Biofuel: Types and Process Overview

  • Ajay Kumar ChauhanEmail author
Part of the Clean Energy Production Technologies book series (CEPT)


Excessive use of conventional fossil fuels resulted in a hike in price, exhaustion, and change in climatic conditions. Therefore, a novel route to biofuel generation is another feasible option of sustainable process development. Continuous upgradation of technologies for biofuel generations from the first generation (1G) to the fourth generation (4G) gives new hopes to fulfill energy demands. Biofuel generation from multiple approaches such as physical, biological (includes microbial and enzymatic), chemical, and biochemical catalysis with nanotechnology from multiple feedstocks is the key to biofuel generation. Suitable conversion of cellulosic biorefinery and lignin biorefinery (via lignin valorization) is the key for complete utilization of lignocellulosic biomass. Utilization of the biological methods includes the use of microbial machinery from different domains which might open the door toward an environmentally benign process. Nanotechnology and its potential application with 1G to 4G have future promises for increasing yield and integration of technology. So, this book chapter covers a detailed process overview of biofuel generations and its challenges with the hope of overcoming it.


Sustainable Microbial machinery Catalysis 1G 4G Lignin valorization Nanotechnology 



First generation


Second generation


Third generation


Fourth generation


Blue-green algae




Cellobiose dehydrogenase






Compressed natural gases


Carbon monoxide


Carbon dioxide


Dimethyl ether


Deoxyribonucleic acid






Ethyl butyl ether


Fatty acid methyl esters




Greenhouse gases







Lignin peroxidase



Liquefied petroleum gas


Lytic polysaccharide monoxygenase

Manganese peroxidase





Mega Pascal




Nitrogen oxide






Polyethylene glycol


Particulate matter




  1. Abdullah B, Muhammad SAFAS, Mahmood NAN (2017) Production of biofuel via hydrogenation of lignin from biomass. In: New advances in hydrogenation processes-fundamentals and applications. InTech, LondonGoogle Scholar
  2. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513CrossRefGoogle Scholar
  3. Araújo K, Mahajan D, Kerr R, Silva MD (2017) Global biofuels at the crossroads: an overview of technical, policy, and investment complexities in the sustainability of biofuel development. Agriculture 7:32CrossRefGoogle Scholar
  4. Aro E-M (2016) From first generation biofuels to advanced solar biofuels. Ambio 45(Suppl 1):S24–S31PubMedCrossRefPubMedCentralGoogle Scholar
  5. Beal CM, Hebner RE, Webber ME, Ruoff RS, Seibert AF, King CW (2012) Comprehensive evaluation of algal biofuel production: experimental and target results. Energies 5:1943–1981CrossRefGoogle Scholar
  6. Beopoulos A, Cescut J, Haddouche R, Uribelarrea J-L, Molina-Jouve C, Nicaud J-M (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387PubMedCrossRefPubMedCentralGoogle Scholar
  7. Binod P, Gnansounou E, Sindhu R, Pandey A (2018) Enzymes for second generation biofuels: recent developments and future perspectives. Bioresour Technol Rep 5:317–325CrossRefGoogle Scholar
  8. Bowyer J, Howe J, Levins RA, Groot H, Fernholz K, Pepke E, Henderson C (2018) Third generation biofuels implications for wood-derived fuels. Available online: Accessed on 28 Feb 2019
  9. Bridgwater A, Boocock D (2013) Developments in thermochemical biomass conversion: volume 1. Springer, DordrechtGoogle Scholar
  10. Buragohain B, Mahanta P, Moholkar VS (2010) Biomass gasification for decentralized power generation: the Indian perspective. Renew Sust Energ Rev 14:73–92CrossRefGoogle Scholar
  11. Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose. Springer, Dordrecht/HeidelbergCrossRefGoogle Scholar
  12. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chum HL (1991) Polymers from biobased materials. Noyes Data Corp, Park RidgeGoogle Scholar
  14. Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci 111(24):8931–8936PubMedCrossRefPubMedCentralGoogle Scholar
  15. Coppola F, Simonciniand E, Pulselli R (2009) Bioethanol potentials from marine residual biomass: an energy evaluation. Energy Environ 122:379–387Google Scholar
  16. Cortes-Tolalpa L, Norder J, van Elsas JD, Falcao Salles J (2018) Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate. Appl Microbiol Biotechnol 102:2913–2927PubMedPubMedCentralCrossRefGoogle Scholar
  17. Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2:21PubMedPubMedCentralCrossRefGoogle Scholar
  18. Davis R, Tao L, Tan E, Biddy M, Beckham G, Scarlata C, Jacobson J, Cafferty K, Ross J, Lukas J (2013) Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons. National Renewable Energy Lab.(NREL), GoldenGoogle Scholar
  19. Deeba F, Pruthi V, Negi YS (2016) Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production. Bioresour Technol 213:96–102PubMedCrossRefPubMedCentralGoogle Scholar
  20. Demartini JD, Pattathil S, Miller JS, Li H, Hahn MG, Wyman CE (2013) Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energy Environ Sci 6:898–909CrossRefGoogle Scholar
  21. Demirbaş A (1998) Yields of oil products from thermochemical biomass conversion processes. Energy Convers Manag 39:685–690CrossRefGoogle Scholar
  22. Demirbaş A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41:633–646CrossRefGoogle Scholar
  23. Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combust Sci 30:219–230CrossRefGoogle Scholar
  24. Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88:17–28CrossRefGoogle Scholar
  25. Eibinger M, Ganner T, Bubner P, Rosker S, Kracher D, Haltrich D, Ludwig R, Plank H, Nidetzky B (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289(52):35929–35938. jbc. M114. 602227PubMedPubMedCentralCrossRefGoogle Scholar
  26. Ge Y, Dababneh F, Li L (2017) Economic evaluation of lignocellulosic biofuel manufacturing considering integrated lignin waste conversion to hydrocarbon fuels. Procedia Manuf 10:112–122CrossRefGoogle Scholar
  27. Gomez LD, Steele-King CG, Mcqueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178:473–485PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556PubMedCrossRefPubMedCentralGoogle Scholar
  29. Halim R, Gladman B, Danquah MK, Webley PA (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102:178–185PubMedCrossRefPubMedCentralGoogle Scholar
  30. Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732PubMedCrossRefPubMedCentralGoogle Scholar
  31. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–1047CrossRefGoogle Scholar
  32. Helle SS, Duff SJ, Cooper DG (1993) Effect of surfactants on cellulose hydrolysis. Biotechnol Bioeng 42:611–617PubMedCrossRefPubMedCentralGoogle Scholar
  33. Highina B, Bugaje I, Umar B (2014) A review on second generation biofuel: a comparison of its carbon footprints. Eur J Eng Technol 2(2):1–7Google Scholar
  34. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hirokawa Y, Maki Y, Tatsuke T, Hanai T (2016) Cyanobacterial production of 1, 3-propanediol directly from carbon dioxide using a synthetic metabolic pathway. Metab Eng 34:97–103PubMedCrossRefGoogle Scholar
  36. Holma A, Koponen K, Antikainen R, Lardon L, Leskinen P, Roux P (2013) Current limits of life cycle assessment framework in evaluating environmental sustainability – case of two evolving biofuel technologies. J Clean Prod 54:215–228CrossRefGoogle Scholar
  37. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639PubMedCrossRefGoogle Scholar
  38. Huang J, Chen D, Wei Y, Wang Q, Li Z, Chen Y, Huang R (2014) Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48. Sci World J 2014:1–8Google Scholar
  39. Inganäs O, Sundström V (2016) Solar energy for electricity and fuels. Ambio 45:15–23CrossRefGoogle Scholar
  40. Ingram L, Conway T, Clark D, Sewell G, Preston J (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kalyani DC, Zamanzadeh M, Müller G, Horn SJ (2017) Biofuel production from birch wood by combining high solid loading simultaneous saccharification and fermentation and anaerobic digestion. Appl Energy 193:210–219CrossRefGoogle Scholar
  42. Kanda H, Li P, Yoshimura T, Okada S (2013) Wet extraction of hydrocarbons from Botryococcus braunii by dimethyl ether as compared with dry extraction by hexane. Fuel 105:535–539CrossRefGoogle Scholar
  43. Kim M, Lee S, Ryu DD, Reese E (1982) Surface deactivation of cellulase and its prevention. Enzym Microb Technol 4:99–103CrossRefGoogle Scholar
  44. Kivistö A, Santala V, Karp M (2010) Hydrogen production from glycerol using halophilic fermentative bacteria. Bioresour Technol 101:8671–8677PubMedCrossRefGoogle Scholar
  45. Knöös P, Schulz C, Piculell L, Ludwig R, Gorton L, Wahlgren M (2014) Quantifying the release of lactose from polymer matrix tablets with an amperometric biosensor utilizing cellobiose dehydrogenase. Int J Pharm 468:121–132PubMedCrossRefGoogle Scholar
  46. Kremer TA, Lasarre B, Posto AL, Mckinlay JB (2015) N2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis. Proc Natl Acad Sci 112:2222–2226PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kulkarni MG, Gopinath R, Meher LC, Dalai AK (2006) Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chem 8:1056–1062CrossRefGoogle Scholar
  48. Kumar R, Kumar P (2017) Future microbial applications for bioenergy production: a perspective. Front Microbiol 8:450PubMedPubMedCentralGoogle Scholar
  49. Lamed R, Zeikus J (1980) Glucose fermentation pathway of Thermoanaerobium brockii. J Bacteriol 141:1251–1257PubMedPubMedCentralCrossRefGoogle Scholar
  50. Laskar DD, Yang B, Wang H, Lee J (2013) Pathways for biomass-derived lignin to hydrocarbon fuels. Biofuels Bioprod Biorefin 7:602–626CrossRefGoogle Scholar
  51. Lee C-G (1999) Calculation of light penetration depth in photobioreactors. Biotechnol Bioprocess Eng 4:78–81CrossRefGoogle Scholar
  52. Lee H, Hamid S, Zain S (2014a) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:1–20Google Scholar
  53. Lee S, Speight JG, Loyalka SK (2014b) Handbook of alternative fuel technologies. CRC Press, Boca RatonCrossRefGoogle Scholar
  54. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467CrossRefGoogle Scholar
  55. Lin PP, Mi L, Morioka AH, Yoshino KM, Konishi S, Xu SC, Papanek BA, Riley LA, Guss AM, Liao JC (2015) Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab Eng 31:44–52PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lopes A, Ferreira Filho EX, Moreira L (2018) An update on enzymatic cocktails for lignocellulose breakdown. J Appl Microbiol 125:632–645PubMedCrossRefPubMedCentralGoogle Scholar
  57. Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466CrossRefGoogle Scholar
  58. Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lynd LR, van Zyl WH, Mcbride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583PubMedCrossRefPubMedCentralGoogle Scholar
  60. Mandil C, Shihab-Eldin A (2010) Assessment of biofuels potential and limitations. Geopolit Energy 32:6–11Google Scholar
  61. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83PubMedCrossRefGoogle Scholar
  62. Meher L, Sagar DV, Naik S (2006) Technical aspects of biodiesel production by transesterification – a review. Renew Sust Energ Rev 10:248–268CrossRefGoogle Scholar
  63. Melin K, Kohl T, Koskinen J, Hurme M (2015) Performance of biofuel processes utilising separate lignin and carbohydrate processing. Bioresour Technol 192:397–409PubMedCrossRefGoogle Scholar
  64. Menetrez MY (2012) An overview of algae biofuel production and potential environmental impact. Environ Sci Technol 46:7073–7085PubMedCrossRefGoogle Scholar
  65. Minteer S (2016) Alcoholic fuels. CRC Press, Boca RatonCrossRefGoogle Scholar
  66. Morgera E, Kulovesi K, Gobena A (2009) Case studies on bioenergy policy and law: options for sustainability. In: FAO legislative study. FAO, RomeGoogle Scholar
  67. Mubarak M, Shaija A, Suchithra T (2015) A review on the extraction of lipid from microalgae for biodiesel production. Algal Res 7:117–123CrossRefGoogle Scholar
  68. Müller C, Reuter W, Wehrmeyer W, Dau H, Senger H (1993) Adaptation of the photosynthetic apparatus of Anacystis nidulans to irradiance and CO2-concentration. Bot Acta 106:480–487CrossRefGoogle Scholar
  69. Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, Mcdowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814PubMedCrossRefPubMedCentralGoogle Scholar
  70. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597CrossRefGoogle Scholar
  71. Nielsen DR, Leonard E, Yoon S-H, Tseng H-C, Yuan C, Prather KLJ (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11:262–273PubMedCrossRefPubMedCentralGoogle Scholar
  72. Nizami A-S, Rehan M (2018) Towards nanotechnology-based biofuel industry. Biofuel Res J 5:798–799CrossRefGoogle Scholar
  73. Nylund N-O, Aakko-Saksa P, Sipilä K (2008) Status and outlook for biofuels, other alternative fuels and new vehicles. VTT, EspooGoogle Scholar
  74. Osamu K, Carl H (1989) Biomass handbook. Gordon Breach Science Publisher, New YorkGoogle Scholar
  75. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568PubMedCrossRefGoogle Scholar
  76. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311:484–489PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843PubMedCrossRefGoogle Scholar
  78. Ragnar M, Henriksson G, Lindström ME, Wimby M, Blechschmidt J, Heinemann S (2000) Pulp. In: Ullmann’s encyclopedia of industrial chemistry. WileyVCH, Weinheim, pp 1–92Google Scholar
  79. Rapala J, Sivonen K (1998) Assessment of environmental conditions that favor hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation at different temperatures. Microb Ecol 36:181–192PubMedCrossRefPubMedCentralGoogle Scholar
