Multidimensional Diagrams for Tectonic Discrimination of Igneous and Sedimentary Rocks

  • Surendra P. VermaEmail author


As Chap.  11, this chapter is also based on our recent research and, therefore, represents a novel approach. No book has been written on this aspect yet except one little known in Spanish by Verma (Análisis estadístico de datos composicionales. Universidad Nacional Autónoma de México, CDMX, 2016). Our first example is on a preliminary discrimination of two tectonic settings (mid-ocean ridge MOR and oceanic plateau OP) from a multi-dimensional discriminant function based on additive log-ratio (alr) transformed major elements in basic and ultrabasic rocks. The probability concept and respective calculations are explained. Two examples on Precambrian rocks from India highlight the application, in which Chitradurga greenstone belt showed a MOR setting and Punagarh (Aravalli Craton) had affinity of an OP setting. Another example is for the multi-dimensional discrimination of active (A) and passive (P) margins from modified or hybrid log-ratio (mlr or hlr) transformation of major elements (M) as well as combined major and trace elements (MT) in siliciclastic sediments. Similarly, multi-dimensional discrimination of three tectonic settings (arc, rift, and collision) from siliciclastic sediments is described. Construction of probability-based boundaries is also presented to help readers better understand the novelty of the multi-dimensional approach. More examples of multi-dimensional discrimination are included. The chapter concludes with the indications of how more improvements in the direction of geochemometrics could be achieved.


  1. Agrawal, S., & Verma, S. P. (2007). Comment on “Tectonic classification of basalts with classification trees” by Pieter Vermeesch (2006). Geochimica et Cosmochimica Acta, 71, 3388–3390.CrossRefGoogle Scholar
  2. Agrawal, S., Guevara, M., & Verma, S. P. (2008). Tectonic discrimination of basic and ultrabasic rocks through log-transformed ratios of immobile trace elements. International Geology Review, 50, 1057–1079.Google Scholar
  3. Aitchison, J. (1986). The statistical analysis of compositional data. London, UK: Chapman and Hall.Google Scholar
  4. Akçay, A. E., & Beyazpirinç, M. (2017). The geological evolution of Sorgun (Yozgat)-Yildizeli (Sivas) foreland basin, petrographic, geochemical aspects and geochronology of volcanism affecting the basin. Bulletin of the Mineral Research and Exploration, 155, 1–31.CrossRefGoogle Scholar
  5. Armstrong-Altrin, J. S. (2015). Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review, 57, 1446–1461.CrossRefGoogle Scholar
  6. Armstrong-Altrin, J. S., & Verma, S. P. (2005). Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology, 177, 115–129.CrossRefGoogle Scholar
  7. Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91, 611–627.CrossRefGoogle Scholar
  8. Bhatia, M. R., & Crook, A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.CrossRefGoogle Scholar
  9. Duraiswami, R. A., Inamdar, M. M., & Shaikh, T. N. (2013). Emplacement of pillow lavas from the ~2.8 Ga Chitradurga greenstone belt, South India: A physical volcanological, morphometric and geochemical perspective. Journal of Volcanology and Geothermal Research, 264, 134–149.CrossRefGoogle Scholar
  10. Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35, 279–300.CrossRefGoogle Scholar
  11. Jafarzadeh, M., & Hosseini-Barzi, M. (2008). Petrography and geochemistry of Ahwaz sandstone member of Asmari formation, Zagros, Iran: Implications of provenance and tectonic setting. Revista Mexicana de Ciencias Geológicas, 25, 247–260.Google Scholar
  12. Kingson, O., Bhutani, R., Dash, J. K., Sebastian, S., & Balakrishnan, S. (2017). Resolving the conundrum in origin of the Manipur Ophiolite Complex, Indo-Myanmar range: Constraints from Nd isotopic ratios and elemental concentrations in serpentinized peridotite. Chemical Geology, 460, 117–129.CrossRefGoogle Scholar
