Multivariate Data

  • Surendra P. VermaEmail author


Each object of multivariate data distributed in a multidimensional space is characterised by a set of measurements corresponding to each variable. Obviously, as we have already seen (Chap.  9), if we are dealing with bivariate data corresponding to two variables, a plot on a piece of paper or computer screen can show their behaviour. Their graphical representation becomes difficult and, in fact, impossible when we want to visualise four or more dimensions. Therefore, we must learn alternate techniques for the handling of multivariate data. We describe the dimension-reducing multivariate technique of linear discriminant analysis (LDA) and illustrate it from agricultural chemistry data. One surprising result was that the isometric log-ratio transformation did not provide any improvement with respect to the use of concentration data. The chapter ends with the description of multiple linear regression exemplified from UV absorbance data.


  1. Agrawal, S., Guevara, M., & Verma, S. P. (2008). Tectonic discrimination of basic and ultrabasic rocks through log-transformed ratios of immobile trace elements. International Geology Review, 50, 1057–1079.CrossRefGoogle Scholar
  2. Aitchison, J. (1986). The statistical analysis of compositional data. London, UK: Chapman and Hall.CrossRefGoogle Scholar
  3. Barnett, V., & Lewis, T. (1994). Outliers in statistical data. Chichester: Wiley.Google Scholar
  4. Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35, 279–300.CrossRefGoogle Scholar
  5. Miller, J. N., & Miller, J. C. (2005). Statistics and chemometrics for analytical chemistry (5th ed.). Essex, England: Pearson Prentice Hall.Google Scholar
  6. Morrison, D. F. (1990). Multivariate statistical methods. New York: McGraw-Hill Publishing Co.Google Scholar
  7. Phuong, T. D., Chuong, P. V., Khiem, D. T., & Kokot, S. (1999). Elemental content of Vietnamese rice. Part 1. Sampling, analysis and comparison with previous studies. Analyst, 124, 553–560.CrossRefGoogle Scholar
  8. Reyment, R. A., & Savazzi, E. (1999). Aspects of multivariate statistical analysis in geology. Amsterdam: Elsevier.Google Scholar
  9. Verma, S. P. (2012). Geochemometrics. Revista Mexicana de Ciencias Geológicas, 29, 276–298.Google Scholar
  10. Verma, S. P. (2015). Monte Carlo comparison of conventional ternary diagrams with new log-ratio bivariate diagrams and an example of tectonic discrimination. Geochemical Journal, 49, 393–412.CrossRefGoogle Scholar
  11. Verma, S. P., & Agrawal, S. (2011). New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes. Revista Mexicana de Ciencias Geológicas, 28, 24–44.Google Scholar
  12. Verma, S. P., & Armstrong-Altrin, J. S. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133.CrossRefGoogle Scholar
  13. Verma, S. P., & Díaz-González, L. (2012). Application of the discordant outlier detection and separation system in the geosciences. International Geology Review, 54, 593–614.CrossRefGoogle Scholar
  14. Verma, S. P., & Rivera-Gómez, M. A. (2017). Transformed major element based multidimensional classification of altered volcanic rocks. Episodes, 40, 295–303.CrossRefGoogle Scholar
  15. Verma, S. P., Verma, S. K., & Oliveira, E. P. (2015). Application of 55 multi-dimensional tectonomagmatic discrimination diagrams to Precambrian belts. International Geology Review, 57, 1365–1388.CrossRefGoogle Scholar
  16. Verma, S. P., Rivera-Gómez, M. A., Díaz-González, L., & Quiroz-Ruiz, A. (2016). Log-ratio transformed major-element based multidimensional classification for altered high-Mg igneous rocks. Geochemistry, Geophysics, Geosystems, 17, 4955–4972.CrossRefGoogle Scholar
  17. Verma, S. P., Verma, S. K., Rivera-Gómez, M. A., Torres-Sánchez, D., Díaz-González, L., Amezcua-Valdez, A., et al. (2018). Statistically coherent calibration of X-ray fluorescence spectrometry for major elements in rocks and minerals. Journal of Spectroscopy, 2018, 13, Article ID 5837214. Scholar
  18. Verma, S. P., Rosales-Rivera, M., Rivera-Gómez, M. A., & Verma, S. K. (2019). Comparison of matrix-effect corrections for ordinary and uncertainty weighted linear regressions and determination of major element mean concentrations and total uncertainties of 62 international geochemical reference materials from wavelength-dispersive X-ray fluorescence spectrometry. In Colloquium Spectroscopicum Internationale XLI (CSI XLI) and I Latin-American Meeting on Laser Induced Breakdown Spectroscopy (I LAMLIBS). Mexico City.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations