Evaluation of 3D Printing Parameters on the Electrochemical Performance of Conductive Polymeric Components for Chemical Warfare Agent Sensing

  • Joseane R. Barbosa
  • Pedro H. O. Amorim
  • Mariana C. de O. Gonçalves
  • Rafael M. Dornellas
  • Robson P. Pereira
  • Felipe S. SemaanEmail author
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 152)


Aiming at the use of 3D printing as a tool in the design of electronic components and sensors, the present work has developed a preliminary evaluation of the influence of printing conditions on the electrochemical behavior of PLA and commercial carbon conductor-based composites. For this, characterization experiments were carried out by means of infrared spectroscopy and thermal analysis, pointing to a clear variability of behavior of different types of PLA, as well as the influence of this variation on the thermal behavior of the composites, which consequently influences the processes of 3D printing. Experiments allowed a speculation of the conductor load present in the conductive filament (about 20.5%), although it was not possible to define its category. The print modes, in turn, proved to be a decisive factor for the electroanalytical behavior in front of a redox probe, being responsible for improving or worsening the resolution, or favoring the exchange in a given direction. In all cases, the relations between currents (cathodic and anodic) were acceptable, although the loss of resolution, translated in the form of spacing between peaks, has greatly contaminated the calculation of electroactive areas in some cases. Clearly, an optimization of the printing process, as well as a better control in the particle size, will allow obtaining high electroactive areas, with adequate resolution, even with low driver loads, which shows a promising line currently in development in our Group.