  13. Maldonado, F., Budahn, J. R., Peters, L., & Unruh, D. M. (2006). Geology, geochronology, and geochemistry of basaltic flows of the Cat Hills, Cat Mesa, Wind Mesa, Cerro Verde, and Mesita Negra central New Mexico. Canadian Journal of Earth Sciences, 43, 1251–1268.CrossRefGoogle Scholar
  14. Middlemost, E. A. K. (1989). Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology, 77, 19–26.CrossRefGoogle Scholar
  15. Mondal, M. E. A. (2019). Geological evolution of the Precambrian Indian shield (p. 749). Cham, Switzerland: Springer International Publishing AG.CrossRefGoogle Scholar
  16. Morrison, D. F. (1990). Multivariate statistical methods. New York: McGraw-Hill Publishing Co.Google Scholar
  17. Ngueutchoua, G., Bessa, A. Z. E., Eyong, J. T., Zandjio, D. D., Djaoro, H. B., & Nfada, L. T. (2019). Geochemistry of cretaceous fine-grained siliciclastic rocks from Upper Mundeck and Logbadjeck Formations, Douala sub-basin, SW Cameroon: Implications for weathering intensity, provenance, paleoclimate, redox condition, and tectonic setting. Journal of African Earth Sciences, 152, 215–236.CrossRefGoogle Scholar
  18. Pandarinath, K. (2014). Tectonomagmatic origin of Precambrian rocks of Mexico and Argentina inferred from multi-dimensional discriminant-function based discrimination diagrams. Journal of South American Earth Sciences, 56, 464–484.CrossRefGoogle Scholar
  19. Pandarinath, K., & Verma, S. K. (2013). Application of four sets of tectonomagmatic discriminant function based diagrams to basic rocks from northwest Mexico. Journal of Iberian Geology, 39, 181–195.CrossRefGoogle Scholar
  20. Polat, A. (2013). Geochemical variations in Archean volcanic rocks, southwestern Greenland: Traces of diverse tectonic settings in the early earth. Geology, 41, 379–380.CrossRefGoogle Scholar
  21. Polat, A., Fryer, B. J., Appel, P. W. U., Kalvig, P., Kerrich, R., Dilek, Y., et al. (2011). Geochemistry of anorthositic differentiated sills in the Archean (~2970 Ma) Fiskenæsset Complex, SW Greenland: Implications for parental magma compositions, geodynamic setting, and secular heat flow in arcs. Lithos, 123, 50–72.CrossRefGoogle Scholar
  22. Rajesh, H. M. (2007). The petrogenetic characterization of intermediate and silicic charnockites in high-grade terrains: A case study from southern India. Contributions to Mineralogy and Petrology, 154, 591–606.CrossRefGoogle Scholar
  23. Ramírez-Montoya, E., Madhavaraju, J., Monreal, R., González-León, C. M., Grijalva-Noriega, F. J., Saucedo-Samaniego, J. C., et al. (2018). Meteorización y marco tectónico de rocas siliciclásticas de la Formación Morita, noreste de Sonora, México. Revista Mexicana de Ciencias Geológicas, 35, 103–115.CrossRefGoogle Scholar
  24. Rencher, A. C. (2002). Methods of multivariate analysis. New York: Wiley-Interscience.CrossRefGoogle Scholar
  25. Rivera-Gómez, M. A., & Verma, S. P. (2016). Testing of multidimensional tectonomagmatic discrimination diagrams on fresh and hydrothermally altered rocks. Geologica Carpathica, 67, 195–208 + Supplement i–cxiii (113 pages).Google Scholar
  26. Rodríguez-Ríos, R., & Torres-Aguilera, J. M. (2009). Evolución petrológica del vulcanismo bimodal oligocenénico en el campo volcánico de San Luis Potosí (México). Revista Mexicana de Ciencias Geológicas, 26, 658–673.Google Scholar
  27. Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.CrossRefGoogle Scholar
  28. Rossignol, C., Bourquin, S., Poujol, M., Hallot, E., Dabard, M.-P., & Nalpas, T. (2016). The volcaniclastic series from the Luang Prabang Basin, Laos: A witness of a triassic magmatic arc? Journal of Asian Earth Sciences, 120, 159–183.CrossRefGoogle Scholar
  29. Sheth, H. C. (2008). Do major oxide tectonic discrimination diagrams work?: Evaluating new log-ratio and discriminant-analysis-based diagrams with Indian Ocean mafic volcanics and Asian ophiolites. Terra Nova, 20, 229–236.CrossRefGoogle Scholar
  30. Srivastava, R. K., Chandra, R., & Shastry, A. (2004). High-Ti type N-MORB parentage of basalts from the south Andaman ophiolite suite, India. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences), 113, 605–618.Google Scholar
  31. Tada, R., Sato, S., Irino, T., Matéu, H., & Kennett, J. P. (2000). Millennial-scale compositional variations in late Quaternary sediments at site 1017, southern California. In M. Lyle, I. Koizumi, C. Richter, & T. C. Moore, Jr. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 167, pp. 277–296). Washington, DC: U.S. Government Printing Office.Google Scholar
  32. Torres Sánchez, S. A., Augustsson, C., Barboza Gudiño, J. R., Jenchen, U., Ramírez Fernández, J. A., Abratis, M., & Scherstén, A. (2015). Magmatic source and metamorphic grade of metavolcanic rocks from the Granjeno Schist: Was northeastern Mexico a part of Pangaea? Geological Journal. Scholar
  33. Van Lente, B., Ashwal, L. D., Pandit, M. K., Bowring, S. A., & Torsvik, T. H. (2009). Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, northwest India: Implications for late Precambrian tectonic evolution of the Aravalli Craton. Precambrian Research, 170, 202–222.CrossRefGoogle Scholar
  34. Velasco-Tapia, F. (2014). Multivariate analysis, mass balance techniques, and statistical tests as tools in igneous petrology: Application to the Sierra de las Cruces Volcanic Range (Mexican Volcanic Belt). The Scientific World Journal, 32, Article ID 793236.Google Scholar
  35. Verma, S. P. (2010). Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams. Turkish Journal of Earth Sciences, 19, 185–238.Google Scholar
  36. Verma, S. P. (2012). Application of multi-dimensional discrimination diagrams and probability calculations to acid rocks from Portugal and Spain. Comunicações Geológicas, 99, 79–93.Google Scholar
  37. Verma, S. P. (2013). Application of 50 multi-dimensional discrimination diagrams and significance tests to decipher compositional similarities and differences between Hawaiian and Icelandic volcanism. International Geology Review, 55, 1553–1572.CrossRefGoogle Scholar
  38. Verma, S. P. (2015a). Origin, evolution, and tectonic setting of the eastern part of the Mexican Volcanic Belt and comparison with the Central American Volcanic Arc from conventional multielement normalized and new multidimensional discrimination diagrams and discordancy and significance tests. Turkish Journal of Earth Sciences, 24, 111–164.CrossRefGoogle Scholar
  39. Verma, S. P. (2015b). Monte Carlo comparison of conventional ternary diagrams with new log-ratio bivariate diagrams and an example of tectonic discrimination. Geochemical Journal, 49, 393–412.CrossRefGoogle Scholar
  40. Verma, S. P. (2016). Análisis estadístico de datos composicionales. CDMX: Universidad Nacional Autónoma de México.Google Scholar
  41. Verma, S. K. (2017). Precambrian plate tectonic setting of Africa from multidimensional discrimination diagrams. Journal of African Earth Sciences, 125, 137–150.CrossRefGoogle Scholar
  42. Verma, S. P., & Agrawal, S. (2011). New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes. Revista Mexicana de Ciencias Geológicas, 28, 24–44.Google Scholar
  43. Verma, S. P., & Armstrong-Altrin, J. S. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133.CrossRefGoogle Scholar
  44. Verma, S. P., & Armstrong-Altrin, J. S. (2016). Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12.CrossRefGoogle Scholar
  45. Verma, S. K., & Oliveira, E. P. (2013). Application of multi-dimensional discrimination diagrams and probability calculations to Paleoproterozoic acid rocks from Brazilian cratons and provinces to infer tectonic settings. Journal of South American Earth Sciences, 45, 117–146.CrossRefGoogle Scholar
  46. Verma, S. K., & Oliveira, E. P. (2015). Tectonic setting of basic igneous and metaigneous rocks of Borborema Province, Brazil using multi-dimensional geochemical discrimination diagrams. Journal of South American Earth Sciences, 58, 309–317.CrossRefGoogle Scholar
