Machine Learning and Multipath Fingerprints for Emitter Localization in Urban Scenario

  • Marcelo N. de SousaEmail author
  • Rafael L. Cardoso
  • Henrique S. Melo
  • José W. C. ParenteJr.
  • Reiner S. Thomä
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 152)


A hybrid approach is proposed to perform the locate and tracking a non-collaborative radio frequency emitter using ray tracing (RT) simulation tool, channel impulse response (CIR), and machine learning estimation. The technique can enhance communication intelligence (COMINT) systems or even perform the localization using a single sensor in an non-line-of-sight (NLOS) suburban scenario. A multipath fingerprint can identify the target position using the machine learning classification engine to perform the matching. Conventional localization techniques mitigate errors trying to avoid NLOS measurements in processing emitter position, while the multipath fingerprints proposed uses the reflection information to feed the pattern matching engine build on a machine learning classification framework. The method was applied to simulate a tactical scenario, where a navy frigate is in Ipanema and tries to track an RF emitter target in the Rio de Janeiro streets using only one RF sensors fixed in an aerostat in a hypothetical counterinsurgency situation.


Wireless positioning Multipath exploitation Hybrid positioning Machine learning Ray tracing simulation 


  1. 1.
    Brady, E., Starr, S.: Assessing C3I in support of dismounted operations in complex terrain. Technical Report, Strategic Perspectives Inc., McLean, VA (2002)Google Scholar
  2. 2.
    Phelan, B.R., Lenzing, E.H., Narayanan, R.M.: Source localization using unique characterizations of multipath propagation in an urban environment. In: 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 189–192, June 2012Google Scholar
  3. 3.
    Fertig, L.B., Baden, M.J., Kerce, J.C., Sobota, D.: Localization and tracking with multipath exploitation radar. In: 2012 IEEE Radar Conference, pp. 1014–1018, May 2012Google Scholar
  4. 4.
    Setlur, P., Devroye, N.: Bayesian and Cramer-Rao bounds for single sensor target localization via multipath exploitation. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 5845–5849, May 2013Google Scholar
  5. 5.
    de Sousa, M.N., Thomä, R.S.: Enhancement of localization systems in NLOS urban scenario with multipath ray tracing fingerprints and machine learning. Sensors 18(11), 4073 (2018)CrossRefGoogle Scholar
  6. 6.
    So, H.C.: Handbook of position location: theory, practice and advances. In: Reza Zekavat, R.M.B. (ed.) The Oxford Handbook of Innovation, pp. 23–34. Wiley-IEEE Press, ch. 2 (2011)Google Scholar
  7. 7.
    Ho, K.C., Lu, X., Kovavisaruch, L.: Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution. IEEE Trans. Signal Process. 55(2), 684–696 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kolb, D., Warzügel, S., Schramm, J.: Hardware-reduced system for TDOA-locating of radio frequency emitters, eP Patent App. EP20,130,160,415, 25 Sept 2013.
  9. 9.
    Yang, L., Ho, K.C.: An approximately efficient TDOA localization algorithm in closed-form for locating multiple disjoint sources with erroneous sensor positions. IEEE Trans. Signal Process. 57(12), 4598–4615 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fuschini, F., El-Sallabi, H., Degli-Esposti, V., Vuokko, L., Guiducci, D., Vainikainen, P.: Analysis of multipath propagation in urban environment through multidimensional measurements and advanced ray tracing simulation. IEEE Trans. Antennas Propag. 56(3), 848–857 (2008)CrossRefGoogle Scholar
  11. 11.
    Alsheikh, M.A., Lin, S., Niyato, D., Tan, H.P.: Machine learning in wireless sensor networks: algorithms, strategies, and applications. IEEE Commun. Surv. Tutor. 16(4), 1996–2018 (2014) (Fourthquarter)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Marcelo N. de Sousa
    • 1
    Email author
  • Rafael L. Cardoso
    • 2
  • Henrique S. Melo
    • 2
  • José W. C. ParenteJr.
    • 2
  • Reiner S. Thomä
    • 1
  1. 1.Technische Universität IlmenauIlmenauGermany
  2. 2.Military Institute of EngineeringRio de JaneiroBrazil

Personalised recommendations