Conductive 3D printed component Surface effects Electrochemical sensing 


  1. 1.
    Cinti, S.: Electroanalysis: towards a “laboratory-free” approach. SM Anal. Bioanal. Tech. 1(1), 1004 (2016)Google Scholar
  2. 2.
    Wang, J.: Analytical Electrochemistry. 3ª edição. Weinheim: Ed. Wiley-VCH (2006)Google Scholar
  3. 3.
    Ismail, W.N.M., Matsuda, A.: Electrochemical imprinted sol-gel films detection of organophosphate chemical warfare agent. Def. S T Tech. Bull. 8(1), 9–16 (2015)Google Scholar
  4. 4.
    Mahyari, M.: Electrochemical sensing of thiodiglycol, the main hydrolysis product of sulfur mustard, by using an electrode composed of an ionic liquid, graphene nanosheets and silver nanoparticles. Microchim. Acta 183(8), 2395–2401 (2016)CrossRefGoogle Scholar
  5. 5.
    Sikarwar, B., Shama, P.K., Singh, V.V., Boopathi, M., Singh, B., Jaiswal, Y.K.: Xanthine oxidase immobilized electrode for electrochemical sensing of chemical warfare agent simulant. Sens. Lett. 15(3), 227–235 (2017)CrossRefGoogle Scholar
  6. 6.
    Elliot, J., Simoska, O., Karasik, S., Shear, J.B., Stevenson, K.J.: Transparent carbon ultramicroelectrode arrays for the electrochemical detection of a bacterial warfare toxin, pyocyanin. Anal. Chem. 89(12), 6285–6289 (2017)CrossRefGoogle Scholar
  7. 7.
    Hondred, J.A., Breger, J.C., Aalves, N.J., Trammel, S.A., Walper, S.A., Medintz, I.L., Claussen, J.C.: Printed graphene electrochemical biosensors fabricated by inkjet maskless lithography for rapid and sensitive detection of organophosphates. ACS Appl. Mater. Interfaces 10(13), 11125–11134 (2018)CrossRefGoogle Scholar
  8. 8.
    Wang, X., Gartia, M.R., Jiang, J., Chang, T.-W., Qian, J., Liu, Y., Liu, X., Liu, G.L.: Audio jack based miniaturized mobile phone electrochemical sensing platform. Sens. Actuators, B: Chem. 209, 677–685 (2015)CrossRefGoogle Scholar
  9. 9.
    Shim, W., Han, J.-H., Kim, S., Kwon, H.J., Pak, J.: A portable potentiostat with Bluetooth communication for square wave voltammetry measurement. Trans. Korean Inst. Electr. Eng. 65(4), 622–627 (2016)CrossRefGoogle Scholar
  10. 10.
    Fan, Y., Liu, J., Wang, Y., Luo, J., Xu, H., Xu, S., Cai, X.: A wireless point-of-care testing system for the detection of neuron-specific enolase with microfluidic paper-based analytical devices. Biosens. Bioelectron. 95, 60–66 (2017)CrossRefGoogle Scholar
  11. 11.
    Kanchi, S., Sabela, M.I., Mdluli, P.S., Inamuddin, I., Bisetty, K.: Smartphone based bioanalytical and diagnosis applications: a review. Biosens. Bioelectron. 102, 136–149 (2018)CrossRefGoogle Scholar
  12. 12.
    Ainla, A., Mousavi, M.P.S., Tsaloglou, M.-N., Redston, J., Bell, J.G., Fernández-Abedul, M.T., Whitesides, G.M.: Open-source potentiostat for wireless electrochemical detection with smartphones. Anal. Chem. 90(10), 6240–6246 (2018)CrossRefGoogle Scholar
  13. 13.
    Colozza, N., Kehe, K., Popp, T., Steinritz, D., Moscone, D., Arduini, F.: Paper-based electrochemical sensor for on-site detection of the Sulphur mustard. Environ. Sci. Pollut. Res. 1–12 (2018)Google Scholar
  14. 14.
    Buzzetti, P.H.M., Oliveira, G.C., Azevedo, A.L.M., Michel, R.C., Ponzio, E.A., Semaan, F.S.: Conductive composites as versatile substrates for modeling of interfaces and sensors. In: Wythers, M.C. (ed.) Advances in Materials Science Research, vol. 21, 1st edn, pp. 1–24. Nova Science Publisher, New York (2015)Google Scholar
  15. 15.
    Fonseca, C.A., Dos Santos, T.A.D., Resende, A.C., Semaan, F.S.: Paraffin-graphite based composite electrodes as substrate for the electrodeposition of conductive films with analytical purposes. Revista Virtual de Química 5(4), 538–540 (2013)CrossRefGoogle Scholar
  16. 16.
    Amorim, R.B.S., Rabelo, A.C., Bottecchia, O.L., Muñoz, A.A., Richter, E.M.: Desenvolvimento, caracterização e aplicação eletroanalítica de um compósito fluido de adesivo epóxi, grafite e ciclo-hexanona. Quim. Nova 33(6), 1398–1402 (2010)CrossRefGoogle Scholar
  17. 17.
    Vasiliev, V.V., Morozov, E.V.: Mechanics and Analysis of Composite Materials, 1st edn. Elsevier Science Ltd. (2001)Google Scholar
  18. 18.
    Tallman, D.E., Petersen, S.L.: Composite electrodes for electroanalysis: principles and applications. Electroanalysis 2, 499–510 (1990)CrossRefGoogle Scholar
  19. 19.
    McCreery, R.L.: Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108, 2646–2687 (2008)CrossRefGoogle Scholar
  20. 20.
    Corb, I., Manea, F., Radovan, C., Pop, A., Burtica, G., Malchev, P., Picken, S., Schoonman, J.: Carbon-based composite electrodes: preparation, characterization and application in electroanalysis. Sensors 7, 2626–2635 (2007)CrossRefGoogle Scholar