  47. Verma, S. P., & Rivera-Gómez, M. A. (2013a). Computer programs for the classification and nomenclature of igneous rocks. Episodes, 36, 115–124.Google Scholar
  48. Verma, S. P., & Rivera-Gómez, M. A. (2013b). New computer program TecD for tectonomagmatic discrimination from discriminant function diagrams for basic and ultrabasic magmas and its application to ancient rocks. Journal of Iberian Geology, 39(1), 167–179.Google Scholar
  49. Verma, S. P., & Verma, S. K. (2013). First 15 probability-based multi-dimensional discrimination diagrams for intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic processes. Turkish Journal of Earth Sciences, 22, 931–995.CrossRefGoogle Scholar
  50. Verma, S. P., Guevara, M., & Agrawal, S. (2006). Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. Journal of Earth System Science, 115, 485–528.CrossRefGoogle Scholar
  51. Verma, S. P., Verma, S. K., Pandarinath, K., & Rivera-Gómez, M. A. (2011). Evaluation of recent tectonomagmatic discrimination diagrams and their application to the origin of basic magmas in Southern Mexico and Central America. Pure and Applied Geophysics, 168, 1501–1525.CrossRefGoogle Scholar
  52. Verma, S. K., Pandarinath, K., & Verma, S. P. (2012). Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi-dimensional diagrams for acid rocks. International Geology Review, 54, 325–347.CrossRefGoogle Scholar
  53. Verma, S. P., Pandarinath, K., Verma, S. K., & Agrawal, S. (2013). Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithos, 168–169, 113–123.CrossRefGoogle Scholar
  54. Verma, S. P., Verma, S. K., & Oliveira, E. P. (2015a). Application of 55 multi-dimensional tectonomagmatic discrimination diagrams to Precambrian belts. International Geology Review, 57, 1365–1388.CrossRefGoogle Scholar
  55. Verma, S. P., Cruz-Huicochea, R., Díaz-González, L., & Verma, S. K. (2015b). A new computer program TecDIA for multidimensional tectonic discrimination of intermediate and acid magmas and its application to the Bohemian Massif, Czech Republic. Journal of Geosciences, 60, 203–218.CrossRefGoogle Scholar
  56. Verma, S. P., Pandarinath, K., & Rivera-Gómez, M. A. (2016a). Evaluation of the ongoing rifting and subduction processes in the geochemistry of magmas from the western part of the Mexican Volcanic Belt. Journal of South American Earth Sciences, 66, 125–148.CrossRefGoogle Scholar
  57. Verma, S. P., Díaz González, L., & Armstrong-Altrin, J. S. (2016b). Application of a new computer program for tectonic discrimination of Cambrian to Holocene clastic sediments. Earth Science Informatics, 9, 151–165.CrossRefGoogle Scholar
  58. Verma, S. P., Rivera-Gómez, M. A., Díaz-González, L., & Quiroz-Ruiz, A. (2016c). Log-ratio transformed major-element based multidimensional classification for altered high-Mg igneous rocks. Geochemistry, Geophysics, Geosystems, 17, 4955–4972.CrossRefGoogle Scholar
  59. Verma, S. P., Díaz-González, L., & Rivera-Gómez, M. A. (2019). New multidimensional classification scheme of altered igneous rocks from performance comparison of isometric and modified log-ratio transformations of major elements. Geochemical Transactions, submitted.Google Scholar
  60. Wiszniewska, J., Krzeminska, E., & Dörr, W. (2007). Evidence of arc-related Svecofennian magmatic activity in the southwestern margin of the East European Craton in Poland. Gondwana Research, 12, 268–278.CrossRefGoogle Scholar
  61. Zaid, S. M. (2012). Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 66–67, 56–71.CrossRefGoogle Scholar
  62. Zaid, S. M. (2015). Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: Implication for provenance, weathering and tectonic setting. Journal of African Earth Sciences, 102, 1–17.CrossRefGoogle Scholar
  63. Zhang, Z., Zhao, G., Santosh, M., Wang, J., Dong, X., & Shen, K. (2010). Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction? Gondwana Research, 17, 615–631.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations