) Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour Technol 103(1):273–278CrossRefPubMedPubMedCentralGoogle Scholar
  333. Weiss J, Decker EA, McClements DJ, Kristbergsson K, Helgason T, Awad T (2008) Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys 3:146–154CrossRefGoogle Scholar
  334. Wen L, Lin Z, Gu P et al (2009) Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J Nanopart Res 11(2):279–288CrossRefGoogle Scholar
  335. Wen L, Wang Y, Lu D et al (2010) Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 89:2267–2271CrossRefGoogle Scholar
  336. Willner I, Willner B, Katz E (2007) Biomolecule–nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry 70:2–11CrossRefPubMedPubMedCentralGoogle Scholar
  337. Wu J, Xiao YZ, Yu HQ (2005) Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresour Technol 96(12):1357–1363CrossRefPubMedPubMedCentralGoogle Scholar
  338. Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenergy 34(6):890–896CrossRefGoogle Scholar
  339. Xing SY, Lv PM, Yuan HR, Yang LM, Wang ZM, Yuan ZH, Chen Y (2017) Green Chem 19:4157–4168CrossRefGoogle Scholar
  340. Yadav V, Sharma N, Prakash R, Raina KK, Bharadwaj LM, Prakash NT (2008) Generation of selenium containing nano-structures by soil bacterium, Pseudomonas aeruginosa. Biotechnology 7(2):299–304CrossRefGoogle Scholar
  341. Yahya NY, Ngadi N, Jusoh M, Halim NAA (2016) Characterization and parametric study of mesoporous calcium titanate catalyst for transesterification of waste cooking oil into biodiesel. Energy Convers Manag 129:275–283. (Guan et al., 2017),CrossRefGoogle Scholar
  342. Yan G, Huang Y, Bu Q, Lv L, Deng P, Zhou J et al (2012) Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:577–588. Scholar
  343. Yehia RS, Al-Sheikh H (2014) Biosynthesis and characterization of silver nanoparticles produced by Pleurotus ostreatus and their anticandidal and anticancer activities. World J Microbiol Biotechnol 30(11):2797–2803CrossRefPubMedPubMedCentralGoogle Scholar
  344. Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80(4):369–379CrossRefPubMedPubMedCentralGoogle Scholar
  345. Zare B, Faramarzi MA, Sepehrizadeh Z, Shakibaie M, Rezaie S, Shahverdi AR (2012) Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mater Res Bull 47(11):3719–3725CrossRefGoogle Scholar
  346. Zayed MF, Eisa WH, Shabaka AA (2012) Spectrochim Acta A Mol Biomol Spectrosc 98:423–428CrossRefPubMedPubMedCentralGoogle Scholar
  347. Zeng C, Vangveravong S, McDunn JE, Hawkins WG, Mach RH (2013) Sigma-2 receptor ligand as a novel method for delivering a SMAC mimetic drug for treating ovarian cancer. Br J Cancer 109(9):2368CrossRefPubMedPubMedCentralGoogle Scholar
  348. Zhang J, Misra RDK (2007) Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomater 3:838CrossRefPubMedPubMedCentralGoogle Scholar
  349. Zhang Y, Dube MA, McLean DD, Kates M (2003) Bioresour Technol 90:229–240CrossRefPubMedPubMedCentralGoogle Scholar
  350. Zhang HR, Li QB, Lu YH et al (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80(3):285–290CrossRefGoogle Scholar
  351. Zhang XD, Wu D, Shen X, Liu PX, Yang N, Zhao B, Fan FY (2011) Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomed 6:2071–2081CrossRefGoogle Scholar
  352. Zhang X, Yan S, Tyagi R, Surampalli R (2013) Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew Sust Energy Rev 26:2yGoogle Scholar
  353. Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles. Coord Chem Rev 287:114–136CrossRefGoogle Scholar
  354. Zheng P, Wang J, Lu C, Xu Y, Sun Z (2013) Immobilized β-glucosidase on magnetic chitosan microspheres for hydrolysis of straw cellulose. Process Biochem 48(4):683–687CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ramchander Merugu
    • 1
  1. 1.Department of BiochemistryMahatma Gandhi UniversityNalgondaIndia

Personalised recommendations