  21. 21.
    Silva, A.L., Corrêa, M.M., Oliveira, G.C., Michel, R.C., Semaan, F.S., Ponzio, E.A.: Development and application of a routine robust graphite/poly(lactic acid) composite electrode for the fast simultaneous determination of Pb2+and Cd2+ in jewelry by square wave anodic stripping voltammetry. New J. Chem. 42, 19537–19547 (2018)CrossRefGoogle Scholar
  22. 22.
    Pereira, R.B., Morales, A.R.: Estudo do Comportamento Térmico e Mecânico do PLA Modificado com Aditivo Nucleante e Modificador de Impacto. Polímeros 24(2), 198–202 (2014)CrossRefGoogle Scholar
  23. 23.
    Milde, J., Hrušecký, R., Zaujec, R., Morovič, L., Görög, A.: Research of ABS and PLA materials in the process of fused deposition modeling method. DAAAM International, Vienna (2017)CrossRefGoogle Scholar
  24. 24.
    Kalcher, K., Svancara, I., Buzuk, M., Vytrias, K., Walcarius, A.: Electrochemical sensors and biosensors based on heterogeneous carbon materials. Monatsh. Chem. 140, 861–889 (2009)CrossRefGoogle Scholar
  25. 25.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  26. 26.
    Rivas, G.A., Rubianes, M.D., Pedano, M.L., Ferreyra, N.F., Luque, G.L., Rodrigues, M.C., Miscoria, S.A.: Carbon nanotubes paste electrodes: a new alternative for the development of electrochemical sensors. Electroanalysis 19(7–8), 823–831 (2007)CrossRefGoogle Scholar
  27. 27.
    Miranda-Hernandez, M., González, R.: Characterization of carbon–fullerene–silicone oil composite paste electrodes. Carbon 43(9), 1961–1967 (2005)CrossRefGoogle Scholar
  28. 28.
    Scida, K., Stege, P.W., Haby, G., Messina, G.A., García, C.D.: Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal. Chim. Acta 691(1–2), 6–17 (2011)CrossRefGoogle Scholar
  29. 29.
    Vieira, J.E.D., Vilar, E.O.: Grafeno: Uma revisão sobre propriedades, mecanismos de produção e potenciais aplicações em sistemas energéticos. Revista Eletrônica de Materiais e Processos 11(2), 54–57 (2016)Google Scholar
  30. 30.
    Zarbin, A.J.G., Oliveira, M.M.: Nanoestruturas de carbono (nanotubos, grafeno): quo vadis? Quim. Nova 36(10), 1533–1539 (2013)CrossRefGoogle Scholar
  31. 31.
    Castro, M.O.: Síntese de grafeno pelo método CVD. 84 f. Dissertação de Mestrado em Física. Departamento de Física, Universidade Federal do Ceará, Ceará (2011)Google Scholar
  32. 32.
    Guo, S., Yang, X., Heuzey, M., Therriault, D.: 3D printing of multifunctional nanocomposite helical liquid sensor. J. Name 00, 1–3 (2012)Google Scholar
  33. 33.
    Vernadou, D., Vasilopoulos, K.C., Kenanakis, G.: 3D printed graphene-based electrodes with high electrochemical performance. Appl. Phys. A 123, 623 (2017)CrossRefGoogle Scholar
  34. 34.
    Palenzuela, L.C.M., Novotný, F., Krupicka, P., Sofer, Z., Pumera, M.: 3D-printed graphene/polylactic acid electrodes promise high sensitivity in electroanalysis. Anal. Chem. (2018)Google Scholar
  35. 35.
    Azevedo, A.L.M., Oliveira, R.S., Ponzio, E.A., Semaan, F.S.: Sensor development exploiting graphite-epoxy composite as electrode material. In: IOP Conference Series: Materials Science and Engineering, vol. 97 (2015)CrossRefGoogle Scholar
  36. 36.
    Auras, R., Harte, B., Selke, S.: An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835 (2004)CrossRefGoogle Scholar
  37. 37.
    Vidovic, E., Faraguna, F., Jukic, A.: Influence of inorganic fillers on PLA crystallinity and thermal properties. J. Therm. Anal. Calorim. (2016)Google Scholar
  38. 38.
    Du, Y., Wu, T., Yan, N., Kortschot, M.T., Farnood, R.: Fabrication and characterization of fully biodegradable natural fiber-reinforced poly (lactic acid) composites. Compos. Part B Eng. 56, 717–723 (2014)CrossRefGoogle Scholar
  39. 39.
    Van de Velde, K., Kiekens, P.: Biopolymers: overview of several properties and consequences on their applications. Polym. Test. 21, 433–442 (2002)CrossRefGoogle Scholar
  40. 40.
    Kumar, S., Bhatnagar, N., Ghosh, A.K.: Effect of enantiomeric monomeric unit ratio on thermal and mechanical properties of poly (lactide). Polym. Bull. 73, 2087–2104 (2016)CrossRefGoogle Scholar
  41. 41.
    Ceregatti, T., Pecharki, P., Pachekoski, W.M., Becker, D., Dalmolin, C.: Electrical and thermal properties of PLA/CNT composite films. Revista Matéria 22(3) (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Joseane R. Barbosa
    • 1
  • Pedro H. O. Amorim
    • 1
  • Mariana C. de O. Gonçalves
    • 1
  • Rafael M. Dornellas
    • 1
  • Robson P. Pereira
    • 2
  • Felipe S. Semaan
    • 1
    • 2
    Email author
  1. 1.Analytical Chemistry DepartmentFluminense Federal UniversityNiteroi RJBrazil
  2. 2.Military Institute of EngineeringRio de Janeiro RJBrazil

Personalised recommendations