  80. Richards E (2013) Careers in biofuels. US Bureau of Labor StatisticsGoogle Scholar
  81. Romero-García J, Martínez-Patiño C, Ruiz E, Romero I, Castro E (2016) Ethanol production from olive stone hydrolysates by xylose fermenting microorganisms. Bioethanol 2:51–65CrossRefGoogle Scholar
  82. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841PubMedCrossRefPubMedCentralGoogle Scholar
  83. Schoemaker HE, Piontek K (1996) On the interaction of lignin peroxidase with lignin. Pure Appl Chem 68:2089–2096CrossRefGoogle Scholar
  84. Schutyser W, Renders T, van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47:852–908PubMedCrossRefPubMedCentralGoogle Scholar
  85. Sekoai PT, Ouma CNM, du Preez SP, Modisha P, Engelbrecht N, Bessarabov DG, Ghimire A (2019) Application of nanoparticles in biofuels: an overview. Fuel 237:380–397CrossRefGoogle Scholar
  86. Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3:283–305CrossRefGoogle Scholar
  87. Shen Y, Pei Z, Yuan W, Mao E (2009) Effect of nitrogen and extraction method on algae lipid yield. Int J Agric Biol Eng 2:51–57Google Scholar
  88. Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) High titer anaerobic 1-butanol synthesis in Escherichia coli enabled by driving forces. Appl Environ Microbiol 77(9):2905–2915PubMedPubMedCentralCrossRefGoogle Scholar
  89. Shu R, Zhang Q, Xu Y, Long J, Ma L, Wang T, Chen P, Wu Q (2016) Hydrogenation of lignin-derived phenolic compounds over step by step precipitated Ni/SiO 2. RSC Adv 6:5214–5222CrossRefGoogle Scholar
  90. Sikarwar VS, Zhao M, Fennell PS, Shah N, Anthony EJ (2017) Progress in biofuel production from gasification. Prog Energy Combust Sci 61:189–248CrossRefGoogle Scholar
  91. Speight JG (2011) The biofuels handbook. Royal Society of Chemistry, CambridgeCrossRefGoogle Scholar
  92. Stevens C, Verhé R (2004) Renewable bioresources: scope and modification for non-food applications. Wiley, ChichesterGoogle Scholar
  93. Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720PubMedCrossRefPubMedCentralGoogle Scholar
  94. Valdivia M, Galan JL, Laffarga J, Ramos JL (2016) Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol 9:585–594PubMedPubMedCentralCrossRefGoogle Scholar
  95. Vamvuka D, Arvanitidis C, Zachariadis D (2004) Flue gas desulfurization at high temperatures: a review. Environ Eng Sci 21:525–548CrossRefGoogle Scholar
  96. Wang H, Ruan H, Pei H, Wang H, Chen X, Tucker MP, Cort JR, Yang B (2015) Biomass-derived lignin to jet fuel range hydrocarbons via aqueous phase hydrodeoxygenation. Green Chem 17:5131–5135CrossRefGoogle Scholar
  97. Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315PubMedCrossRefPubMedCentralGoogle Scholar
  98. Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci 109:E111–E118PubMedCrossRefPubMedCentralGoogle Scholar
  99. Yanase H, Miyawaki H, Sakurai M, Kawakami A, Matsumoto M, Haga K, Kojima M, Okamoto K (2012) Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Appl Microbiol Biotechnol 94:1667–1678PubMedCrossRefPubMedCentralGoogle Scholar
  100. Yang S, Mohagheghi A, Franden MA, Chou Y-C, Chen X, Dowe N, Himmel ME, Zhang M (2016) Metabolic engineering of Zymomonas mobilis for 2, 3-butanediol production from lignocellulosic biomass sugars. Biotechnol Biofuels 9:189PubMedPubMedCentralCrossRefGoogle Scholar
  101. Yi J, Luo Y, He T, Jiang Z, Li J, Hu C (2016) High efficient hydrogenation of lignin-derived monophenols to cyclohexanols over Pd/γ-Al2O3 under mild conditions. Catalysts 6:12CrossRefGoogle Scholar
  102. Yu Y-X, Ying X, Wang T-J, Zhang Q, Zhang X-H, Zhang X (2013) In-situ hydrogenation of lignin depolymerization model compounds to cyclohexanol. J Fuel Chem Technol 41:443–447CrossRefGoogle Scholar
  103. Yu A-Q, Juwono NKP, Foo JL, Leong SSJ, Chang MW (2016) Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids. Metab Eng 34:36–43PubMedCrossRefGoogle Scholar
  104. Zhang Y, Shen J (2007) Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. Int J Hydrog Energy 32:17–23CrossRefGoogle Scholar
  105. Zhang XL, Yan S, Tyagi RD, Surampalli RY, Zhang TC (2010) Application of nanotechnology and nanomaterials for bioenergy and biofuel production. In: In Bioenergy and biofuel from biowastes and biomass. American Society of Civil Engineers (ASCE), pp 478–496. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of BiotechnologyIndian Institute of TechnologyRoorkeeIndia

Personalised recommendations