Advertisement

Analysis and Evaluation of the Positioning of Autonomous Underwater Vehicles Using Acoustic Signals

  • Enrique V. CarreraEmail author
  • Manolo Paredes
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 152)

Abstract

Autonomous underwater vehicles (AUVs) present as much potential as unmanned aerial vehicles, or drones, for being used in military missions. Major defense-oriented applications of AUVs will be intelligence, surveillance, and reconnaissance tasks, besides payload delivery and communication support. Nevertheless, AUVs have several constraints that make it difficult to rely completely on their autonomous functions. Particularly, AUVs do not have access to accurate positioning mechanisms like GPS. Thus, expensive inertial navigation techniques have been developed for these vehicles in the last decades. However, small and low-cost AUVs require newer and simpler positioning techniques that can be adapted to specific military missions. Based on that, this work analyzes and evaluates common trilateration techniques based on the propagation of acoustic signals in the water for a precise underwater positioning. Although the results show that the method known as time difference of arrival (TDoA) presents good accuracy, its application in military missions is still limited due to the large number of noise sources required; therefore, several future works in this direction are additionally proposed.

Keywords

Autonomous underwater vehicles Underwater positioning Trilateration techniques Underwater sound propagation 

Notes

Acknowledgements

This work was partially supported by the Universidad de las Fuerzas Armadas ESPE under Research Grant PREDU-2016-005.

References

  1. 1.
    Allard, Y., Shahbazian, E.: Unmanned underwater vehicle (UUV) information study. Technical report, DRDC-RDDC-2014-C290, OODA Technologies Inc., Montreal, Canada (2014)Google Scholar
  2. 2.
    Antonelli, G.: Underwater Robots, 4th edn. Springer, Berlin (2018)CrossRefGoogle Scholar
  3. 3.
    Baek, H., Lim, J.: Design of future UAV-relay tactical data link for reliable UAV control and situational awareness. IEEE Commun. Magaz. 56(10), 144–150 (2018).  https://doi.org/10.1109/MCOM.2018.1700259CrossRefGoogle Scholar
  4. 4.
    Bensky, A.: Wireless positioning technologies and applications. Artech House (2016)Google Scholar
  5. 5.
    Button, R.W., Kamp, J., Curtin, T.B., Dryden, J.: A survey of missions for unmanned undersea vehicles. RAND National Defense Research Institute, Santa Monica, CA (2009)Google Scholar
  6. 6.
    Carrera, E.V., Perez, M.S.: Event localization in wireless sensor networks. In: 2014 IEEE Central America and Panama Convention (CONCAPAN XXXIV), pp. 1–6. IEEE, Panama, Panama (11 2014)Google Scholar
  7. 7.
    Cook, K.L.B.: The silent force multiplier: The history and role of UAVs in warfare. In: 2007 IEEE Aerospace Conference. pp. 1–7 (March, 2007)Google Scholar
  8. 8.
    Damian, R.G., Jula, N., Paturca, S.V.: Autonomous underwater vehicles - achievements and current trends. Sci. Bull. Nav. Acad. 21(1), 85–89 (2018)Google Scholar
  9. 9.
    Doonan, I.J., Coombs, R.F., McClatchie, S.: The absorption of sound in seawater in relation to the estimation of deep-water fish biomass. ICES J. Mar. Sci. 60(5), 1047–1055 (2003)CrossRefGoogle Scholar
  10. 10.
    Etter, P.C.: Underwater Acoustic Modeling and Simulation. CRC Press (2018)Google Scholar
  11. 11.
    Jiang, J., Brewer, R., Jakubowski, R., Tan, L.: Development of a piano frequency detecting system using the goertzel algorithm. In: 2018 IEEE International Conference on Electro/Information Technology (EIT), pp. 0346–0349. IEEE (2018)Google Scholar
  12. 12.
    Khan, R., Ercan, M.F., Metarsit, L., Le, A.N.S., Lim, K.V., Tan, W.T., Ang, J.L.: Underwater navigation using maneuverable beacons for localization. In: OCEANS 2016 MTS/IEEE, pp. 1–5. IEEE, Monterey, CA (2016)Google Scholar
  13. 13.
    Paredes, D., Apolinario, J.: Shooter localization using microphone arrays on elevated platforms. In: 2014 IEEE Central America and Panama Convention (CONCAPAN XXXIV), pp. 1–6. IEEE, Panama, Panama (2014)Google Scholar
  14. 14.
    Paull, L., Saeedi, S., Seto, M., Li, H.: AUV navigation and localization: A review. IEEE J. Ocean. Eng. 39(1), 131–149 (2014)CrossRefGoogle Scholar
  15. 15.
    Perez, M.S., Carrera, E.V.: Acoustic event localization on an arduino-based wireless sensor network. In: 2014 IEEE Latin-America Conference on Communications (LATINCOM), pp. 1–6. IEEE, Cartagena, Colombia (2014)Google Scholar
  16. 16.
    Solodov, A., Williams, A., Al Hanaei, S., Goddard, B.: Analyzing the threat of unmanned aerial vehicles (UAV) to nuclear facilities. Secur. J. 31(1), 305–324 (2018)CrossRefGoogle Scholar
  17. 17.
    Stojanović, D., Stojanović, N.: Indoor localization and tracking: methods, technologies and research challenges. Facta Univ. Ser. Autom. Control. Robot. 13(1), 57–72 (2014)Google Scholar
  18. 18.
    Wadoo, S., Kachroo, P.: Autonomous underwater vehicles: modeling, control design and simulation. CRC Press (2016)Google Scholar
  19. 19.
    Wong, G.S., Zhu, S.m.: Speed of sound in seawater as a function of salinity, temperature, and pressure. J. Acoust. Soc. Am. 97(3), 1732–1736 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Departamento de EléctricaElectrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Centro de Investigación de Aplicaciones Militares CICTE, Universidad de las Fuerzas Armadas ESPESangolquíEcuador

Personalised recommendations